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We develop a quantum description of acoustic superradiance for spins interacting with longitudinal phonons
in a one-dimensional system. The analysis is performed by looking at the second-order Heisenberg equations
of motion for the phonon population in each mode. These equations are solved in the superradiant case and
the results are compared with those obtained in the theory of avalanche relaxation previously developed.

I. INTRODUCTION

Recently, ' the possibility of acoustic superradi-
ance has been investigated and a semiclassical the-
ory has been developed for paramagnetic spins in-
teracting with lattice vibrations. As is well known,
in a paramagnetic crystal the populations of elec-
tronic levels of paramagnetic impurities at equilib-
rium are determined by the temperature of the
black-body acoustic radiation present in the crys-
tal. If the populations are modified by an external
cause and the energy of the impurities is increased,
the system may recover its equilibrium configura-
tion by releasing the excess of energy in the form
of elastic vibrations of the atoms surrounding the
impurities. At low temperature this relaxation
takes place mainly through direct processes. In
such processes each electronic transition leads to
the emission of a phonon having energy equal to the
spacing between the levels involved. In simple
cases recovery of the equilibrium situation is ex-
ponential and its characteristic time is T,. This
time is referred to as spin-phonon relaxation time
and, strictly speaking, it is meaningful only when
each impurity can be assumed to relax without
being influenced by the phonon field emitted by the
others.

In Ref. 1 the relaxation process was studied when
the populations of the levels are initially inverted
and the temperature of the thermal bath is O'K.
According to that theory, under appropriate condi-
tions, the impurities decay simultaneously within
a narrow time interval T~ much smaller than T,.
Their energy is converted into elastic energy and
a highly directional acoustic pulse is emitted. This
process takes place after a delay time T& from
initial excitation, one or two orders of magnitude
larger than T„.

The directionality of the pulse is characteristic
for this type of relaxation and is a direct conse-
quence of phase correlations in the time evolution
of the states of different impurities. The direction
coincides with a diffraction maximum for the radi-

ation and therefore depends on the relative posi-
tions of the active centers. This directionality does
not seem to play an important role in different
forms of collective relaxation such as phonon ava-
lanche. In fact, some of the descriptions of the
latter phenomenon that have been proposed '3 and
that explain the experimental results, at least
qualitatively, do not take into account phase cor-
relations in the motion of different spins. Coherent
relaxation cannot be excluded but it can be trusted
not to play a fundamental role in Brya and Wagner's
experiments. However, it is likely that in some
cases both acoustic superradiant emission and
phonon avalanche occur during the same relaxation
process, although at different stages. Therefore
it seems desirable to develop a theoretical formu-
lation which includes both ways of collective decay.
Interesting contributions in this direction have ap-
peared recently. "

In this paper we present a fully quantum-mechan-
ical description of acoustical superradiance. Sec-
ond-order Heisenberg equations are derived for the
operators associated with the number of phonons
in each vibrational mode. These equations togeth-
er with first-order Heisenberg equations for some
appropriate spin operators lead to a solvable sys-
tem of equations. The solutions are found and com-
pared with those obtained in the semiclassical ap-
proximation as well as with those obtained in the
case of phonon avalanche. In this analysis we take
into account the interaction of paramagnetic spins
with the phonon field but we neglect spin-spin and
phonon-phonon interaction. In this approximation
the spin-phonon Hamiltonian, in the notation of
number operators, is formally identical to the
Hamiltonian used to study the optical case. There-
fore most of the conclusions reached in the quantum
theory of optical superradiance' ' can be applied
to the case considered here. Nevertheless the
method of solution adopted here presents some in-
teresting features, since it allows a direct connec-
tion with the theory of phonon avalanche previously
developed, ' and it is an attempt at an unitary de-
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scription in which a possible transition between
the two decay regimes can be analyzed.

In the following we first describe the model used
and derive the equations for the phonon operators.
Second we formally solve these equations in the
superradiant case and derive the equations of mo-
tion for the spin operators. Then we solve the re-
sulting system of equations. Comparison with pre-
vious results concludes the paper.

II. THE MODEL

where

a, = (2mh&u&N)
' ' g e '"*&(6'& im-&, U&) .

f

N is the number of atoms in the chain and ~k is the
lattice frequency associated with the k mode. The
interaction can be written

(6)

where
The model used to describe paramagnetic spins

interacting with lattice vibrations is the same of
Ref. 1. It describes an assembly of spins S = &,
placed in an external magnetic field H and coupled
to a one-dimensional harmonic lattice. The Ham-
iltonian is

y, = g (e, a, S+ 'e"*&+H.c.),
f,k

V, =g( ,eaS&' e"'&+H.c.},
f,k

(8)

X=K +X

where

Xo X h+ Xg

= Q [k(Pg /m+ g K(Ug —
U~ ~ )~]2+ g P e H Q S g~

~

f

(2)
is the part concerning the lattice and the spins,
without their mutual interaction. tf is the momen-
tum operator, (if is the dispacement operator of
the atom j in the x direction, and K is the nearest-
neighbors force constant. S, is the z component
of the spin in the j site, and gp ~H = E is the ener-
gy splitting due to an uniform magnetic field H in
the z direction. The interaction is described by

3C 2=% Q (U)2. 2
—Uq, )S~~i,

e„=-e (5'/2mN&u, )'~' sin(ka) .
We note that of the two parts of the interaction only
the first describes real transition processes. V,
does not conserve energy and primarily causes a
shift in the energy levels. " In the following we
will neglect its effects completely.

III. EQUATIONS FOR THE PHONONS

We study the time evolution of the system looking
at the behavior of the phonon population operators.
The first derivative of the phonon population in the
k mode is

Alkgk S g 2
[a, a„, (K, + v, )] = ——

[a2,a„v,]

& h= ~ ++k~k~k (4)

where ~ is the coupling constant between the spin
and the strain at position j.

In the notation of number operators the Hamilto-
nian of the unperturbed lattice has the form

where we use

[a2*, , a,*] = [a~, a2, ] = 0; [a„a2, ] = 5q, 2, .
The second time derivative is given by

dma2, a2, i dag a2,
gg2

=8 ~(k&y2, —E) g( qeS2a&~~e' "&+H.c.)+25 '(e2,
~ p (S, +g)

+5 [e2, [ Q (S~,' S&~' e"&"~ *&'&
+. H)c+45 ~e2, [ a2, a22+ S~ '

f.f'

~ 22 'Q e. . .e, pete'e'" '*e ~ H. e.),k'~k
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where the commutators of the spin operators are

[S(&) S (&')] —t6 ,S (&)

S &&)-g (&) ~ ~ (&)

It may be useful at this point to make some qualita-
tive considerations on the role played by the vari-
ous terms that appear in Eq. (11}. We note that the
second term depends linearly on the number of
impurities, while the last three terms depend on
the square of this number. This difference is es-
sential in distinguishing the terms that describe
usual spontaneous emission from those describing
superradiance or avalanche relaxation. Moreover,
the last two terms are proportional to the square
of the coupling times phonon operators and should
represent stimulated emission due to the phonons
emitted by the spin system, if the lattice at t= 0 is
in a phononless state. In fact the fourth term de-
scribes incoherent phonon avalanche. ' The third
term does not explicitly contain phonon operators
and it depends on the relative phases of the spins
at different sites. As we shall see, this term plays
a central role in superradiant emission where, ac-
cording to the formulation of Dicke, e the radiation
emitted is assumed to immediately leave the active
region.

The first term needs a little work to be inter-
preted. The operator (Z2a2a2+E&s(&&} commutes
with (X0+ V, ) and therefore is a constant of motion.
Then we can write

g a, a2+ g S( & = g a22a, + g S('&
f k j t=p

P ((Sta -S)a a, t P (t a Sttta' 't ~ 0 a )}

=Q ((Sa, -S)a,a'

+ Q (e,a, S(,'. &e"*~+H.c.)
f , t=p

If this equality can be assumed to hold for each k

mode separately, we finally get

Q (e, a, S(»e"*&+H.c.)

(I(s&2 —E)aaaa+ (g(s))t —E)att a)tl s 0=

+ Q (e, a, S(,&)e"*&+H.c.)(s 0. (16)

A different derivation of Eq. (16) can be found in
Ref. 11. Direct substitution shows that the first
term in Eq. (11) distinguishes between the reso-
nant modes and those out of resonance.

IV. SUPERRADIANT CASE

We wish to restrict this analysis to the acoustic
analog of the Dicke superradiance. ' Therefore we
do not take into account the effects of the interac-
tion of the emitted phonons with the spins by ne-
glecting the terms that in Eq. (11) dependonphonon
operators times the square of the coupling. With
this condition Eq. (11) reduces to

d'a*a
+ tt '(a(d&2 —E)'a*,a2

=I (a(d2 —E)Q (22a)ts, e' *&+H.c.)Is=0

and consequently we have

p tt0), a2a, + E g S(&)
+&2 '(g(a2-E)'a2a21(=. +3&f 'Ie.l'g(s'. "+2}

f

=g (tf(t&2 —Z)a2a2

+g ')(e, ~2+ (S-&,'&S&'&e"(*» &+H.c.),

(17)

+E Q a~2a2+Q S(&) . (13)
t=p

The total energy of the system is also a constant
of motion. Therefore,

tt0&*,2aa2E+g S(&) + p (e2a2S(~&e"'& + H.c.)
k 4'24

where Eq. (16) has been used. Equation (17) can
be formally integrated by considering the terms
on the right-hand side as a source operator S(t).
The general solution is

a(u, a*,ak+ E S &')

+Q (e,a, S&,'&e"*&+H.c.
k, g t=p

Then, by using Eqs. (13}and (14), we have

(14)

(18)

where C, and C, are two time-independent opera-
tors to be determined. f,(t) and f,(t) are linearly
independent solutions of the corresponding homo-
geneous equation and t&, (f„f2) is the Wronskian of
these two solutions. It is
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. [(&f~,-z)[t, [(I~, E-)[t

and the Wronskian gives

and, at t=0,
da', a, [(mu, —E) (

dt

By using Eq. (10) we may write

(23)

~alai~=p= C2~ (21)

where the operator C, is shown to coincide with the
operator a&a& at t =0 in the Heisenberg representa-
tion. Moreover, derivation of Eq. (18) with re-
spect to time gives

dn"a df ~
' S(t )f(t )dt''), '

dt dt ', t (f„f.)
' s(t')f, (t') «'

(22)

t(f f)=f ' -f '=- ' (2o)' dt ' dt

Equation (18), at t=0, gives

At t =0 our operators in the Heisenberg represen-
tation are equal to the corresponding ones in the
Schrodinger representation and their average val-
ues at t=0 give

(c,) = &c,) =0.
These values are calculated using Eqs. (21) and

(24), assuming the system in the phononless state
with all the spine in the upper level. Equation (18)
for the average values give

(25)

C, =
~

E, g(eqaqs, e' * —Hc) . (24)
t=p

&s(t))f(t) &() d
&S(t))f(t)

a.(y„y,) ' . ~(f„f.)
t

=I '~~ ~' dt' 2~ (S&'&+-,') + g (S", S"'&e"&*& *&'+H.c.)

(26)

where the time-independent operators on the right-hand side of Eq. (17) do not aPPear since their average
values vanish.

We are interested in the behavior of quantities such as the total magnetization or the acoustic intensity.
To this end we sum Eq. (26) over all the modes and have

J max
d(1&v, )p, (&f&u,)(a*„a,),

p

dt' 2 Sg +2 d %L)g P) k(og,
max , sin[~(h(o, —Z)((t —t')/tf]

., *,, &+ H, )
s»[l(g~~ —E)I(t -t')/g]

l(g .—E)l/&f
(27)

where p, (|f&v~) is the density of vibrational modes
in the linear chain. We have replaced the sum over
the modes by an integral, assuming that the energy
of the modes forms a continuum. The integration
in energy involves integration over k values both
negative and positive. Since some quantities in the
integrals depend on the sign of k we will perform
the integration separately, starting with the posi-
tive k values. Let us note that the function

sin[ ( (tf&v, —E)) (t t')/g]-
i(a~, —z) i/a

peaks at Sco& = E and rapidly decreases when we
move away from this value. In the interval where

xq —xq &l, l=1//ah= v/a&u&, . (28)

The quantity Ak is the effective range of integra-

the above function is appreciably different from
zero, the quantitiy [e,('p&(KL&&) can be assumed to
be constant and equal to the value ~e,,~'p, (Z) that
it takes at resonance. As far as the second inte-
gral in Eq. (27), the quantity

((S&,"S&' &e'"&*& '&'& +H.c.)),.
can be taken out of the integral and replaced by its
value at k= k„provided that &' "~ "~' do not vary
substantially as long as k runs over the effective
integration region. For this to be true it should be
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tion over k values, v is the velocity of sound, and

b, » is the width of the line. Vfe note also that the
superradiant contribution due to two impurities
whose distance is greater than L results to be very
small. " %e assume in the following that in our
case the distance between any two impurities is
short enough to comply with condition (28)." How-

ever, it is likely that the limitations that this con-
dition imposes in the acoustic case are more
severe than those involved in the optical case,
where condition (28) should also be satisfied in

Dicke superradiant emission (see Ref. 8, p. 105).
The reason for this lies essentiaDy in the different
order of magnitude of the velocities in the two
cases.

%ith this assumption the integration that appears
in both terms on the right-hand side of Eq. (2V) re-
duces to

J ~sx sin[((k()xs—E)((t t')/-tf]
( } (29)

i(a~, —E)i/I

and Eq. (2V) becomes

J
max

d(I(u, )p, (K(d,)(a,ax),
0

t
=vtt '[e.,l'p, (E) dt' 2+(S(')+-,')

0

t
~ —s 'I&,I's (s) &x' p (s&'&s&"e" &'»-''&

&&, n ) g (s&,'&s&»'e "'&'»''+x. n. ) )0 gt f,f'
f ~f I

(3o)

where the integral relative to the negative k values
has been added explicitely.

By deriving Eq. (30) with respect to time and
using relation (12) we have for the magnetization

V. EQUATIONS FOR THE SPINS

The equation for S (k„ t) gives

where

(f) — S(f)

[(S(k„t)) + (S(-k„t))], (31)
j.

= —
g [s(k„t),v, ]
g

(S (J ')e((s&-Agxg &)

.(„n,n&»e»... -H.n.))

T,) = [(2v/tf)[e„, exp, (E)] ' (32} + H.c. ,

is the spin phonon-relaxation time in the linear
chain and, respectively,

S(k, t) = g (S&,"S~~'ie""*& *&'~+ H.c.),

where the sum is extended to both positive and
negative k values. Due to the presence of phonon
operators the relevant terms in this sum should be
those inside the emission band. Therefore if con-
dition (28) is satisfied by every couple of impur-
ities and k is a positive wave vector which belongs
to a mode inside the band we may write

S(-k„t)=g (S~.'&S&')e "d*~"~ &+H-.c.).
f ssf'

S f j(k-N0)xf t ~ S(f')e (34}

Equation (31}describes the time behavior of the
magnetization in the purely superradiant case.
The first term on the right-hand side gives the
usual spontaneous decay while the second term is
the superradiant contribution. To derive the time
dependence of this term we examine the Heisen-
berg equations for S(k„t) and S(-k„t).

S(f ')ei(k-A0)xf t ~ S(f )e ziAOxf
g g

f I f I
(35)

For this expression to be appreciably different

where the origin of the x axis is assumed to coin-
cide with the position of one of the impurities.

Let us consider now the modes inside the band
but having negative k. Using Eq. (34),
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from zero the z component of the spins should

vary, as we move from one site to the others,
within distances comparable with the wavelength
of the resonant mode. Although this possibility
cannot be a Prion excluded we consider here only
solutions in which the spin-population difference
does not vary as rapidly" and assume

s (J )+ Qgkog~ i 0
gl

(36)

Taking into account approximations (34) and (36),
Eq. (33) becomes

dS(ko, i) 2i g () ))~

dt 5 ~i )

where the equality

(41)

is used. In fact, due to the symmetry of the sys-
tem and of the initial condition we should have

(42)

which together with Eq. (12) leads to Eq. (40).

VI. SOLUTION FOR THE COUPLED SYSTEM

Time derivative of Eq. (31) gives

cga& S&,~~e' '& —H.c. + H.c.,
k&o,g

(3V)

where condition (28) has been used again to replace
e' 0*& by e""&. Ey using Eq. (10) we finally get

dS(k f) g () ) g 2fa

dt g' »0
and analogously

(IS( k02 I) 2 Q S()&) Q lfa)&a22
H (39)

dt &

' ~„dt
We observe that position (36) decouples S(k„t)
from S(-k„t) in the sense that the equation for
S(ko, f} does not contain any more terms relative
to negative wave vectors and vice versa.

For Eqs. (38) and (39) to be coupled to Eq. (31)
we must go from operators to average values.
Since (38) and (39) are first-order equations this
task can be accomplished by taking the average
values of the operators on both sides of the equa-
tions. Unfortunately this procedure leads to quan-
tities such as

that are not easy to handle. In fact the exact eval-
uation of these terms would require the solution of
the Heisenberg equation for the product operator
and it is likely that in this way one would get an
endless chain of equations that never form a closed
system. To overcome this difficulty it seems nec-
essary to adopt the so-called decoupling procedure
and to replace ((Z) S() }(fa*,a„/(ft) by
(Q& S(~ ) (2fa~), amdt). " Then Eq. (38) becomes

(43)

where d(S(ko, t))/dt has been replaced using Eq.
(40) and the same has been made for d(S(-k„t))/
dt. The boundary conditions for Eq. (43} are

()) N d(E) S())) N

g-0 2 dt /=0 Tyf
(44}

(t) = 2 (Q 2' ")

Then Eq. (41) gives

d~u 1 du 1 dg
dt T,) dt Tg dt

where
Ts = 2T,)/N.

Integration on both sides of Eq. (46) gives

du 1 1
Q+ Q +A ~

dt T~) 2T„

(46)

(47)

(48)

The constant A can be found by using the second
of the boundary conditions and is in the form

A = (1/2T„+ 1/T „-}. (49)

Further integration of Eq. (48) can be performed
by separating the variables. The final result that
satisfies the first of the boundary conditions is

The second of these conditions can be immediately
derived from Eq. (31).

I et us define the normalized population differ-
ence between the levels as

«slk &) I &,& g„22,'«,
)dt

= 2 S&»d S&» (40)

a(t) = tanh[(T —t)/2T„],
where the time delay

T~=T„In(gN)

(50)

(51)

has been introduced. In the derivation of both Eqs.
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VII. CONCLUSIONS

Let us compare our results with those obtained
in the semiclassical approach. ' To this scope we

put in Eq. (46},

u(t) = cosP(t}

and we have

(52)

dP . 1 1 1 1——sing = — cosQ + cos'Q — +
dt T,~ 2' 2' T yf

(53)
If we neglect spontaneous relaxation this equation
becomes

dQ 1
sing

dt 2T„
(54)

which is almost identical to Eq. (15) of Ref. 1, if
there the dependence of P on the position is neg-
lected" and integration over x is performed. The
difference of a factor of 2 should be due to the fact

(50) and (51), N» 1 has been assumed. Solution

(50} shows typical features of the superradiant
emission. ' T„measures the duration of the sud-
den decay after a comparatively slow relaxation
which lasts approximately TD. Both T~ and T„are
much shorter than T,.

that rn the semiclassical treatment stimulated
emission due to the phonons emitted by the spin
system has not been neglected, as we have made
in the derivation of Eq. (17).

Finally let us consider the essential features of
the behavior of the system in the phonon-avalanche
regime. The role played by T„ in superradiant
emission is played in this case by the phonon inter-
ruption time defined in our model as

b.t = T„n/N (55)

where n is the number of modes "in speaking
terms" with the spins. %e note that in the one-di-
mensional model T+ is shorter than ~t except when

n ~2. Unlike superradiance, the avalanche relaxa-
tion stops when the populations of the levels are
equal and the band of the emitted phonons narrows
during the process. ' The lack of band-narrowing
phonomena in the particular type of superradiance
here considered" should be explained by the fact
that we have neglected the interaction of the emit-
ted phonons with the spins.
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