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Phonon-assisted radiative transfer*
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The radiative-transfer rate for inhomogeneously broadened optical lines is calculated. Photon emission and

absorption is supplemented by one- and two-phonon processes to achieve energy conservation. These photon-

assisted radiative transfer processes are shown to be effective at low concentrations, where electrostatic and

exchange processes are weak, in the intermediate or strong radiative trapping regime. Specific application is

made to the case of dilute ruby, and explicit transfer rates are calculated. The coherence factors, which

undermine nonradiative single-phonon-assisted energy transfer for a small energy mismatch, are not important
for radiative transfer, if the photon mean free path is longer than the wavelength of the energy matching

phonon. The one-phonon process is found to vary linearly with temperature, and to be independent of the

energy mismatch. However, the calculated rate for the case of ruby is found to be very slow. The two-phonon-

assisted radiative-transfer process rates are calculated. They dominate the one-phonon-assisted rate for all

reasonable temperatures. The results of an earlier paper are shown to be related to phonon-assisted radiative

transfer if one replaces the exchange coupling between transfer sites J by -7„'kl(ro/X). Here aft is the
radiative lifetime, ro the distance between sites, and X the photon wavelength involved in the radiative transfer.
This replacement results in a line center to wing transfer rate equal to 1.1 X 10' e "' sec ' for ruby

(independent of concentration for a photon mean free path smaller than the sample size).

INTRODUCTION

We have examined phonon-assisted energy trans-
fer in inhomogeneously broadened systems in
three previous papers. ' ' The principal coupling
mechanism between transfer sites was taken to be
exchange, but the method was sufficiently general
to include electrostatic (e.g. , quadrupole-quad-
rupole coupling) interactions as well. Very recent
experiments at low Cr concentrations in ruby by
Seizer and Yen~ have exhibited evidence for radi-
ative transfer. To our knowledge, there is no
satisf ac tory treatment of phonon- assisted radi-
ative transfer. We therefore present here a treat-
ment of spatial energy transfer by virtue of photon
emission and absorption between inhomogeneously
broadened sites. One- and two-phonon processes
are incorpora. ted into the theory to make up the
energy mismatch concomitant with inhomogeneous
broadening.

We treat the phonons on the same basis as the
photons. We showed" that this approach was the
only one that could generate satisfactory transfer
rates in detail, the usual lifetime broadened over-
lap model' being only approximate (and in some
cases seriously misleading' ). It will turn out that
the one-phonon assisted radiative transfer process
will be much too small to explain the results~ for
dilute ruby. The two-phonon-assisted radiative
transfer process gives rates of about the right
magnitude to explain the data.

Inherent in all of these considerations is the re-
quirement that the sample size be large compared
to the mean free path for the photon participating

in the transfer process. More precisely, the ac-
tive volume must be of the order of k ', where k
is the absorption coefficient. Under such a con-
dition, the probability of absorption of the photon
is unity, and the energy transfer process is most
efficient. For smaller volumes, the photons can
"leak" out of the active volume before energy
transfer occurs. In the former case, we find the
energy transfer rate to be independent of concen-
tration of the active element (for ruby, the Cr
impurity). This remarkable result is a conse-
quence of the "efficiency" of photon use in the
transfer process, giving rise to a slowly decaying
radial dependence (i.e. , inverse square depen-
dence on the distance) between the two sites. For
smaller samples, the efficiency is reduced, the
rate becomes sample shape and concentration de-
pendent, and the transfer time is lengthened.

The lack of dependence of transfer rate on con-
centration (for sufficiently large samples) means
that the radiative transfer rate will become im-
portant for any optical system at sufficiently low
concentrations. The actual value of the cross-over
concentration will depend on the mechanism for
transfer at higher concentrations. It will be larger
for the more rapidly varying electrostatic and ex-
change transfer integrals. Thus, for ruby, phonon-
assisted radiative transfer appears to dominate
for as high as 0.05-at. % Cr. '

We treat the cases of one- and two-phonon as-
sistance separately. Section II exhibits our cal-
culation of the one-phonon-assisted radiative-
transfer rate, together with a discussion of the
role of the coherence factors. We calculate two-

16



16 PHO NON-ASSISTED RADIATIVE TRANSFER 935

phonon-assisted radiative-transfer rates in Sec.
III, indicating how the results of a previous paper'
can be taken over to radiative transfer by a sim-
ple replacement of the transfer integral by (ap-
proximately) rs'@/(r/)t), where rs is the radiative
lifetime, x the distance between t"ansfer sites,
and A, the wavelength of the participating photon.
We summarize our results in Sec. IV.
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II. ONE-PHONON-ASSISTED RADIATIVE TRANSFER

We consider two sites, labeled 1 and 2, between
which transfer is to take place. We suppose that
initially site 1 is in the excited state (denoted by
1*), and site 2 in the ground state (denoted by 2).
The excited state energies of sites 1, 2 (relative to
the ground levels) are taken as E, and E„respec-
tively. The optical transition energies of the two
sites (the 4Aa -E transition for ruby, for example)
differ by an amount aE» =E, -E,. The final state
of the system finds site 1 in the ground level (de-
noted by 1), site 2 in the excited state (denoted by
2*), and a phonon of energy n, E» emitted (absorbed
if 6E» is negative). Two processes are important:
a phonon of energy keg-=AE» is emitted at site 1,
a photon of wave vector k is emitted at site 1, and
the same photon is absorbed at site 2; or the pho-
non is emitted at site 2, with the same photon

(0)
FIG. 1. One-phonon-assisted radiative transfer. The

larger wiggly lines represent photons, the smaller lines
phonons of wave vector q (Kv, ~q ~

=nE», the energy mis-
match between sites 1 and 2). The circled numbers
represent the position of the step in the perturbation
chain. The crosses denote initial electronic occupancies,
the arrows the sense of the transition. (a) A phonon of
wave vector q is emitted at site 1, a photon of wave vec-
tor ~k ~ =E2/lie[see Eq'. (3)] is emitted at site 1, and the
same photon is absorbed at site 2. (b) A photon of wave
vector ~k~ =E,/Kc [see Eq. (4)] is emitted at site 1, the
same photon is absorbed at site 2, and a phonon of wave
vector q is emitted at site 2.

emission and absorption as before. The processes
are labeled (a) and (b), respectively, and are
pictured in Figs. 1(a) and 1(b). Simple time-depen-
dent perturbation theory yields the t matrix for
process (a):

+ {na+I, 1,2*~Hk
~ nz+ I, 1, 2) (nz &1, 1, 2 ~Hk~ n~+1, 1*,2) (nq + I, 1*,2 ~H(1) ~ nz, 1*,2)

k

Here, we have defined the photon energy as @Ok,
the electron-photon coupling Hamiltonian as Hp,
the spin-phonon coupling Hamiltonian at site 1 as
H(1), and taken I' as the linewidth of the excited
state (we have ignored the broadening of the ground
state). The upper and lower signs correspond to
phonon emission (for n.E»& 0) and phonon absorp-
tion (for EE»&0) processes, respectively. We
make three further definitions:

(nz + 1, 1*,2
~
H (1) ~ n~, 1*,2)

=f,{n-„+I
~ e~ na) exp(+iq r, ), (2a)

{nz + I, 1, 2
~ H(1) ~ nq, 1, 2)

—=fo(n~ +1
~ s~ n-„) exp(+iq r, ), (2b~)

(1,2*)HkI 1, 2) &1, 2 (H-, l 1*,2)

=—F(k) exp[ik ~ ( r, —ra)] . (2c)

I

for all sites), and F(k) the product of the electron-
photon coupling constants (each proportional to
k '~'). The former quantities (actually their dif-
ference, which will be the only important relation-
ship for this study) can be obtained from static
stress measurements. ' The latter can be esti-
mated from the radiative "f"number. ' Using
these definitions, and energy conservation be-
tween the final and initial states (i.e. , +)Ito-„=

E»), the "f-" matrix, (1), can be rewritten

f, (n-„+ I
~ s~ n~) exp(+iq r,)~

f '
gE 12

~ F(k) exp[ik ~ (r, —ra)]

k

A similar analysis for process (b) results in

f,{n~+1~ s~ na) exp(+i@ ~ ra)
f $ gE 12

In this notation, f, and fo are the strengths of the
spin-phonon coupling constants in the excited and
ground states (we assume that they are the same

+ F(k) exp[ik ~ (r, —r )]
E -&0 -iI'1 k

k

(4)
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1 SlnKI (K 1)= — dK
K, —K-irr/kC ' (6)

Here, V' is the active volume of the crystal. In
general, at low temperatures I' is sufficiently
small that the last term in the denominator of (6)
is much smaller than one. That is, for ruby at
conventional temperatures, I'/kc «1 cm '. For
I'/hc equal to 1 cm ', 1'r/kc = 7r, where r is
measured in cm. It will turn out that energy trans-
fer will be important between sites separated by
no more than a mean free path for the photon. For
sensible concentrations of Cr in ruby, this will
imply ~'s of the order of hundreds of microns, so
that indeed I'r/kc «1. At low temperatures, I'
is exponentially small' and substantially larger
values of ~ result in the same inequality. Under
this condition, I(K, ) becomes"

I(Ki) =(1/II) sinKlcl(K1)

—COSK1 [(1/II) si(K, ) + 1]+i sinK»

where

si(K, ) =— Slnt
df ~ Cl(KI)=—

1

cost
t

"'
(8)

The asymptotic properties of these functions are'

Sl(K ) ———'lI + K
a «11

ci(K, ) = —ln(1/yK, ) (y is Euler's constant);

Sl(K 1 ) ——COSK 1 /K i ~

Cl(Kl ) —SlnKi/Ki .

These properties result in

The above two processes refer to phonon emission
or absorption in the excited level. In addition,
phonon emission or absorption can equally well
occur in the ground level. The effect of adding
these diagrams to Figs. 1(a) and l(b) is to simply
replace f, in (3) and (4) by f, fo-(because of dif-
fering signs of the energy denominators). We
shall make this replacement in subsequent equa-
tions [e.g. , Eq. (10) below].

We proceed to examine the two sums appearing
in (3) and (4). To obtain a dimensionless form, we
define r =r, —r„and

k, =E, /flC, K=1k,r,
k2 =E2/kc, K, =k2r, F(k) =Fok

with Fo independent of k. The sum in (4), for ex-
ample, can be represented by an effective ex-
change coupling (by comparison with Refs. 1-3),

gelII (El, r) = (VFo/2ÃCr) I(K, ),
with

K,«1, I (K, ) = —~;

K,»1, I(K, ) =-e '"l.
(9a)

(9b)

For ruby, where E, =14400 cm ', the inequality
(9a) is equivalent

toe�

«1000 A, while (9b) corre-
sponds to r»1000 A.

The two processes, (a) and (b), involve differ-
ent photon energies. This can be seen from the
Green's functions exhibited in Eqs. (3) and (4).
Process (a) involves a photon of energy E„pro-
cess (b) a photon of energy E,. Because of trap-
ping, it may turn out that only one of the two
photons is effective in energy transport (see dis-
cussion below). Hence, it will be necessary to
keep the "f"matrices separate for processes (a)
and (b).

The transition probability per unit time for
energy transfer between site 1 and 2 is given by

W, 1=
& Qi ti Ii'5(h&u-, +nE»), (10)

where the sum over phonon momenta q includes
the sum over phonon polarizations, and the —(+)
sign refers to phonon emission (absorption) in the
energy transfer process. When (3) and (4) are
inserted in (10), there will be a cross term in

addition to the absolute squares. This cross term
will involve both photons (of energy E, and E, ) and
also a phase factor e"~'. This term is the origin
of an interference' arising from the one-phonon
emission or absorption on one site interfering with
the identical process on the other site. We dis-
cuss in Ref. 3 how this interference term reduces
the importance of one-phonon-assisted energy
transfer in the case of electrostatic or exchange
couplings. For one-phonon-assisted photon ex-
change, however, i r

i can vary over very large
distances, of the order of the mean free path for
photon absorption. The 6 function in (10) restricts
the phonon wave vector to i q i =ilE»/kv„where
v, is the phonon velocity. For dilute ruby, ~Ey2
=0.1 cm ', whence iqi =1.8x10 'A '. Phonon-
assisted photon exchange takes place over dis-
tances of the order of hundreds of microns in
dilute ruby, so that typically q ~ r»1 (the number
of sites increasing as I"). Hence, the long mean
free path of the photons, compared to the phonon
wavelength, averages the interference term to
zero. The inclusion of (3) and (4) in (10) therefore
involves only the absolute square of the respec-
tive "t" matrices. This allows us to separate our
consideration of each photon, or energy E, or E„
in the transfer process.

We show in the Appendix that

i
JiII (E„r) [ =q '0 if'(K, ) i /2K Ts k/(r/X),



PHONON-ASSISTED RADIATIVE TRANSFER

where q.~ is the radiative lifetime and A, the photon
wavelength. For ruby, v „=3.6 msec is the radi-
ative "R," lifetime for transitions between the E
and the 'A. , levels, and A, -6800 A.

Inserting (11) and (5) in (4), and an analogous
expression for the photon of energy E, in (3), and

using (10), we obtain the transition probabilities
per unit time for energy transfer between sites 1

and 2 for each of the photons:

er the phonon of energy AE» is emitted or ab-
sorbed in the energy-transfer process. For the
case of ruby b,E»«k zT, and (14) can be substan-
tially simplified. Using the experimental value' "

W~ —,=3x10'n(5) sec ',
we obtain

l I (xg)l f~ fo -kzT
W2 l(E1} (~z } 2(2z )2 A 53

2z (.z'~)' lf(..)l'
2 1( 2} lI 2(AE }2 (2z )2 (fl fo} x3x10' sec ', (15)

x g l (n-, + I l el nq) l'5(&i(uq + AE»);

(12a)

l/(x, )l'
W2 I(E1) @ 2(+E )2 {2+ )2 (fi -fo}

x g l(n, ~ 1 l el n;) l'5(+~;+AE») .

(12b)

Rather than evaluate the phonon sum in (12) ex-
plicitly, it is simpler for the case of ruby, and
more illuminating, to express 8'2, in terms of
the phonon-induced transition rate between the E
and 2A Levels. This rate is known from excited-
state electron-spin resonant measurements, "as
interpreted by Ref. 9. One knows that

W~ z =
+ P l {2A,n- —I lHl E,n~) l 5(Sup~ —5)

-= „' gA'l (n-, —1 I.I n-„} I 5(g~; -5),

(13)

defining the "off diagonal" phonon coupling con-
stant A. . This quantity can be obtained in the long-
wavelength limit from the static stress data of
Schawlow. ' The energy 5 in (13) is the E splitting
(29 cm '). We shall assume little dispersion in the
phonon spectrum between energies on the scale of
hE» and 5. Assuming a Debye spectrum, and
dividing (12b) by (13), we obtain

Wa i(Ei) (~z'k)' I l(zi)l'
W~ z 2(nE») (2z)

f f 2
l ~E»l. ln(l «»I)+ I
5'n(5) ( n(ln, E

(14)

with an analogous expression for W, ,(E, ) obtained
by substitution of z, for z, in (14).

Here, n(z) is the Bose factor, n(x) =(e*~" z—1) '.
The two choices in curly brackets depend on wheth-

with an analogous expression for W2, (E2) given
by replacing z, by z, in (15). The difference be-
tween z1 and z2 lies in the energy mismatch AE12
Because dE»/E, « I, one has z, =z„and therefore

One of the nice features of (15) is the appear-
ance of the ratio (f, -fo)/A. The static strain
measurements of the R, and R2 energies give this
ratio directly for ruby, with no analysis required.
Note also that (15) is independent of the energy
mismatch b,E», and linearly dependent on the
temperature, as is the usual result for one-
phonon-assisted energy transfer when the tem-
perature is higher than the energy mismatch. '

The expression (15}applies to the energy trans-
fer between two given sites via the energy-transfer
process (b). It is the rate assuming that site 1 has
an optical splitting E, and site 2 has an optical
splitting E,. In order to relate the above two-site
jump rate to the experimentally observable spec-
tral diffusion rate, we designate Wz(E, -E,) as,
the total spectral diffusion rate from an initial
line at E, to a final line at E, via a photon of en-
ergy E, (i = 1,2). 'Ibis rate can be found by sum-
ming (15) over all sites within a volume charac-
terized by the mean free path for photon E„ /(E, ).
One has

Wz (E2-Ei) =Q W2-i(Ex)

r(Z1)
W,„,(E, ) 4zr'n dr, (16)

where n is the impurity density. We are implicit-
ly assuming that the sample dimensions are larger
than the mean free path for photon E,. If the re-
verse is true, the integration must be truncated
by the sample boundaries, and the rate Wz (E,1-E, ) becomes sample size (and shape) dependent.
The total rate is given by

W(E, -E, ) = g W, (E, -E, ) .
i =1.2

If l(E, )-l(E, ), then Wz, (E, -E,)- Wz, (E, -E,).
An explicit value for /(E, ) can be found from

standard considerations, "
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l(E, ) '= —,'vnX' g(E, )/vR, (17)

where g(E, ) is the equilibrium inhomogeneously
broadened line shape at energy E,. For the case
of dilute ruby, g(E, )-(0.1 cm '} ' at the line cen-
ter, whence l(E, ) = 3.8&&10"/n. For 0.1 at P,. ('n

=10"), this leads to l(E, ) =0.038 cm. This value
serves as the justification for our previous re-
mark that the photon mean free path is much larger
than the wavelength of the phonon involved in mak-
ing up the energy mismatch AE». Because the
upper limit in (16) is so large, we are in the limit
of (9b) for I (z, ). We insert (Qb) into (15), and

carry out the integration (16). We obtain

Ws (E, —E, ) =(v~'/Fi)'[(J, fo)/-A]'(ksT/25')

x 3vx10'[nl(E, )/k', ] sec '. (18)

But the factor in the last square bracket equals
(2/v)vz/g(E, }. We thereby arrive at the remark-
able result that Ws (E, E, ) is -independent of the
Cr concentration n. This result is no longer valid
if the sample size is smaller than I(E, ), but we
have assumed moderate to strong trapping [e.g. ,
Eq. (16)] so that the reverse is true. The indepen-
dence on concentration is a direct result of the fact
that the mean free path for photon E, diminishes
as the concentration n increases, the net effect
being a cancellation of the concentration depen-
dence.

According to the static strain data, ' (f, f,)/A-
Using all the parameters known for dilute

ruby [i.e. , 7 s -—3.6 msec, 6 =29 cm ' =42 K, g(E, )
=(0.1 cm ') '=0.1 at. % of Cr], we finally reduce
(18) to

W~ (E~ E, ) =2.2x10 -4 Tsec ' (T in K). (19)

This rate is much too slow to be observed in ruby.
We shall show in Sec. III that two-phonon-assisted
photon exchange energy-transfer processes give
much larger rates and are probably observable in
ruby. The reason for the difference between one-
and two-phonon assistance rates lies in the much
larger density of states available to phonons of

energy ks T (involved in the two-phonon-assisted
processes} than to those of energy b,E» (involved
in the single-phonon-assisted processes}.

Before going on to the case of two-phonon-assisted
photon exchange, it is interesting to return to the
calculation of the transfer rate (16}. Clearly this
is a rough approximation, and serves only to give
an estimate for the total one-phonon-assisted
energy-transfer rate [as exhibited in Eq. (19), for
example]. The more correct procedure to follow
in an energy-transfer calculation is to consider
the energy transport equation utilizing both pro-
cesses (a) and (b). The difficulty lies with the
upper limit for the transfer rate [e.g. , see Eq.
(16)]. The transport equation will involve fre-
quencies over a large spectral range, causing
l(E} to vary strongly. In general, the problem
is a complicated one, but a strong simplification
can be made in the case of a Gaussian form for
g(E)." In such a case, it is possible to define
a cutoff energy (relative to the line center, E,) Eo,
such that photons with energy less than E, -E„
or energy greater than Ez+Eo are not trapped,
but are able to transverse the sample freely. The
condition which fixes Eo is simply /(E, +Eo) =l(E,
—Eo) =d, the dimension of the sample. Even this
condition is only approximate, as one should cor-
rectly take into account the spatial position of the
emitting and absorbing sites relative to the sam-
ple boundaries. We are assuming that the spatial
excitation distribution is essentially uniform. This
will give us a qualitative feel for the emission pro-
file, but will not be numerically correct. '

Let the emission probability function be denoted
by P(E, t), where t is the time. /Note that this
definition [as well as that used in Eq. (1) of Ref. 2]
differs from that of Motegi and Shionoya" in that
we absorb the line-shape factor g(E) into the emis-
sion probability function, whereas they do not.}
Define the quantity W(E' E) =Ws. (E'--E)+W~(E'

E). Then the a-nalogy to the Motegi-Shionoya"
equation for radiative transfer is (we measure all
energies relative to the line center E,)

dP(E, t) ~o QO

W@e E E g E P E dE W@ E E g E P E 8 Eo E dE 7' E P E 8 E
0

00 E
+f W, (E -E'}g(E')P(E') e(E, —

i E~)dE'+ f W, (E-E"g(E')P(E') dE'.
0

(20)

The quantity h(E) is the "escape factor, " approxi-
mately equal to unity for

~ E~ & E„and of the order
of the ratio of phonon side band emission intensity
to the zero-phonon emission intensity for

~ E~ &Eo.
The function e(x) is zero if x&0, and 1 for x&0.
The expression (20) for the time development of

the emission probability makes a sharp distinc-
tion between photons with absolute energies less
than Eo (trapped), and those with energies greater
than Eo (escaping). This distinction is incorrect
for a Lorentzian line shape, and the problem be-
comes much more complex. We leave the details
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for a future publication.
Approximately, the trapped radiation is quenched

by a factor p "~'~, where x is the distance from
the sample surface. As a consequence, to an ob-
server outside of the sample, the emitted radi-
ation profile has the form

l(E) = va'[P(E, i) l(E)/d)[1 —e ' ' s']

Site t

2A

Q1O2„
E

4A
2

Site 2

O~,
,

4A
2

(aj

2A

Site 1 Site2

0
E

O&$ O~

4A " 4A
2 2

(bj

Site1

2A

oi

4A
2

(cj

Site 2

The factors multiplying vs'P(E) arise from the in-
tegration of e *i'(si over x. Because l(E)~ g(E) ',
the product P(E, t) l(E) is actually independent of
g(E). In the limit of large thickness the emitted
radiation will have a rectangular shape.

Unfortunately, we are unable to solve (20) anal-
ytically. One must resort to a numerical inte-
gration and iteration solution of the integral equa-
tion, much as was done in Hefs. 2 and 3. We re-
serve such a treatment for a future publication.
For the present, we have outlined an approximate
form for the transport equation, which must be
used if one wishes to obtain the time development
of the explicit emission profile. The numerical
result (19) is only an estimate of the total trans-
fer rate caused by one-phonon-assisted radiative
transfer.

We now go on to treat bvo-phonon-assisted radi-
ative transfer. We shall again generate an esti-
mate of the total transfer rate. The reader is
warned that an accurate treatment again requires
solution of the transport equation for two-phonon-
assisted radiative transfer, similar in form to
(20).

III. TWO-PHONON-ASSISTED RADIATIVE TRANSFER

There are three processes which are expected
to be important for two-phonon-assisted radiative

FIG. 2. Resonant two-phonon-assisted radiative trans-
fer, as applied to ruby. The larger wiggly lines rep-
resent photons, the smaller lines phonons. The ab-
sorbed phonon has energy (5, the R &, R2 line splitting
(the energy difference between the Z and 2A excited
levels) and the difference in phonon energies equals the
energy mismatch between sites 1 and 2. The circled
numbers represent the position of the step in the per-
turbation chain. The crosses denote initial electronic
occupancies, the arrows the sense of the transition. (a)
A resonant phonon of energy 6 is absorbed at site 1,
anotherghonon is emitted at site 1, a photon of wave
vector ~k~ E,/Sc=[see Eq. (22)] is emitted at site 1, and
the same photon is absorbed at site 2. (b) A photon of
wave vector ~k~=E,/Sc [see Eq. (22)] is emitted at site
1, the same photon is absorbed at site 2, a resonant
phonon of energy 6 is absorbed at site 2, and another
phonon is emitted at site 2. (c) A resonant phonon of
energy (5 absorbed at site 1, a photon of wave vector
~k~ = (E,+6)/Sc [see Eq. (25]) is emitted at site 1, the
same photon is absorbed at site 2, and another phonon is
emitted at site 2.

transfer. The resonant component (see Ref. 1) is
pictured in Figs. 2(a)-2(c). In these transfer pro-
cesses, the phonon connecting the E with the 2A
has exactly the 'E splitting energy 5. The t ma-
trix for the transfer process pictured in Fig. 2(a)
[in a shortened notation compared to Eq. (1)] is
given by

(a,) ~ (2*IHPI 2) (1IHPI 1*)(E,nPi +1iH(1)i 27, n-„.) (2A, n~ —1iH(1)i E,n~)
[-5+g&o-, —ir(2A)] [-~E„-iI'(E)][E,-~E„-hQ„--il (E)]

k

(21)

In the perturbation chain, we have taken the initial energy to equal E„ the first intermediate energy Ez+ 5
-h&o~+iI'(2A); the second intermediate energy E, -h&c+~h&d~, +iI'(E); the third intermediate energy -hie~
+hid~. +AQk; and the final energy to equal -Nto~+&tc~. +E, (which of course must equal E, ). We have ig-
nored the width of the ground level. We use the definition of J;"' [Eqs. (5) and (6)) to simplify (21):

J["(Ea, r) (E,n(t, + 1 iH(1)i 2A, nz.) (2A, nq —1iH(1)i E,nz)f~f —6+Itic~ ir(2X)— (22)

We have dropped the factor iF(E) as compared to b,E», as it will be small in the temperature range where
the resonant transfer processes dominate. A similar expression is easily derived for process (2b):

(,» J;""(E r)t(E, n~, +1iH(2)[2A, na, )(2A, n~ —1iH(2)iE, n )
d E~s DE~a — 5+hq isiI'(2X)-

For small energy mismatches, dE~/ksT«1. Using this approximation, and the argument following (15)
which showed that Jf"(E„r)= Jf"'(E„r), we may combine (22) and (23) to obtain
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t(~a) + t(2a)f~f f~5

(26)

Z&'"(E~,r) IAI'(nq +11 el nq )(nq —Il eln2& e ' "' '&
(I i(q-q') ~ r } (24)SE„ —5+h(u2 —ir(2X)

where we have introduced the off-diagonal phonon coupling constants [see Eq. (13}].
The t matrix for the resonant part of the process pictured in Fig. 2(c) is given by

t~ 'l=J'" E +5 r) (n2 +1~ e~ nq ) (nq —1 ( e[nq) exp[-i(q~r~-q ~ r2)] j25[-6+if(u- il—'(2X)] [SE„—6+h(o- -ir(2X)]
where J, relates to photon matrix elements between the 2A and the ground 'A, level. Thus,

J'2"f (E2+ Q, r) = vE
'I'

I I (&2 ) I /2E „
where the subscript R, on r means the R, radiative lifetime. Because K2=K,(1+5/E, ), and E,»5, one ha

K3 —Kj.
The resonance character of the denominators in (24) and (25) ensures that the phonon energies are in the

vicinity of 5. This implies phonon wave vectors q and q' of the order of 10' cm '. When multiplied by a
characteristic separation distance of /=0. 01 cm, we have the strong inequality qr =q'r»1. This allows us
to ignore the cross terms in the coherence factors.

The total transition probability per unit time for the resonant part of the two-phonon-assisted radiative en-
ergy transfer between site 1 and site 2 is given by the "golden rule, " using (24) and (25). We find

,g). («-)'( .&}' W~-- lf( )I'
(27)

(n.E )'+F2(2$) (~E»)2 (2E, )2

using (11). We have designated the radiative life-
time of the E as y„,.

We have not separated out the individual con-
tributions in (27) due to processes involving pho-
tons of energies E„E„E,+5 and E,+5, as was
done in Sec. II. There are no cross terms in the
coherence factors, as discussed above, so that
the first (last) two processes involving photons of
energy E„E2 (E,+5,E2+5) contribute equally to
the first (second) term in (27). The full transport
equation [see Eq. (20)] requires such a separation.
However, as explained in Sec. II, we are seeking
in this paper only to estimate the total phonon-
assisted radiative-transfer rate. Detailed treat-
ment of the transport equation, required for a
satisfactory expression for the time development
of the spectral emission profile, is beyond the
scope of this work and is reserved for a future
publication. In the absence of such a treatment,
the results of this section should be regarded only
as an estimate of the total spectral transfer rate.

The form of (27) is interesting because it is
strongly suggestive of Eq. (1) in Ref. 1. That is,
the quantity (rE'h) I (E,)/2z, plays the role of the
exchange coupling J, appropriate to the case of
non-radiative-transfer. We shall exploit this
result shortly when we consider the remainder of
the two-phonon-assisted radiative energy-transfer
processes.

In order to estimate the total two-phonon-as-
sisted radiative-transfer rate, we make the as-
sumption that the mean free path l(E) for each of

the photons involved in (27) is the same. We then
carry out the integration over the volume in the
same manner as in (16). Using (17), we obtain

W„, (E, E,) = —-((r ', g) (g&v, )

(nE12) (TR2@) (@Ev2) WE~22

(n,E„)2+r2(2X) (n.E„)'
(28)

We have designated I/g(E) for the R, and R, lines
by b, v, and 6v„respectively.

It is interesting to explore the magnitude of (28).
For dilute ruby, we take (as before} b,E„-

b'av,

-0.1 cm ' and rE'k =1.5x10 ' cm ' (for rE =3.6
msec). Taking the second term in the large
parentheses of (28) equal to the first, we obtain

W«, (E2-E, ) =1.1 lx' 0e" sec ' (29)

This value is ~uf;. . cient)y large to be observable,
and preliminary evidence' suggests it is about
right for ruby.

Note that (28} is explicitly independent of Cr
concentration. Tnis is again because of the use
of the photon mean. free path E to determine the
number of participating sites (exactly as in the
case of single-phonon-assisted radiative transfer
treated in Sec. II). There is an implicit effect of
concentration in that b, v will increase as the con-
centration increases. This is a secondary effect,
however, and can easily be taken into account.

In addition to V„„Ref.1 exhibits energy trans-
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fer rates for a nonresonant process involving elec-
tronic transitions, (a) between the Z and the 2A;
(b) within the E but phonon absorption and emission
on different sites; and (c) within the E and for
phonon absorption and emission on the same site.
These processes can all be carried over to radia-
tive transfer as treated in this paper by simply
replacing the exchange coupling J, of Ref. 1 by
Z~" (E,r) of this paper [see Eq. (11)]. This is al-
lowable because Jf""(E,r) is a very weak function
of E, on the scale of A~T, for large values of E,.
In addition, the spectral diffusion rate for radia-
tive transfer involves sites interacting over dis-
tances of order l, so that qr and q'r»1 (r l, -q, q'
-ksT/kv, ). The interference terms of Ref. 1,
therefore, do not play a role. All of the energy
dependences of Ref. 1, and the relative magni-
tudes of the various transfer rates, also go over
directly to the case of radiative transfer. As a
consequence, the resonant part of the two-phonon-
assisted radiative-transfer rate dominates in the
helium temperature regime and above.

The two-phonon-assisted radiative-transfer
rates are all explicitly independent of concen-
tration (except for the implicit effect of concen-
tration on the inhomogeneous linewidth 6p, as
previously noted). However, the two-phonon-
assisted non-radiative-transfer rates exhibited
in Ref. 1 all increase rapidly as the concentration
increases because of the rapid increase of the
exchange coupling with decreasing Cr-Cr distance.
One expects, therefore, to observe two-phonon-
assisted radiative transfer at low concentrations,
with non-radiative-transfer taking over as the
concentration is increased (even though the photon
trapping becomes more severe as concentration
increases). The "catch" is that the concentration
must not be too low, for then the photon mean free
path l(E) will become larger than the sample di-
mensions d for most if not all of the spectral line.
This condition violates our assumption of moderate
to strong trapping, making the use of a uniform
spatial excitation distribution questionable indeed.
The photons will escape from the sample, and
the over-all "efficiency" of radiative transfer will
sharply diminish. A simple test for this condition
is the observation of a shape or sample volume
dependence of the spectral transfer rate. Effects
of this sort have been observed for 0.05/() ruby. ~

IV. SUMMARY AND CONCLUSIONS

We have calculated the one-phonon- and two-
phonon-assisted radiative-transfer rates for an
inhomogeneously broadened spectral line. We
have shown that both rates are independent of con-
centration when the sample dimensions substan-

tially exceed the mean free path for photon ab-
sorption (moderate to strong trapping). The one-
phonon-assisted radiative transfer was shown to
increase linearly with temperature, with a mag-
nitude proportional to the inverse square of the
radiative lifetime. An explicit evaluation of the
transfer rate for ruby showed this process to be
unimportant for that case.

The two-phonon-assisted radiative-transfer rate
was calculated. When applied to ruby, the reso-
nant part was shown to vary exponentially with 1/T,
and yield a magnitude of the order of 25 msec at
42 K according to (29). This is sufficiently large
to be observable. The nonresonant two-phonon-
assisted radiative-transfer processes were shown

to follow from previous work on non-radiative-
transfer by the replacement of the exchange cou-
pling with the quantity 7s'h

~
I (K, ) ~ /2z, - r~'h/(r/1).

The relative importance of the various processes
is the same as outlined previously for non-radia-
tive-transfer (Ref. 1). The resonant process
should dominate at low temperatures, while the
nonresonant processes will become important
above the liquid-helium temperature range.

The energy mismatch (n, E») dependence of the
radiative transfer rates are identical to the non-
radiative-transfer rates of Ref. 1. The spectral
diffusion treatments of Refs. 2 and 3 can therefore
be taken over to the case of radiative transfer
immediately.

Clearly, a systematic study of spatial-spectral
diffusion in inhomogeneously broadened systems
is called for. We predict that, as a function of
concentration, phonon-assisted radiative transfer
should dominate at low concentrations, with non-
radiative-transfer becoming important as the con-
centration is increased. The former rate may be
sample shape and/or volume dependent if the pho-
ton mean free path exceeds the sample dimensions.

Though we have applied our results exclusively
to the case of dilute ruby, they are relevant to a
wide variety of physical systems (e.g. , the rare
earth-doped glasses" ). Different spectral level
structures may lead to differences in the relative
importance of phonon-assisted resonant and non-
resonant-transfer rates.

Finally, we emphasize that our calculations are
only estimates of the total phonon-assisted radia-
tive-transfer rates. A proper treatment must in-
clude the spatially-dependent transport equation.
Even if the spatial excitation distribution is taken
as uniform [an approximation which requires
l(E) «d, where d is a, characteristic crystal di-
mension], the time development of the emission
profile requires solution of a complicated diffusion
equation [e.g. , Eq. (20)]. Our results, therefore
[e.g. , Eqs. (19) and (29)], are only approximate
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estimates of the total transfer rate. A full treat-
ment is reserved to a future publication.
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Consider the radiative emission rate

(A2)

APPENDIX A

According to (2c) and (5),

~

J" ' (Z, r)l = [Vt& I (K )/2nhcr ]'

xl &1, 2*I Iffy I 1, 2& &1, 2 llfpl 1*,2) I .

(Al)

x 5(k, —k),kc

where @cky E y Simplifying,

1/r~ =(V/k' cw) k', [ &1 i Hki 1*&i

(A3)

(A4)

We shall assume that the photon transition proba-
bility is the same at the two sites, 1 and 2. [In
glasses, this is known to be a poor approxima-
tion. " In such systems, the radiative lifetime
which appears in our final expression for Z,'""(E„r)

Comparing (A2) with (A4), we immediately find

(A5)

This result is reproduced as (11) in the text.
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