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Refractive-index measurements and nonlinear moment parameters for polycrystalline ZnSet
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We have measured the refractive index and its temperature derivative, of polycrystalline ZnSe at seven

wavelengths between 3.5 and 15 p,m (3 to 14 times the reststrahl frequency). We have used these data to
determine relations among the efFective ionic charge and the coefficients of the second- and third-order terms

in an expansion of the crystal electric-dipole moment in powers of the lattice displacements. Comparison of
ours with other data suggests that two-phonon absorption in ZnSe arises mainly from this nonlinear behavior

of its electric-dipole moment.

I. INTRODUCTION

The infrared absorption spectrum of an insulating
crystal is characterized by narrow peaks at the
(k 0) transverse-optic (TO) mode frequencies.
These are called "one-phonon" peaks, since the
energy of the absorbed photon is given entirely
to a single lattice phonon. There are also much
lower level and broader features in the infrared
absorption spectrum. This additional absorption
is called "multiphonon absorption" because the
absorption of any infrared photon results in the
creation and/or annihilation of two or more phonons
in the crystal. This low-level multiphonon absorp-
tion arises from either or both of two possible
mechanisms: (a} the small anharmonicity of the
interionic forces, ' and (b) the nonlinear dependence
of the electric dipole moment on ionic displace-
ments (i.e. , the "nonlinear moment"). "

In this paper we present the first direct experi-
mental study of the parameters governing the non-
linear moment in a zinc-blende-structure crys-
tal ZnSe. We assume that the nonlinear moment
is a general function of the displacement from
equilibrium of nearest neighbors along the vector
separating them. We then relate three relevant
parameters of this function to our measurements
of the dispersion of the refractive index n(~} and
its temperature derivative dn/dT Unlike pre. -
vious interpretations of various facets of multi-
phonon absorption, ' ' our relations require no
knowledge of, or assumptions concerning, the
nature of the anharmonic crystal forces. Although
our measurements cannot determine the nonlinear-
moment parameters uniquely, we are able to spe-
cify them further using physical arguments and the
nature of thermal expansion data. We conclude
that the nonlinear-moment mechanism (b) is mainly
responsible for multiphonon absorption in ZnSe,
at least at low-phonon multiples. We are able to
place strong constraints on the values of the non-
linear-moment parameters which would serve as

a check on any theory which predicts them or their
relation to, for example, anharmonic forces."

Our approach is based on the Born-Oppenheimer
approximation in which the following relation holds
between the imaginary part &,(~) of the infrared
dielectric function of an insulating solid and the
derivatives of the (linear and nonlinear) electric-
dipole moment M,. (i = x, y, e) with respect to the
position vectors r,„of the . N ions (labeled by o)
in a small fiducial volume t/'s

(la)

where m is the mass of ion n, and

(lb)

'The subscript L indicates integration over positive
frequencies (rps) encompassing all lattice ab-
sorption, which is assumed to occur at frequencies
well below the electronic band gap. The dielectric
function is for light polarized along a principal
axis x of the crystal (or along any axis for an op-
tically isotropic material). The brackets ( ) sig-
nify a quantum average, which we will find may be
calculated to sufficient accuracy assuming the lat-
tice interactions to be harmonic. (Hence no know-
ledge of lattice anharmonicities is required to
analyze the experimental behavior of I, in terms
of nonlinear-moment parameters. ) Note that if the
nonlinear moment is too small to be measureable,
it means that the derivatives in (1}are c numb, ers
(i.e. , the effective ionic charges e ), and the aver-
age can be calculated exactly and trivially for any
anharmonic forces. For a cubic diatomic crystal
like ZnSe, for example, I, would be found to obey

I, = 2v'pe'/p,

exactly if the moment M,. were linear (in the r, )
Here p is the number of molecules per cm', p.

their reduced mass, and +e, are the (temperature
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independent) "Born" effective charges of the two-
ion species. In fact, we find that (2) does not
describe ZnSe, which therefore has a significant
nonlinear moment.

Sufficiently accurate measurements of e,(m) over
all infrared frequencies and at several tempera-
tures are difficult to obtain by absorption and re-
flectance measurements. To date such data only
exist for I iF and are of barely useful accuracy
for our purposes. ' Therefore we have developed
the following method of determining I, (and espe-
cially its temperature dependence) from refrac-
tive-index measurements. ' This method is of in-
herently greater accuracy and simplicity than di-
rect measurements of &, and employs the well-
known (causality) relation between the real part e,
and imaginary part e, of the dielectric function.
For crystals whose electronic- and lattice-ab-
sorption hands are well separated from each
other, this relation may be written

~,(~) = e„(~)——2 vdv~, (v)
7T L (d

(3)

where the limits of integration are as in (la),
i.e. , over the range of lattice absorption only.

In our measurements of the refractive index
n(ur), ~ was both far enough below the band gap
(where the electronic contribution e„ is real) and
far enough above the transverse-optic mode fre-
quency &pro so that n(&u) was real and n'(ur) —= e,(&o}.
our measurements determined q, over the range
of co between 3 and 15 times (d~~, where we have
verified that the following approximate expansion of
both terms on the right-hand side of (3),

~,((o) =—e„+A(u ———,+~+~I, I, I,
7T ('d (d (d

(4)

is accurate to better than 10 4 for ZnSe and most
diatomic cubic crystals. Here &„ is the long-
wavelength limit of the optical (electronic) dielec-
tric constant, Aco is its first dispersion correc-
tion at small u, and

II. THEORY FORS

In this section we will develop the required ex-
plicit relation between the moment I, of (1}which

I = (d 62 co dco
L

are infrared absorption moments which result
from the Taylor expansion of the integral in (3)
in powers of (v/ur)'. Evidently we need enough
measurements of n(&o) to obtain all the coefficients
in (4); only then will we know I, and its tempera-
ture derivative to the accuracy we need. Before
describing these measurements, we examine how
Ij depends on the nonl inear moment paramete rs.

we measure and the nonlinear moment parameters
we wish to determine. These parameters are the
coefficients in the Taylor expansion of the moment
function M„ in powers of the deviations (in vector
notation)

x =—r —X

A. Form of the nonlinear moment expansion

In its most general form, the expansion of M
in powers of the x may be written

M=ge x,+gf ~ xx~

+ggaBr u 8 r+
0,8t

(8)

Interpretation of our experiments will require
only the terms shown, i.e. , up to third order.
For a diatomic cubic crystal like ZnSe, the linear
effective-charge dyadic has the form

e =1e

where e is (s) the "Born" effective charge, its
sign depending on whether a refers to the positive
or negative ion. The tensors f „g ~, etc. , are
third, fourth, etc. , rank in coordinate space.
Typically, their nonzero elements have magni-
tudes on the order of

f.,- e.lr, ,

g,„-e„ir,',
(10a)

(10b)

etc. , where r, is the interionic (nearest-neighbor)
distance. Since the x undergo thermal fluctua-
tions that are an order-of-magnitude smaller than
r„ the expansion (8) is usefully convergent. The
relations (10}will be crucial in determining which
terms we can neglect in calculating S in (1).

We will assume a special form for (8} in which
M is a sum over nearest-neighbor pairs only. The
contribution of the pair whose labels are o. , P must

of positions r of the nuclei from their average
positions

X, -=(r,)r
at some fiducial temperature T. Qur final expres-
sions will require only pair correlations of these
coordinates calculated in the harmonic-lattice ap-
proximation. To proceed, we must first develop
a reasonable approximation for the form of the
dependence of M on the x . The parameters in
this expression can then be (nearly) determined
from the experiments of Sec. III. At present the
main uncertainty in this determination comes
from our uncertain knowledge of the pair-correla-
tion functions.



METIN S. MANGIR AND R. W. HELLWARTH 16

be expressible as a quadratic form in the differ-
ence coordinates

x ~=—x -x~)

because of translational invariance. The nth-order
term in each pair contribution must be of the form
of a product of a tensor m'"z', of rank n+ 1, with
n of the vectors x ~. For the zinc-blende lattice,
we see from (9) that

(1)~n8 ~ o'

B. Evaluation of averages

With (13), the derivative required in (1b} may be
written (in dyadic form)

= —,'e, P R,g ~(R ~ x ~}" 'nf„. (16)
Bro,, 8

With this in (1b)'0

S, = —,',e' Q'(R ~
'R „)'f f„mn

x((R,~
~ x ~) '(R „~x „)"'). (17)

For the zinc-blende lattice the third rank tensor
m "~' must be constructed of outer products of the
unit dyadic 1e and the unit vector between the
nearest neighbors:

Knowing the nearest-neighbor sum"

g'(A„, R.„)'= —", , (18)

R —=(X -X)/~X -X ~. (12)

M =
8 Q Q

' e R ~(R , ' x ~)"f„, (13)

an expression which enjoys all appropriate sym-
metry properties.

To see that (13) gives the same correct linear
term as does (9), we use the fact that"

'R gR g= -1. (14)

The "triadic" m "~' therefore has three independent
terms proportional to R zR ~R ~, 1R z, and A»1)
respectively. If the nonlinear moment arises
largely from Pauli exclusion between ion cores,
then the first of these terms is likely to be domi-
nant. This term alters the dipole moment, de-
pending only on components x ~ along the inter-
ionic separation vector R ~. The other terms
give nonlinear moments that depend on displace-
ments perpendicular to R ~, a dependence that
should be small. W'e neglect the second two terms
here; including them does not seem to change the
quality of the results as much as their complexity.
In fact, we shall assume that all nearest-neighbor
contributions to the nonlinear moment are some
function of R ~ x ~ only. That is, we shall assume
that (8) may be approximated by"

and the fact that f, = 1 from (15), the leading term
in (17} reduces to e', as we anticipated in (2}.
That is, without anharmonicity, the average re-
quired in (1) is simply of a. constant, and (1) be-
comes the analogy of the Thomas-Kuhn-B, eich sum
rule of atomic oscillator strengths.

The remaining terms of importance for us in
(17) are the terms linea. r and quadratic in the
x ~. W'e ca,nnot neglect the linear terms propor-
tional to (x ~) because we will be comparing data
at different temperatures where a small average
deviation of r from X may exist because of
thermal expansion. These terms come from the
(n = 1,m = 2) and (n = 2, m = 1) terms in (17). The
contribution to S of these terms is

4e', f2', , (19)

where h = (R ~ x ~} is the change in nearest-neigh
bor distance due to thermal expansion. %e take
b, =0 at T= 295 K. This term gives the small
change in the effective charge that occurs by virtue
of lattice expansion.

One can see from perturbation theory that the
(n= 1,m = 3) and (n = 3, m =1) terms also repre-
sent the contribution to I, of a change in the ef-
fective charge (or one-phonon strength) arising
from the nonlinear character of M. These terms
are seen to contribute

Then, if we take

f0= 1, {15)

6e' f,(x'}

to S, where

b') -=((R.~ x.g)')

(20)

{21)
we see that the linear term in (13) reduces to

e x as desired.
We now proceed to evaluate S in (1) using the

form (13). This will allow us to determine e,
and a relation between f, and f, from the experi-
mental results of Sec. IIIB.

is obviously independent of which nearest neigh-
bors cy and p are involved. In performing a similar
analysis on LiF, we found that the contribution
(20) could be neglected compared with that of
(19).' However, mainly because dh/dT is 5.5
times smaller for ZnSe than for LiF, we will find
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where

(x,x,&= (ft., -x.~.„x„), y&p (23)

is independent of a, P, and y.
After estimating the required averages, we will

find, as we expected, that the nonlinear moment
corrections (19), (20), and (22) are all small
(&10%%uo) compared with the leading linear moment
contribution e' to S . Qne can then see with the
aid of (10}that terms of higher n and m in (17) are
of the order of products of these small terms.
Therefore we neglect terms in (17} that are of
higher order than those (quadratic in x,) we have
considered. To the same order of accuracy, or
higher, we can also neglect the small corrections
to pair-correlation functions that arise from an-
harmonicities in the lattice forces.

At present, not enough is known of the lattice
normal mode frequencies and eigenvectors to cal-
culate (x') and (x,x,) with precision. We will there-
fore use the following approximation to calculate
them.

that here (20) cannot be neglected in comparison
with (19).

The last term in (17) of consequence to our
analysis is the (n=m=2) term which reflects
the role of the nonlinear moment in all of the two-
phonon processes which affect absorption. (The
creation of two phonons by a photon is the main
contributor. ) From (17) this term is

(22)

where f= 2f—„y=—3f,/2f'„and ( = 4
—(m' +m~2)/

12(m +mz)', (=0.708 for ZnSe).
From (24} we have

(x') =K(2il&o) ' coth2Psr. (26}

III. EXPERIMENT

Accurate values for the refractive index n(~) for
CVD ZnSe have been previously determined
at room temperature over the desired range of
wavelengths (&o-3 to 50 times ~To)."'" There-
fore we have concentrated on measuring the tem-
perature variation of n(&u) from 25 to 300'C and
from 3.5 to 15

imam

(&u = 3.3 to 14 times &uTo), mainly
in order to determine dn(v, T)/dT

We have redefined the second- and third-order
moment parameters in terms of f and y for ease
of plotting the relation (25) linking e, f„and f,
with the experimental values of S and its tem-
perature derivative.

As we have discussed, the (n = m = 2) term of
(17) represented multiphonon absorption caused
by the nonlinear moment. Therefore, the fraction
E„«of all absorption as averaged in I, that arises
from the multiphonon absorption caused by the
nonlinear-moment mechanism is, from (25) in (1),

F„„„=Q'(x'&/[I+ 2' +(y+ &)f'(x'&].

We will use this to compare with observed multi-
phonon absorption intensities, arising from all
mechanisms, given our experimental results for
f and y.

(x x8) =15 P(2&em ) coth-,'P~, (24)
A. Apparatus

S =e' [1+2'+(y+ $)f'(x'&], (25)

where p = ff/kT, ll=—Pla—nck's constant =—2v, and ur

is the average normal mode frequency weighted by
the probability that the displacement x, excites a
mode of a particular frequency. The result (24} is
exact for a single oscillator and is the first term
in a rapidly converging series for (x ). Applying
(24) to calculate (x'& for the (easily soluble) model
for the rocksalt structure lattice discussed in Ref.
(8) gives a result that is 23%%uo too high, mainly be-
cause this lattice model has far too many low-fre-
quency modes. The error should be considerably
less when (24) is applied to a realistic lattice
model. We believe that for our estimates, the
uncertainty in the actual value of the average mode
frequency co is more troublesome than the inac-
curacy of (24). We shall take ~ to lie somewhere
between the transverse-optic mode frequency coTO
and (0To/2

Using (24} in (21) and (23) then gives the follow-
ing approximation for S which we will use in (1)
to analyze our data":

For our measurements we have used the special
prism refractometer shown schematically in Fig.
1. In terms of the ZnSe prism-sample geometry
indicated, the refractive index is given by

n(&o) = sinp(~)/sinn, (27)

when the angle P is adjusted so that the light of
frequency (d is refracted by the front surface and
reflected collinearly by the back surface of the
prism.

Our prism was cut from a sample of (1-cm
thick) polycrystalline chemical vapor deposited
(CVD) ZnSe grown by Raytheon Co. It was optically
clear along the growth direction but contained very
faint light and dark bands when observed in the
perpendicular direction (along the planes of
growth). The prism was cut from this sample with
an apex angle ~ of 22.5 to obtain maximum dis-
persion and minimum reflection loss at the front
surface (close to Brewsters angle). The back
surface was aluminum coated to serve as a mir-
ror.
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OFTAIL OF
PRI SM P

FIG. 1. Schematic of the infrared prism refracto-
meter. Major components are: Nernst glower source S,
light chopper C, oven 0 containing ZnSe prism P on ro-
tating stage &, diffraction grating 6, and thermocouple
detector TC . ZnSe prism of apex angle e =22.5' base
d =2 cm, and 1-cm thickness is aluminized on back
surface A.

range from 20 to 200'C. At higher temperatures
a small increase in n.n/aT (d'n/dT' 5-x 10 ' K ')
was observed at all wavelengths, but it was not

possible to ascertain its frequency dependence.
Our experimental results for dn!dT at seven wave-
lengths between 3.5 and 15 p:m are presented in
Table I.

Other workers have also measured dn/dT,
both interferometrically at 10.6 and 3.39 LL(. m, "'""
and with a minimum-deviation prism method from
1 to 18 p, m. " The reported values of dn/dT at 10.6
p, m are scattered between 5.2 x 10 '/K and '1.4
x 10 '/K, but the data of Refs. 12 and 15 indicate
a small decrease of dn!dT at lower frequencies,
in general agreement with our data in Table I.

We have used a standard least-squares algorithm
to obtain the temperature dependence of the pa-
rameters in Eq. (4} from our data, (and the indices
of Ref. 12) on CVD ZnSe. Our results for these
parameters are given in Table II, along with sev-
eral other known parameters which we shall need
for theoretical interpretations.

IV. INTERPRETATION

The arrangement shown in Fig. 1 was constructed
by converting a Perkin-Elmer Model 13 spectro-
photometer into two monochromators in tandem,
with the prism serving as the dispersive element
in the first one. The prism was housed in a sta-
tionary oven, and connected to a rotation stage
with a thin rod.

At each of the seven wavelengths, the prism
was heated to six temperatures T, the angle b,P
for this ~ and hT was measured, and b,n was cal-
culated using (2'f}. A small correction (-2%) to
hn due to expansion of air was included in calcu-
lating bn." The measurement temperatures were
30, 80, 157, 232, 271, and 328'C.

B. Data

We examine here the constraints placed by our
data on the nonlinear-moment parameters f and y
of (25). By physical argument and examination of
thermal-expansion data, we can increase these
constraints to obtain probable values.

We obtain a relation between f and y by taking
the logarithmic derivative of (1) with (25). This
eliminates the effective charge parameter (to

TABLE II. Values and temperature derivatives of var-
ious parameters of CVD ZnSe at 295 K, derived from
experiment. A prime indicates the logarithmic tempera-
ture derivative (A'—=A ~du/dT, etc.). The uncertainty in
the last digit, if any, is given in parentheses after the
number.

TABLE I. Measured values of 4g4T for 25&T &200
0 C

105x (K &)
AT

2851.7 + 0.1
1583.0
1327.2
1154.0
1028.2

760.7
663.5

6.9 +0.2
6.7
6.66
6.57
6.56
6.5
6.4

Within our experimental uncertainty we could
discern no variation of r n/r T in the temperature

Parameter

~„=5.925(5)
Q =2.51(5) x10 ~ cm2
I(-—7.27{3)x 10 ~ sec 2

I3 =1.77(7) x10~ sec
I5 ——6(1)x10 sec 6

e„'=5.35(20)x10 5 K &

A' =3(1)x10 4 K &

If =7{1)x10 ~ K &

I3 —1.0(5)x10 4 K &

p =2.20 molcm 3

ro =2.45 A
n =ro d~dT=7. 79(7) x10

~~o =203 cm
~~o'=-1.2x10 ' K '

This work.

Ref.

12, a
12, a
12, a
12, a
12, a
a

a

17
17
12
18
18
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which we return later) and gives

1 dl~ 1 dp 2fdn/dT+(y+ $}f d(z )/dT
I, dT p dT I+(y+ $)f2(~2)

O

3
ll

l3 2

0~
I

I
I

I

II

-6 -4

0---

I i I

-2 0
f(A ')

FIG. 2. Solid cuid curve represents the dependence of the

moment coefficient f, as derived from our data. Th
left and

aa. e
right scales are for two values of theo e average

p onon requency co which are expected to bracket the
true average. The dashed rectangles A and B

in e true y, f values for the left and right scales re-
spectivel they; e vertical dashed lines correspond to the
limit im osed b
Ref. 18 an

p e y the observed two-phonon abs t'a sorp ion in
, and the horizontal lines are at =3. Th

bars re resen
e error

The dashed curve
p ent the uncertainty in our measu t ~uremen s.

curve represents the fraction E of th
multi honon cp ontribution to I& arising from the nonlin-
ear moment only; the center scale gives E
percent.

e gives NgM (~~) in

at 295 K, where d = 0. Using the data of Table II,
we have plotted the relation (28) between f and y
in Fig. 2 for two values of (d which, when used to
estimate Q') by (26}, give its probable lim'ts. We
see that the uncertainty in (x') is much more
troublesome than is the uncertain'

'
inlay zn our experi-

mental value for dI, /dT, which places the small
error bars shown on the curves.

The fractional contribution (27} of the nonlinear
moment to the absorption (as averaged in I,) is
also plotted in Fig. 2. By examination of the ab-
sorption and reflection data of Aven et al. ,

i9 we
ave determined that the total fractional multi-

phonon contribution F, to T, is 5+1%. Therefore,
E„«&0.06, thus placing the limits on f shown b
the vertical dashed lines in Fig. 2.

own y

The main contribution to the nonlinear moment
is expected to arise from Pauli exclusion forces
between electronic clouds when two ions approach
closely. The first (n = 2) correction to the linear

that th
moment in (13) should therefore ref le t th f

a the electrons are tending to remain behind

TABLE III.III. Quadratic moment parameter f eff
ionic char e e

er, e ective
g e„(in terms of the electronic cha

and corrorresponding two-phonon contributi
'c c rge eo

nonl
i u ion F NiM of the

n inear moment to the integral I
of the aver e latti

, , given or two values
o e average lattice frequency ~ which, used in (26)
are expected to set the bound ths on e parameters.
exponential moment function (or =1 hr y= as been assumed.

f(A ) I e/eo I +NLM~f)

1
2-&/2 -2.6

2.02
2.00

when two nuclei approach. This circumstance is
easily seen to require

f, &0

in the form (13). Because of the suddenness of
hard-core interactions, it has been suggested that
the nonlinear moment be exponential in form. That
is f„-f"/n!, where f is a pa, rameter such as the
one we have defined. This would require y = 1 b
our definition, a value which our data allows when

f&0 (see Fig. 2). Intuitively we feel it t b 1'k 1

thaat the magnitude of y will not exceed 3, a condi-
ion which would place the limits indicated in Fig.

2 by the horizontal dashed lines.
In both ZnSe and LiF F 5/ "' HHowever,

the thermal expansion coefficient n of ZnSe is
only 22% of that of LiF. This shows that ZnSe
is much less anharmonic than LiF. The two-
phonon absorption caused by the cubic anharmonic
potential V"' scales as

I
V"'I', whereas n 1, w ereas n scales

proportionally as V"'. In LiF we showed that
F ~ arises mostly from V"'. If F ~ arose mainly
rom V ' in ZnSe, then its smaller a would sug-

gest that its multiphonon fraction F h ld
much l

~~s ou be
muc ess than 1%. That E is actually near 5%
s rongly suggests that in ZnSe, two-phonon ab-
sorption arises mainly from the lnon inear-moment

from our
mechanism. This is what we wo ld h du ave educed
rom our data if we had assumed the series (13) to

represent an exponential function, or, at least
en y = i. We summarize in Table III the me e moment

p e ers which we derive from our data with
this assumption (and the requirement that f be
negative), parameters which we feel most bos pro-

y gave the correct nonlinear moment on the
basis of ourour, and thermal-expansion, data.

Using all values off and y enclosed by the dashed
rectangles in Fig. 2, together with the value of
1, in Table II to calculate the effective ionic
charge Ie I

in (1), we obtain values for q-=~e ~/e
in the range 2.0+0.1.

or q- ~e. e,

With the r
.l. e, is the electron charge )

e probable parameters in Table III, the
range for q narrows to 2.01 +0.01.
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V. SUMMARY

We have determined experimentally for CVD
ZnSe the value and temperature derivative of I„
which is an average of n-phonon contributions to
the imaginary part of the dielectric function. Using
a sum rule, we have also calculated I, in terms of
parameters governing nearest-neighbor contribu-
tions to the nonlinear-moment function. This cal-
culation is valid in the Born-Pppenheimer approxi-
mation regardless of the form of the anharmonic
forces, which also cause multiphonon absorption.
Fitting the theory to experiment, we have ob-

tained the effective ionic charge and a relation
between second- and third-order moment param-
eters. From previous measurements of the two-
phonon absorption and thermal expansion coeffi-
cients, we further limit the probable values of
these parameters to those for which the nonlinear
moment contributes much more to the multiphonon
part of I, than do the anharmonic forces.
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