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An effective-mass-like equation is derived for carriers in inixed crystals with nonuniform composition in the

presence of magnetic field. The spin-orbit interaction is taken into account. The effective magnetic moment of
a carrier is shown to be position-dependent. Specific spin-dependent terms which appear in the effective

Hamiltonian for graded mixed semiconductors are examined. It turns out that because of the spin-orbit

coupling the knowledge of simple band parameters for homogeneous crystals is insufficient to describe the

dynamics of carriers in graded mixed semiconductors. The general theory is illustrated by discussing the I 6

band in cubic crystals. The parameters describing the effective Hamiltonian for I, electrons are calculated in

a three-band model. It is shown that spin and orbital motion can be strongly coupled due to inhomogeneity of
composition.

I. INTRODUCTION

First attempts to describe the dynamics of car-
riers in mixed semiconductors with graded com-
position were based on the phenomenological as-
sumption that a standard effective-mass equation
holds but with position-dependent band-edge ener-
gy and effective mass. ' ' Gora and Williams"
have derived in the framework of the virtual-crys-
tal approximation an effective-mass-like equation
for the case of a graded-mixed semiconductor
whose both components have cubic-lattice symme-
try and a spherical nondegenerate band extremum
at the I' point. In a previous publication, ' hence-
forth referred to as I, the effective-mass theory
for the case of arbitrary lattice symmetry and
more general band structure of the component
crystals (degenerate and multivalley bands) has
been presented, and limitations of the concept of
position-dependent band parameters have been dis-
cussed. However, the range of applicability of the
effective-mass equation derived in I was still
limited because spin effects had not been included.

It is well known that in many semiconducting
crystals relativistic corrections to the Schrodinger
equation associated with electron spin are of
great importance. For electronic states, the most
significant is the spin-orbit interaction which
couples the spin of a carrier and its orbital motion
and, therefore, strongly influences the band struc-
ture and electron magnetic moment. Spin-orbit
interaction leads to the whole class of important
phenomena both in transport (see, e.g. Refs. 8
and 9) and optics (e.g. , electric spin and combined
resonances""}.

Hence, in the present paper we examine the
effective-mass theory for carriers in graded
mixed semiconductors taking into account the spin-
orbit interaction. We also generalize the deriva-

tion to account for the presence of external time-
dependent electromagnetic field. In Sec. II we
present the general effective-mass theory for car-
riers in mixed semiconductors with slowly varying
composition for arbitrary lattice symmetry and
general band structure and we discuss the assump-
tions under which this theory is valid. In Sec. III
the applicability of the concept of position-depen-
dent band parameters is discussed. Since in mixed
crystals with nonuniform composition the crystal
potential is not periodic (even in the virtual-crys-
tal approximation) the spin-orbit interaction leads
to specific properties of the effective Hamiltonian.
First, the effective magnetic moment is position
dependent. Secondly, an additional term propor-
tional to kinetic momentum and to the gradient of
composition appears. We would like to stress that
because of the existence of this additional term the
effective-mass equation for carriers in graded
mixed semiconductors is not simply the standard
one with only position-dependent band parameters,
but is more involved. The effective-mass equation
for an important case of conduction electrons from
the I', band in cubic crystals is discussed in Sec.
IV. The specific term in the effective-mass Ham-
iltonian for nonuniform mixed crystals mentioned
above can be interpreted as representing an addi-
tional coupling of spin and orbital motion. With
the use of a three-band model we calculate the
parameters characterizing the effective Hamilton-
ian and we show that this coupling can be quite
significant. Therefore, some specific effects con-
nected both with electron spin and with nonhomo-
geneity of the crystal should be expected. In par-
ticular, it turns out that electric-dipole-excited
spin resonance is strongly modified in mixed
semiconductors with constant gradient of compo-
sition. "

It should be pointed out that the effective Hamil-
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tonian derived in the present paper can be used
not only in the treatment of mixed semiconductors
with more or less constant gradient of composi-
tion, but also in the treatment of mixed semicon-
ductors which, although macroscopically uniform,
have long-range fluctuations of the composition.

II. EFFECTIVE-MASS THEORY

V(r) =[1—f(r)]V„(r)+f(r)va(r)
= V~ (r)+L(r)S(r), (1)

where S(r) = Va(r) —V„(r) and L(r) =f(r) —f,. Vt,
denotes the one-electron periodic potential of a
homogeneous mixed crystal with arbitrary chosen
composition f, written in the virtual-crystal ap-
proximation

V, =(1 —f,}V„(r}+f V (r).
L(r) characterizes the inhomogeneity of the crys-
tal.

We consider the motion of a carrier in the graded
mixed semiconductor in the presence of external
time-dependent electric and magnetic fields.
Since we are interested in the effects due to elec-
tron spin and magnetic moment we describe the
motion of a carrier by the Pauli Hamiltonian with

(2)

Many semiconducting alloys can be prepared
with composition varying over a wide range. Typi-
cal examples are alloys whose two components
have similar crystal structure, e.g. , mixed crys-
tals of II-VI or III-V compounds.

We consider a two-component graded mixed
semiconductor A, &B& (A and B may denote ele-
ments ox compounds) whose both component crys-
tals have identical crystal structure and lattice
constants. Let f(r) denote the composition of the
crystal in the neighborhood of point r. We assume
that the composition varies slowly, i.e., the frac-
tional change of f over a, unit cell is small. The
atoms of the crystal are supposed to lie on periodic
lattice sites. Our considerations are not restric-
ted to any particular lattice symmetry.

Theoretical interpretation of the observed elec-
tronic structure of homogeneous mixed semicon-
ductors is usually based on the virtual-crystal ap-
proximation. "'4 The essence of this approxima-
tion lies in replacing the correct one-electron po-
tential corresponding to the actual configuration
of atoms of the alloy by its average over all possi-
ble random configurations. The smaller the dif-
ference between the component crystal potentials
V„(r) and Va(r), the better the virtual-crystal ap-
proximation turns out to be. The generalization of
the virtual-crystal concept to the case of the mixed
semiconductor with slowly varying composition
gives the one-electron potential'

the spin-orbit interaction term

H =-, (P'/m)+ V(r)+ U(r, t)+ 2g,pao'B

+ (g/4m'c ) o' [VV(r) x P], (3)

where m and gp denote free-electron mass and g
factor, respectively, p, s =eg/2mc is the Bohr mag-
neton, 0 is the Pauli matrices' vector, aud B de-
notes the external magnetic field. The kinetic mo-
mentum operator is denoted by P,

P =p —(q/c)A(r, t), (4)

where p = —iSV' is the canonical momentum opera-
tor and q is the charge of a carrier. A(r, t) de-
notes the vector potential of the external electro-
magnetic field. The scalar potential of this field
equals (1/q)U(r, t). The one-electron crystal po-
tential V(r) is given by Eg. (1). The Hamiltonian
H given by Eq. (3) can be transformed into the
following form:

2~
H =H — (&' A+A'o)+ — A2+ U

2mc c

+-,'g, pao B+LS+»[ox V(LS)] P, (5)4m c

where the operator m is defined as

v = p + (tt/4mc')(o x v Vt ) . (5)

Hf denotes the Hamiltonian of a carrier in a homo-
fp

geneous semiconductor with composition f, written
in the virtual-crystal approximation

Hz = p'+V& (r)+ 2 2[oxvvz (r)] p. (7)

The usual procedure of finding the solutions of
the Schrodinger equation of a carrier in the crys-
tal, in the presence of external electromagnetic
field, consists in replacing the effects of the peri-
odic crystal potential by the effective dynamical
parameters. Suppose the band structure of the
homogeneous mixed crystal with composition fo is
known, i.e., eigenenergies E„(K,f,) and eigenfunc-
tions g„x (Bloch functions) of the unperturbed Ham-
iltonian Ht, are known (n labels the bands, K is the
wave vector). Since the perturbation H Ht is-

fp
neither periodic nor a slowly varying function of
r, the standard effective-mass method" is not
applicable for solving the Schrodinger equation
with Hamiltonian (5). However, it is possible to
modify the effective-mass method and to apply it
to the present problem in a way analogous to that
described in I.

We consider the case of the mixed crystal de-
scribed by Hz with a band with several equivalent

0
d-fold degenerate extrema located at K,"(r
=1,2, . . . , r', where r' is the number of extrema).
For brevity, the location of the specific rth ex-
tremum within the Brillouin zone will be denoted
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by K,. We eall g„ the Bloch functions at point K,.
The complete orthonormal set of Kohn-Luttinger
functions is defined in the following way '.

g-1 /Be f)g' rq

where k =K —K„and 0 denotes the finite crystal
volume (periodic boundary conditions are im-
posed).

The wave function +(r, t) of the carrier in the
graded mixed semiconductor can be expressed by
a linear combination of Kohn-Luttinger functions

&n7~

(6)

q (r, t) = g Q A„,(k', t)y„,-„, (r) .
n' |'

Inserting Eq. (9) into the Schrodinger equation for
the carrier in the graded mixed semiconductor,
multiplying both sides of this equation by y„„-
(Hermitian conjugate of the spinor y„~) and inte-
grating over the crystal volume, we obtain

P P (nklffln'k')A„, (k', t) =th (10)
n' k'

The orthogonality relation for Kohn-Luttinger func-
tions has been used to obtain right-hand side of
Eq. (10).

%e make the Ansatz so that the wave packet 4
describing the carrier state in the crystal may be
constructed with the help of only those Kohn-Lut-
tinger functions that are characterized by wave
vectors K lying near the band extremum K . It
means (see, e.g. , I) that the only important terms
in expansion (9) are those with k much smaller
than the reciprocal-lattice vector G- (for any m
&0}. This assumption should be always verified
after solving the Schrodinger equation by the effec-
tive-mass method.

As usual in the effective-mass theory we assume
that external fields are slowly varying functions
of r, i.e., the fractional change of the scalar and
vector potentials over a unit cell is small (see,
e.g. , Refs. 15 and 16). Moreover, we assume that
also the composition f(r) varies slowly within the
crystal (see I). It means that in expansions of
U, A, and L in Fourier series the only important
terms are those with wave vectors much smaller
than the reciprocal-lattice vectors 0- with mWO.
Making use of these assumptions and of the period-
icty of the function S(r) (as in I), it is easy to cal-
culate the matrix elements of the Hamiltonian H
standing on the left-hand side of Eq. (10). It turns
out that

(nklHln'k'}—= E 6 .6„-f, + gtp(k, q) tr'(q, k')5„„,+ —w . 6'(k, k')

+&&o&s nn 'Bi-i +Ui-r, ' nn +snn L~:6+i~~"("—")Li:i

+b, g —.'ihCL;;, [(k-q) x 6 (q, k')] $(k, q) x (q k')]L-,-,}
Q

+c„„,' g &[L-„;tP(q, k')+4'(k, q}L; „-],

where E„=E„(K,f~) is the energy of the nth band
at point Ko of the Brillouin zone in the homogene
ous crystal with composition fo. We have intro-
duced the vector P(k, k') which equals

6'(k, k') =hk6p„, —(q/c)A„-;, . (12)

B-, U;, A», , and L; denote the Fourier transforms
of B(r), U(r), A(r), and L(r), respectively. The
Fourier transform of a function h( r) is defined
as follows:

h; = 0 ' d'r exp(-iq r)h( r) . '
"n

The coefficients of Eq. (11)o,, w„~, a„„„b„„,,
cnn, , and s„„,are equal to the matrix elements be-
tween the Kohn-Luttinger functions y„p and 'p p
of the operators o, w, a=(1/4m'c')S (pxo), b
= (1/4m'c')So', c =(h/4m'c')(o x VS), and s =S (14)

n'

+(5/4m'c')(o x vS) p, respectively.
It should be noted that nonhomogeneity of the

crystal manifests itself in the Hamiltonian (11)
in two different ways. First, the dependence of
some terms on the Fourier transforms L„.„-, leads
to the additional coupling of functions with differ-
ent wave vectors k and k' [when the composition
is uniform L(r) =L =const and L„- "„,=L6&g.]. Se-
condly, new terms characteristic to nonhomo-
geneous mixed crystals appear (terms with i„„
and b„„,vanishing when L( r) = const).

Let us label by (j}(j =1,2, . . . , d) the set of
Bloch functions of the considered d-fold degen-
erate at point Kp extremum. The equations for
coefficients A&(k, t)[Eq. (10)],

+ g p(jkl&'ln'k')A (k', t)
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are coupled with equations for A„(k', t) with nfl( j}
by interband matrix elements (jklH'lnk'). From
Eq. (11) we see that these matrix elements contain
not only terms involving m&„, as is usually the
case, but also terms which are specific for crys-
tals with varying composition and which contain
interband matrix elements s&„, a,.„, b~„, and c~„.
The terms with Pr&„are proportional to 5'(k, k').
Since the effective-mass theory holds only if im-
portant Tt'(k, k') are small (see Ref. 15), i.e., if

ls'(»k')'v&. 1« IE& E

these coupling terms can be regarded as small
quantities of the first order in O'. As usual in the
effective-mass approximation we shall treat Eq.
(14) accurately up to terms quadratic in 6& but no
further. The assumption (15) should be verified
a Posteriori, i.e., after the solution of the effec-
tive-mass equation is found. Roughly speaking,
condition (15) means that a characteristic dis-
tance over which the envelope function of the wave
packet changes appreciably (the Bohr radius for
the impurity problem, the magnetic length for the
problem of electron motion in magnetic field, etc.)
should be much greater than the lattice constant. "

The specific coupling terms for mixed crystals
are proportional to Fourier transforms L„. „", of
the L(r) function which characterizes the non-
homogeneity of composition. We assume that the
overall change of the composition on a character-
istic distance (e.g. , the Bohr radius for impurity
problem, the magnetic length for motion in an
external magnetic field, the electron wavelength
in transport problem) is small, i.e., the condition

«r «[j} (is)

is satisfied for k and k' important in expansion (9)
(see 1). [Analogous restrictions on L are connect-
ed with terms involving a,.„and e&„. However,
these restrictions are weaker than (16) since the
terms with a,.„and c,.„arise from relativistic cor-
rections and, moreover, they are proportional to
6' (or k) which in turn is small. ] We are interested

B,(k, t) = P Q (ankle'In'k')A„, (k', t),
n' k'

in the form

tff ~ ' = g p (jklH„, ln'k')B„, (k', t),
n'

(is)

where

H„,= e rHe r =H + [H, T]+ (1/2! )[[H, T], T]+ ' ' '

(i9)
Since, as it has been discussed above, we treat
Eq. (14) accurately up to terms which are linear
in L and quadratic in 6' the canonical transforma-
tion e should remove nondiagonal terms of the
order 6' and!or L. The method of finding the ex-
plicit form of such transformation has been de-
scribed in I. After applying it the remaining non-
diagonal terms in Eq. (16) (j kIH„, In'k')(n' K{j})
are at least of the order (p', 6"L, or L' and will
be neglected. Thus the set of equations for coef-
ficients B&(k, t)(j c {j})is separated from equa-
tions for B„,(k', t) with n' E( j},

d' "' —= p g (jkIH. «Ij'k')B, ,(k', t) . (20)
k'

The matrix elements (jklH, « I
j'k') can be cal-

culated with the help of Eq. (19). For H„, with
the accuracy to terms of the third order in H',
one obtains (see, e.g. , Ref. 16)

in small changes of composition L, therefore we
shall treat Eq. (14) accurately up to terms which
are linear in L.

Hence, when conditions (15) and (16) are ful-
filled, coupling terms in Eq. (14) (jk IH' lnk') can
be regarded as small quantities. We are able to
remove these interband elements up to desired
order by an appropriate canonical transformation
e~. When the frequency of the external electro-
magnetic field v is sufficiently small so that

&~ « IE, —E„ I
for n e(j],

the application of the canonical transformation
gives the set of equations for coefficients

( klH
I

'k') -=( klHI 'k')
na(p) q n

q nw(g) q' (E„-E,)'

It»' &
i'

I

H' 1&'k'
& )'

(E„E,)2-
, g g p g(jkIH'lnq)( qlH'ln'q')( 'q'IH'lj'k')

f() ) ~ (E„-E,)(E„, E,)— (21)
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The use of the third-order perturbation calculus
guarantees that in expression (21) for H, «all
terms of the order 6', 6", L, NL, and+'L are
taken into account. Since we are interested only
in the effective-mass Hamiltonian which is rigor-
ously valid up to terms linear in L, consequently,
in calculating (21) we can drop terms of the order
L' and higher as well as those of the order Sk' (or
k'), 6"L (or k'L), and higher.

Equation (21) together with Eq. (20) determines
the set of effective-mass equations in K space.
To accomplish the transformation to r space we
define the envelope functions

k' ( i)=() 'I' QB (ke, )e(ke i k'er~), (22)

fl '
'exp [i (k. r + B, t/tt) ] and sum over all k .Making

use of the fact that the function

d'r't(k( r —r')h( r') = h( r),
we obtain the set of equations for envelope func-
tions F& ( r, t),

;k"""=ga„.Z, .(-., ).
t

f '-1
(23)

4( r - r') = 0 ' P exp[iq' ( r —r')]

may be treated as a 5 function 5(r —r')(see, e.grk

Ref. 15), i.eek for a slowly varying function of
position h(r),

multiply both sides of Eq. (20) by &jj.. the effective-mass Hamiltonian equals

H», =2D„',(f,)(P,P, )+t(».(f ) B+U(r, t)5», + , /P(A;. ,', +A~„.,)(-a a,U)

+ ,i h(A &~~ —A—~&)(P„a&U) + s &&,L ( r) + h a&, VL ( r) + h b». ' [VL ( r) x P]

+ (2 M&&~+N&, )P P()L( r)+ (z M P&+N&~&)*L( r)P&P + (z M, ,~+R,,~)P L( r)P8

~(-'M~'+R~')'P~L(r)P +hW~~d' [a~L(r)]+tf(W )*[ay(r)]P (24)

w», —0 for j,j'F{j)
the following equations hold:

(25)

and

j
jn n j' jn n j' 0E —E. (25)

cfjg 0 ~ (27)

Equations(25)-(27) resultfrom the fact that if we
put L =const, U=O, and A =0, the band extremum
should be at the point K„so in the effective Ham-
iltonian the terms linear in components of the
kinetic momentum operator P should identically

(The summation convention over repeated Greek
indices is used. ) {A,B) denotes the anticommuta-
tor of operators A and B,

(A, B)= g(AB+BA) .

The coefficients of the effective Hamiltonian H, f.
[Eq. (24)], the Hermitian matrices D~&~(fo), A, ,~„

built from the matrix elements of the operators
7', s, a, and c. Their explicit expressions are
given in Appendix A.

For simplicity in writing Eq. (24) we restricted
our considerations to the case when the location
of the band extremum K within the Brillouin zone
does not depend on composition. In this case,
apart from the usual relation,

vanish. The discussion of the case when the loca-
tions of band extrema within the Brillouin zone
are different in the single-component crystals A
and B (e.g. , Ge, &Si& alloys), i.e. , of the case
when K may depend on composition, presented in
1 (with spin-orbit interaction neglected and in the
absence of magnetic field) can easily be gener-
alized to the present problem.

We note that the specific terms characteristic
for graded mixed semiconductors are involved in
the effective Hamiltonian H, &, [Eq. (24)].. These
are the terms containing the function L(r). Other
terms occur also in usually considered one-com-
ponent or homogeneous mixed crystals. The ma-
trices D&, (fo) and A, ,. and the vector p&&, (f,)
characterize completely the dynamics of carriers
in the mixed crystal A, & Bz with the uniform com-

0 0
position fo. D...(fo) plays, as usual in the degener-
ate band case, the role of the reciprocal effective-
mass tensor in the nondegenerate case. The vec-
tor p ... (fo) determines the effective magnetic mo-
ment of the carrier. The term

~K'(Ag, ~ + A, ,, )(a aqU)

adds to the potential energy U of the carrier. Usu-
ally it is much smaller than U (e.g. , Ref. 15) and
can be neglected. The term

—,
'

ia(A;,.', A,'™.){P., a,U)

depends on carrier kinetic momentum P. When
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the spin-orbit interaction is strong this term in
the effective Hamiltonian leads to several particu-
lary interesting effects, e.g. , anomalous Hall ef-
fect, combined resonance. Since we are interested
in effects due to carrier spin, we keep this term
in further considerations.

Equation (23} is the set of effective-mass equa-
tions for the rth extremum of the band under con-
sideration. The wave function 4'„(r, t) is given by

d

e„(r, f) -=g g g P a, (k, f)
n' lr,

' j=& k

x(s k Is

leak)y„,

„-,(r).
(28)

In the first approximation the leading term of Eq.
(28) is

4'„(r, &)
-=g F,(r, t)y,.(r) . (2s)

j=l

The solutions of Eq. (23) corresponding to different
extrema give —with the help of Eq. (2S)—indepen-
dent solutions 4'„(r =1,2, . . . , r') of the equation of
motion. For general dependence on r of f(r), U(r),
and A(r) solutions of Eq. (23) corresponding to
different extrema are different. The general elec-
tronic wave function is a linear combination of
4„(r, f)

III. LIMITATIONS OF THE CONCEPT OF POSITION-

DEPENDENT BAND PARAMETERS

Many electron properties of semiconducting
crystals can be determined starting from the ef-

fective-mass Hamiltonian. The effective Hamil-
tonian (24) derived in Sec. II is not in a convenient
form to deal with, since it contains matrices M~,.„
N&&, , R&&, , and W,.&, which do not seem to be direct-
ly measurable and cannot be evaluated unless the
matrix elements of the operators m, s, a, and c
are known. Thus, the essential question one asks
is, whether Eq. (24) can be transformed into a
form in which only the local values of some simple
band parameters appear, such as the effective-
mass tensor (the D, ,, matrix), the effective mag-
netic moment, the energy of a band extremum.
By local values, i.e., by values at point ro, we
mean the values of band parameters of the homo-
geneous crystal with the uniform composition
f(r,). In order to answer this question we must
know the way in which the band parameters change
with composition in homogeneous mixed crystals.
In Appendix B the band parameters, i.e. , the en-
ergy of the band extremum E&(f), the D». (f) ma-
trix, and the effective magnetic moment p&, (f)
are expressed in terms of band parameters and
some matrix elements of the crystal with compo-
sition f, for small L =f fo. It tur-ns out that the
expressions for D~, (f) and p, ,, (f) [see Eqs. (B3)
and (B4) in Appendix B] appear the same matrices
M&,, , N&,, , and R&&, as in the effective Hamiltonian
H, , [Eq. (24)]. Therefore, making use of these
relations we transform the effective Hamiltonian
to the final form in which the local values of the
band parameters occur

H», =E,(f(r))5», +Ra, ,, vf(r)+-,' 5'(4»~ +4~&')[s,s+(r)] +U(r, i)

+ ih(A».-—A &,)(P, S U(r, t)}+ (D~, (f(r)), (-P,P }}+p&&. (f(r))'B
+ —'ik(4&&~ —4~&&.) (P, szf(r)}+Rb», [vf(r) x p], (30)

where

e8 eB a8 ~ e8
4&&, =M&&, + 2R&&, —2zW&&, . (31)

composition does not determine entirely the effec-
tive Hamiltonian (30).

The kinetic energy of the carrier at point r,
Equation (30) gives the effective Hamiltonian de-

scribing the motion of a carrier moving in the
graded mixed semiconductor. Comparing Hamil-
tonian (30) with the usual effective-mass Hamil-
tonian for a carrier moving in a homogeneous
crystal [e.g. , Eq. (B1) in Appendix B], we see two
striking differences. First, the dynamical param-
eters characterizing the motion of a carrier D ma-
trix, magnetic moment p. , depend on its actual po-
sition in the crystal. Second, the slowly varying
fields acting on a ca,rrier are not only given to be
the external field (i.e., by U and A), but depend on
the variation of the composition f within the crys-
tal. We would like to stress that the knowledge of
simple band parameters in crystals with uniform

,'(D;,'.(f(r)), (—P,P. &}} (32)

is determined by the local value of the matrix D&&, .
The kinetic momentum operator P and the matrix
D&&,(f(r)) do not commute. However, the kinetic
energy operator (32) is Hermitian. It should be
noted that the symmetrization of this term by the
anticommutator is uniquely given in the present
theory.

The potential energy is not entirely determined
by the scalar potential of the electromagnetic field,
as is the case in homogeneous crystals, but there
is an additional term,

e,r E,(f(r})5»,w ,'5'4,"~--[s s~f(r)]+a-~, , Vf(r),
(33)
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which represents the interaction with a "quasielec-
tric" field. This interaction depends on the band

occupied by the carrier. The quasielectric field is
not solely given by E,.(f(r)), the variation of the
energy of the band extremum with position (com-
pare Refs. 1-3, 5 and 6). Therefore, the know-
ledge of the dependence of the energy of band edge
on composition for homogeneous mixed crystals
is not sufficient to describe completely the poten-
tial energy of the carrier in the graded mixed
semiconductor.

The terms

and

@b», (Vf x P) (s4)

(35)

describe the additional interactions characteristic
for mixed crystals with nonhomogeneous composi-
tion. The first term (34) proportional to b», , is
due to the spin-orbit interaction. When the spin-
orbit interaction can be neglected in the carrier
Hamiltonian (3), b„., vanishes identically. The
second term (35) would be present in the low-lat-
tice-symmetry case (see I) even if we neglect the
spin-orbit interaction. This case has been dis-
cussed in detail in I, where the term (35) in the
effective Hamiltonian has been interpreted as a
"interaction with quasimagnetic field. " However,
this interpretation is not very fortunate since when
the external magnetic field is applied (35) depends
on kinetic momentum P instead of canonical mo-
mentum p and (28)(C&,, —C», )(&at) cannot be
treated as a vector potential of this quasifield.
The case when the term (35) occurs due to the
spin-orbit interaction will be discussed below Sec.
IV.

The term

IV. ELECTRONS FROM I 6 BAND IN CUBIC CRYSTALS

The aim of the effective-mass theory is to de-
scribe the carrier dynamics with the help of a
minimal number of empirical parameters which
are introduced instead of an unknown crystal po-
tential. As we have shown, the problem of calcu-
lating electronic states in a graded mixed semi-
conductor reduces to the problem of solving the
set of effective-mass equations (23) with the effec-
tive Hamiltonian (30), which is characterized by
the following par amete rs: position-dependent Dz, ,
matrix and effective magnetic moment p. &&, , ma-
trices A~f. and ea. , vectors aa. and bJp, and the
band-edge energy E&. However, making use of the
lattice symmetry, the number of independent pa-
rameters of Hamiltonian (30) can be reduced. This
reduction is especially important in crystals with
high lattice symmetry.

In this section we consider the conduction elec-
trons in graded mixed semiconductors with cubic
lattice (i.e., point group is T, or 0„). We restrict
our considerations to mixed crystals whose com-
ponents have conduction band minimum at the I'
point (KO=O) and noninverted band structure, i.e. ,
the conduction-band minimum has I', symmetry.
This case is very important since many intensively
studied semiconducting alloys have components
with such a band structure (e.g. , III-V compounds
as InSb, GaAs, etc. , II-VI compounds as CdTe,
ZnSe, etc.). On the other hand, this case, although
fairly simple, serves as a good illustration of
unique features of dynamics of carriers in graded
mixed crystals.

The effective Hamiltonian II, for a conduction
electron is 2 && 2 matrix since I', representation is
two dimensional. The effective-mass equations
take a form

p », (f(r)) ~ H (s6) Hg(r, t) =th. SF(r, t)
(3'I)

represents the interaction of the carrier effective
magnetic moment with external magnetic field B.
The effective magnetic moment at point r is de-
termined by the local composition f(r).

When the spin-orbit interaction is neglected and
when there is no magnetic field effective Hamil-
tonian (30) reduces to that obtained in I. When
spin effects are neglected but a magnetic field is
applied the effective Hamiltonian derived here is
very similar to that derived in I, only the canoni-
cal momentum p is replaced by the kinetic momen-
tum P (see Ref. 4). Note that the components of
P do not commute, thus when the nonspherical
band case is considered the anticommutator

, Pg appears in the kinetic energy term (32).

where F(r, t) denotes a, spinor whose components
are envelope functions F,(r, t) and F2(r, t). In order
to reduce the number of parameters in H, given by
Eq. (30), we shall use the method of invariants
(see, e.g. , Refs. 16 and 17). H, is a function of the
kinetic momentum P, the magnetic field 8, the
scalar potential U, and its derivatives & U, and
also of the crystal composition f and its deriva-
tives s f and s s~f. In general, every two-di-
mensional Hermitian matrix is a linear combina-
tion of four matrices-of three Pauli matrices
o&&, (of=1, 2, 3) and of the unity matrix 6&&, . H,
should be invariant under all transformations of the
T, (O„) group. The only invariant form of Eq. (30)
in the considered case is
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H, =- (m* '(f(r)), P'j+ g*-(f(r)}p, o B

+U(r, t) —KXo ('Px VU}+E(f(r))+g'CV'f(r)

—54o (PXVf). (38)

8, contains the following parameters: the effec-
tive-mass rn* and the effective g factor g~ defined
by relations

D„~ (f) =[Ilm*(f)]6~~&„,,

g,, (f) = z g'(f)u, o„',
and the parameters X, 4, and C, given by

Xcr,. = —-'i~ ~A',.",ij' 2

e~, =--,'i~"'e'."., +v .,jj' 2 di

and

(39)

(40)

(41)

(42)

(43)

respectively.
It is worth stressing thatthe set of six parame-

ters m*(f), g (f), E(f), X, C, and 4 describes
entirely the dynamics of conduction electrons from
I', band.

We see that when effects of electron spin are not
included, A and C vanish and the Hamiltonian (38)
takes the form postulated by Bastard et al. in Ref.
4. In such an approximation, the only effects of
the gradient of composition are the appearence of
a quasielectric field acting on electrons of the en-
ergy

e(r) =E(f(r)}+CV'f(r), (44)

and the position dependence of the effective mass.
The existence of the quasielectric field is mainly

connected with the dependence of the energy of the
I', band minimum E on composition f. From Eq.
(44) we note that when V'f does not vanish there is
an additional term in potential energy, which can-
not be determined if only E(f) is known. On the
other hand, e(r) can be interpreted as a position-
dependent band edge. Since the quasielectric field
acts differently on electrons and holes, one may
use the concept of position-dependent energy gap
(when V'f =0). The va. riation of the energy gap
with position leads to some specific effects as
strong modification of photovoltaic' "and photo-
electromagnetic'"" "effects and produces an
anti-Stokes effect of the electric field dependence
of luminescent spectra of electron-hole recombina-

22~26 27

The position dependence of the effective-mass
modifies both quantum electronic states and classi-
cal equations of motion. ' ' In the presence of mag-
netic field the effective-mass gradient causes a
mixing between different Landau states. This
leads to strong modification of cyclotron reso-
nance. ' In terms of classical equations of mo-

kg*(f( r))i o B (46)

describes the interaction of the spin magnetic mo-
ment with the external magnetic field. Even when

the magnetic field B is uniform, the energy of the
interaction (46) depends on position because of the
inhomogeneity of composition and thus in classical
equations of motion an additional force propor-
tional to the gradient of g factor appears. This
force adds to the force arising from the quasi-
electric field, but it is spin dependent. Such a
force as well as those due to the quasielectric
field and effective-mass gradient has no analog
in homogeneous crystals. The g-factor gradient
may be quite large in such crystals as Hg, &Cd&Te
in which by changing f from about 0.2 to 1.0, g*
changes from about 100 to 2.

The second spin-dependent term specific for
crystals with graded composition

-@Ca'(Px Vf) (47)

is of particular interest since it couples the equa-
tions for envelope functions F,(r, t) and F,(r, t).
It is interesting to note an analogy between the
term (47) and the term

-h ko' ( P x VU) =qSXE' (o x P), (48)

(E denotes the external electric field) also pres-
ent in one-component cubic crystals when the spin-
orbit interaction is important (e.g. , Refs. 9 and
10). The term (48) can be interpreted as describ-
ing the interaction with an electric field E of the
electric dipole moment qhX(Fr x P), which the
electron acquires because of spin-orbit coupling
(see, e.q. , Ref. 9). The term (48) is the only term
responsible for coupling the equations for F,(r, f)
and F,(r, f) in one-component crystals and it gives
rise to interesting phenomena such as, for in-
stance, electric-spin resonance or combined res-
onance (e.g. , Refs. 10 and 11). The interaction
(48) also influences the spin-dependent (anoma-
lous) Hall effect (e.g. , Ref. 9). In graded mixed
semiconductors apart from term (48) the term (47)
appears in the effective Hamiltonian. By analogy,
one can say that (47) represents an interaction of

tion, an additional force proportional to the kinetic
energy and the effective-mass gradient

(P'/2[m*( r)]'] Vm*( r) (46)

appears making the equations strongly nonlinear.
This leads to the second harmonic generation on

free electrons for both optical frequency
range" ~ and low frequencies. "

When the electron spin is added to the picture,
two additional terms specific for nonhomogeneous-
mixed semiconductors appear in the Hamiltonian.
The first term
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the electron dipole moment mentioned above with
some internal field

(4/qX) Vf, (48)

E(f) =s, (f -fo}, (50)

where s, denotes the matrix element of S = V~ —V„
between s-like functions and the energies of I, and
I, bands maxima are equal

and

E,(f) = -&,+ (s„+5)(f fo)- (51)

E, (f)=-~, ~+(s„-25)(f f,), (52)

respectively. & and b denote, respectively, the

arising because of the nonhomogeneity of the crys-
tal composition. Such an additional coupling of
spin and orbital motion strongly influences the
electron energy levels in a uniform magnetic
field. " It can be expected that the spin-dependent
effects in graded mixed crystals, in particular the
electric-dipole-excited spin resonance, whose
measurement would give the value of the coupling
constant C, are strongly modified. " Both terms
(47) and (48) appear because the potential energy
of electron is not a periodic function of position.

It should be pointed out that the parameter 4
cannot be obtained by experiments on homogeneous
mixed semiconductors since 4 multiples the term
proportional to the gradient of composition in the
effective Hamiltonian (30). However, C may be cal-
culated from Eq. (42) if some matrix elements of
homogeneous crystals are known. We shall use
a three-band model in order to estimate the pa-
rameter C and to compare terms (47) and (48) in
narrow-gap crystals.

The effective Hamiltonian (38) for conduction
electrons from I', band has been obtained taking
into account (in perturbation calculus) all other
bands. Let us consider the case of narrow-gap
mixed semiconductors. Then, it is reasonable
to calculate the parameters appearing in the Ham-
iltonian (38) using the three-band model which
takes into account only two nearest valence bands:
I', band and spin-orbit split F, band, and neglects
the effect of other bands on electron dynamics.
The three-band model turns out to be very useful
for describing physical phenomena connected with
electron spin as well as those due to external mag-
netic field.

As ba, sis functions g„(n = 1, 2, . . . , 8) of I;, I'„
and I', extrema, we take Bloch functions trans-
forming according to respective representations
of the T~ point group. " Using the symmetry prop-
erties of functions g„ it is easy to show that with
accuracy to terms linear in L =f f, the energy-
of I', band in the crystal with composition f is

I', —I', energy gap and spin-orbit splitting of the
crystal with composition f„and s„and 5 are equal
to matrix elements

s„=(x~s~x)
and

5 = (-N/4m'c )(X~ (VS x p), ~
Z),

(53)

(54)

&(f) = &+35(f fo) . - (55)

The explicit expressions for parameters of the
effective Hamiltonian (38) in the three-band model
are given in Appendix C. It turns out that both the
effective mass and g factor are entirely deter-
mined by the dependence on composition of the
energy of the band gaps F, —I', and I', —I', [see
Eqs. (Cl) and (C2)]. Thus, the knowledge of co-
efficients characterizing the variation of the en-
ergy gaps (s„+5 —s, for I', —I", and s„—25 —s,
for I', —I', ) is sufficient to describe the change
of m* and g* with composition. The expression
for the parameter

S„—25 S„+5
3m' (e +a)' e' (56)

(y denotes the matrix element of the operator hs„
between s-like function and X function) involves
independently s„+6 and s„—2&, i.e., the coeffi-
cients characterizing the variation of the energy
of valence-bands maxima with composition.
Therefore C cannot be calculated unless these
quantities are known. It should be noted that s„,
s„and 6 are difficult to measure, since what can
be usually given directly by experiment is the de-
pendence of the energy gaps on composition and not
of the energy of band extrema. Qn the other hand,
the measurement of 4 would permit the calculation
of the parameters s„, s„and 5 and so it would
give important information on mixed crystals. The
knowledge of these parameters is essential, for
instance, for interpretation of transport experi-
ments since they describe the disorder scattering
(residual resistence).

With the help of Eq. (56} the spin-dependent
terms (47) and (48) can be compared. As we have
already discussed both terms represent the cou-
pling of spin a,nd orbital motion: the term (48)
occurs also in homogeneous crystals whereas the
term (47) is due to the inhomogeneity of the crys-
tal composition. The ratio of these two terms

respectively. X, Y, Z denote P-like functions. We
have taken the energy of the I', band minimum for
the crystal with composition f, to be equal to zero.
From Eqs. (51) and (52) we see that the parameter
6 characterizes the variation with composition of
the spin-orbit splitting C(f) of I', and I', bands
since
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equals

(57)

The matrices MjejB,, NjejB,, RjejB, WjajB, and AeB are,
respectively, equal to

From Eq. (56) for 4 and Eq. (CS) in Appendix C
for X we see that when the spin-orbit splitting
r (f) does not vary strongly with composition, i.e.,
when & is small compared with s„, which is very
often a case

4 —= S„X. (58)

Therefore, the ratio of the terms (47) and (48),
Eq. (57), is of the order of

s„ I vf I /q I
E I, (59)
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APPENDIX A: EXPRESSIONS FOR COEFFICIENTS
IN EQ. (24)

The matrix Dg&~(fo) and the effective magnetic
moment p, &&,(fo) of a carrier in the homogeneous
crystal with composition fo are given by the usual
formulas (compare, e.g. , Ref. 16)

i.e., of the order of the ratioof theforceactingon
a hole due to the quasielectric field and the ex-
ternal electric field. A quasieleetric field can be
very strong (especially in an alloy of narrow-gap
and wide-gap semiconductors), for instance, for
Hg, fCd&Te for f changing from 0.25 to 1.0 on the
distance of the order of 0.1 mm it ean be of the
order of 100 V/cm. Hence, we see that the cou-
pling of spin and orbital motion due to the non-
homogeneity of the crystal composition can be very
important even for relatively small gradient of
composition.

a 8,
eB ~ 7T jnCn j'
H' M m(E E

na(j}
e 8

7Tjn TT nn u Sn' j~

TT jn TTn j&& Sj ~~j ~~ 2m2(E -E)"
j'=1 n%{j} j ne, 8, ,7TjnSnn'7Tn'j '

(AS)

(A4)

(A5)

e B.,aB ~ ~jn nj
(A6)

a 8,
eB ~ 7Tjn7Tnj'
JJ' M mn(E E )2

'

nq(g} j n

(A7)

APPENDIX B: DEPENDENCE OF BAND PARAMETERS
ON COMPOSITION

Let us consider a homogeneous mixed crystal
with composition f=f,+L, where L =const' 0 does
not depend on r. In such an alloy the crystal po-
tential in the virtual-crystal approximation is peri-
odic, and the standard effective-mass theory gives
the effective Hamiltonian in the form

H)), (f) =E)(f) 5q). + , D)~~~ (f) P, Pj—+p)). (f)' B+U

+ —,'ig(A;, ', A', ;,) P., .s,V},

where E&(f), Dz&, (f), and p, &&, (f) denote the energy
of the band extremum, the D matrix and the effec-
tive magnetic moment of a carrier in the virtual
crystal with composition f. On the other hand, if
we do not look for the electron wave function in the
natural representation of Kohn-Luttinger functions
corresponding to the virtual crystal with composi-
tion f, but we expand 4, as in Eq. (9), in Kohn-
luttinger functions corresponding to the crystal
with composition fo, in order to get H;&. (f) (with
accuracy to terms linear in L) we should simply
put L =const in Eq. (24). Comparison of these
two forms of H&&. (f) gives the dependence of band
parameters on composition

1 a 8 8 e
Dn&(f ) — 5n&5 + ~ ~~ n9'+ Jn~nl'Ji' 0 m i/'+ ~ 2(@

nfE(j} j n

and

u,', (f,)

(A1)

= & p& goo'jj + sgnq —&, A2
n~(j} j n

where sgnq denotes the sign of the carrier charge;
c 8" is the antisymmetric Levi-Civita tensor.

E,(f) = s„(f-f.),
D,,', (f) = D;,'. (f,) + 2(f -fo) (:-;,'. + ",','),
p, ,', (f) = p„.(f,)+-,'(ihq/c), e . '"

X(f f,)(=,

where
~eB aB eB aB"jj,=Mjj, +Njj, +R jj, .

(H2)

(H4)

(H5)
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In our approximation (accuracy up to terms linear
in L) the dependence of A&, on composition can be
neglected.

APPENDIX C: EXPRESSIONS FOR PARAMETERS OF

THE EFFECTIVE HAMILTONIAN

IN THE THREE-BAND MODEL

Using the symmetry properties of the basis func-
tions g„(n =1,2, . . . , 8) and Eqs. (39)-(43), we ob-
tain the parameters of the Hamiltonian (38) in the
three-band model

tc~ 1 1
) * a,* (a, +a)*)'

2 (s„+5) s„—25
6m' e,' (e, + a)'

s„—2~ s„+~

3m' (e, +&)'

(C3)

(c4)

(c5)

1 1 2z2 2 1
*(f) ) ~, ~, +&)

2s +5 —s
~ (f f)(-.

1 1

g

+(( f)( '-
s„—25 —s

(e, + a)' (c2)

where K is the matrix element of the operator
)IS„between s-like function and X function. (Note
that mz corresponds to the usually used P-matrix
element. "} For f=f„Eq .s(C1)-(C3) reduce to
the well-known formulas for effective mass, g
factor, and parameter X (e.g. , Ref. 9). In writing
Eqs. (CI)-(C5) we made use of the fact that in

calculating matrix elements of 77 the term arising
from (g/4mc')(&x VV& ) can be neglected. ~ We

fp
have also neglected matrix elements a„„, and c„„,
which are small compared to x/m (the ratio of
these matrix elements and of x/m is of the order
of the ratio of the periodic potentials difference
S to the free-electron rest energy mc').
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