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It is shown that expressions for electron-hole droplet nucleation and decay currents, derived in earlier

papers by the author and others, can be applied to problems of time-dependent exciton densities only in

restricted conditions. The induction time, which characterizes the response of nucleation and decay currents

to changes in the exciton density, must be shorter than the inverse logarithmic time derivative of the

nucleation and decay currents when these are significant. Numerical studies show that the induction time is

too long for steeply rising high-intensity pulses, and for most decay phenomena except for extremely slow

changes in the laser intensity.

I. INTRODUCTION

In two previous papers, "the author developed
a theory of the effect of finite particle lifetimes on
the nucleation kinetics of electron-hole droplets
in semiconductors. This problem has also been
addressed by Westervelt' and studied by several
experimental groups. ~ ' Since the infinite set of
coupled kinetic equations are difficult to solve
numerically, it is desirable to determine the con-
ditions where they may be replaced by a simplified
kinetic theory involving the expressions for nucle-
ation and decay currents which have been derived
in the limit of time-independent exciton densities. "
Staehli' and, in a more approximate way, Bagaev
et al.' have shown that such a replacement can
lead to predictions which compare well with ex-
periment. In this comment, I present an alterna-
tive derivation of the nucleation and decay rates
which also provides the leading correction due to
the nonzero induction time for the rates to adjust to
exciton density variations. This derivation is an
extension to finite lifetimes of the method of Wake-
shima, ' as described in the book by Abraham. ' The
results of numerical calculations are then de-
scribed which show that a simplified kinetic theory
cannot be justified for steeply rising high-intensity
pulses, nor for decay phenomena except at low
temperatures or extremely slow changes in laser
intensity.

f(n) =-g„c(n) a C(n)
an C(n

The steady-state concentration C (n) is related to
the growth g„and decay l„ terms defined in pre-
vious papers" by

(2)
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Expressions (3) and (4) are consistent with the re-
quirement of detailed balance in the infinite life-
time limit. Above a minimum exciton density for
condensation, C(n) has a minimum at the unstable,
or critical, droplet size n, and maxima about n = 1

and about the stable droplet size n„as discussed
previously. '

From (2) one may derive for n" &n2 and n&n2

f(n') «' C (n") C (n)

g„,C(n') C(n') C(n)

The denominator of the integrand in (5) is peaked
about n' = n, and n' » n, Expan. d I (n') in a power
series about n„and keep only terms to order (n'
—n, )'. Thus

I (n') =I (n2) +, (n2)(n' -na)BI

C(n)/C(1) =exp —[G(n) +p, ]/kT. (3)

Here p, , is the exciton, or "monomer, " chemical
potential, C(1) the exciton density, and G(n) is the
"generalized" Gibbs potential defined by

II. DERIVATION OF AN INDUCTION TIME INEQUALITY

The Fokker-Planck approximation to the kinetic
equations for electron-hole condensation' "may
be written

From (1),

O'I
+

2 „(n,)(n' -n, )'. (6)

aC(n) a

where C(n) is the concentration of clusters of n

electron hole pairs and I (n) is a current given by

a'I (n) -a a

a" =
at a. ""'

and, since aV(n, )/an=0, from (2),
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Thus we can substitute in (6)

( )
1 sI(n ) (9)

Take n" ~n3. Since g„,c(n') ' is almost Gaussian
distributed about n„ the second term in (6} does
not contribute to the integral in (5}, and one obtains

dn' 1 si (n, )
g„C(n'} 2g„, st

(n' -n2)'dn' C(n") C(n)
g„,C (n') C (n") C (n)

For convenience, a parameter y is defined by

~ It

y
-=an' [g„,c (n')]-'

7f

n"
dn' (n'-n~) [2g„,g„C(n')] '.

This is independent of n and n" for n and n slight-
ly different from n„and n" s n„since [g„,C(n")] '
is so sharply peaked about n, . Then, from (9}-(11),
dI (n, ) + yI (n, )

tt3
g-'-=C(1) an [g„,C(n')] ',

1

and the decay rate l is related to g by'

lC, =gc(1).

(16)

' c(n) c(n")= y dn' [g„C(n')]

(12)

which is an equation for the nucleation current
I(n, ) in terms of the concentrations C(n).

Equation (12) can only be self-consistent when
the right-hand side is independent of n and n" as
is the left-hand side. The integrand in the de-
nominator of the right-hand side is independent of
n and n" for the reasons stated previously. The
rest of the right-hand side is independent when:
(i) the steady-state distribution is achieved sep-
arately in the regions n & n, and n & n, so that C (n)
cc C(n) and C(n")

chic(n")

(this situation was dis-
cussed previously by the author'}; and (ii} C (n}
ccC (n) and C(n") «C(n"), i.e., the exciton density
is so high that the steady state number of droplets
is extremely large, or equivalently, relaxation to
the steady state for n&n, has not occurred. In
these two cases one can substitute without appreci-
able error

c(n")/c(n") -c, /c„
where the droplet concentration QD is defined by

CD= C n dn.
lf2

Consider, therefore, the physics contained in Eq.
(15). First, if y is extremely large so that the
first term on the left-hand side may be neglected,
there are two interesting limits: (i) when the ex-
citon density is high, so that g~»C~, nucleation
dominates

I (n, )=gC(1); (18)

and (ii) when the exciton density is near threshold,
so that C~«pD, decay dominates

I (n, )=-lC (19)

+(1/y)I(n2, 0)(e "—e ~') (20)

I(n„t}=[gC(1}-lCD(0)](e "-e I') +I(n„0)e &'

(21)

Clearly, y is the parameter governing the rate at
which the current can adjust to a change in exciton
density. The inverse of y is the finite lifetime
analog of the "induction time. "

A simple interpretation of y can be obtained by
observing that y is approximately equal to

Second, when y is finite buty»l, the solution to
(15) for fixed exciton density C(1) is

C, (t) =C, (0)e "+C,(l-e-")

Take n = 1 so that C(1) =C (1) by definition and ap-
proximate f"'C(n) dn by C(l}. Then, from (1), Eq.
(12) becomes

d2G(n~) dl„~ dg„
k'T dn' dn dn

(22)

e'Cg) yeCD c()- c, . (15)
If one considers the nonstochastic equation

dn =
&n n (23}

Here g is the nucleation rate defined previously'
by the author and linearizes about n„one finds
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Thus y is simply related to the rate of growth of
a classical cluster away from an unstable point n,.
In terms of parameters defined in previous
papers, ' y is given by

I26

l24

I22

I20

o) C(I)

I I 8—

(25)

where n =n, (or for relaxation about the stable
droplet, n =n, ). At the minimum exciton density
for condensation, y is zero, and with increasing
supersaturation, n, -0 and y increases monotoni-
cally. Thus, y is considerably larger during
nucleation than it is during decay.

%hen the exciton density can vary with time, Eq.
(15) provides a criterion for when the current can
be taken to be

(26)

It is that

I I 6

IO—

c)

CD

7
d InJ/dt---

1 dJy"J dt' (27)

where the variation of J with time is due to vari-
ations of the exciton density C(1). If this inequality
is satisfied, the current may be assumed to follow
the changes in exciton density. The numerical cal-
culations described below show that in typical ex-
perimental conditions the inequality (27) is satis-
fied for nucleation but not for decay. %e refer to
(27) as the "induction time inequality. " It provides
a bound on the domain of applicability of a simpli-
fied kinetic theory. %bile a parameter akin to y
was discussed by Staehli, ' there was no discussion
of with what it should be compared.
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III. NUMERICAL RESULTS AND DISCUSSION
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In order to determine the experimental conditions
where replacement of the full kinetic equations by
a simplified kinetic theory violates Eq. (27), a
numerical study was performed. The calculations
were similar to those of Staehli except in the fol-
lowing respects: (i) the growth of droplets for
n&n, was described in terms of four equations for
moments of the cluster size distribution which
form a closed set in the limit of negligible surface
tension; (ii) calculations were carried out for a
full range of temperatures and supersaturations;
and (iii) situations where droplet decay is impor-
tant were studied.

Figure 1 illustrates what happens in the particu-
lar case of step function excitation of Ge at 2 'k to
an excitation level sufficient to product a super-
saturation of -8 before nucleation begins. C(1)

FIG. 1. Vertical axis is the log&0 of the corresponding
quantity. (a) is the exciton density C(1); {b) is the
droplet density C~; {c)Solid line is the induction param-
eter y, dashed line is din J/dt; (d) Solid line is average
droplet size n, dashed line is the stable droplet size n~,
dotted line is critical droplet size ~2. The horizontal
axis is the time inILtsec. The curves drawn correspond
to step function excitation to a supersaturation of 8.0
at 2 'K in Ge.

rises until significant droplet nucleation occurs.
At this point y exceeds dlnd/dt by one to two or-
ders of magnitude. The growth of embryonic drop-
lets then causes the exciton density to fall, shutting
off further nucleation. At this high excitation level
too many embryonic droplets have been nucleated
to be sustained when they grow to the minimum
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stable radius. The exciton density must fall to a
level where decay can occur. However, as may
be seen from the calculation, din J/dt exceeds y
by four orders of magnitude at the point where de-
cay becomes significant and hence the condition
(27} for application of the simplified kinetic theory
is violated. The calculation has been terminated
at this point.

The same kind of violation of (27) occurs in a
variety of decay situations which have been studied.
These include droplet decay at the end of a pulse
and various kinds of slow decrease of the excita-
tion intensity. The reason for this behavior is as
follows. The decay rate / is proportional to ex-
ponential of [G(n, ) —G(n, }j/kT, which is negligibly
small except for exciton densities extremely close
to the minimum density for the existence of stable
droplets. The exciton density crosses the region
where the L is significant in a very short time com-
pared to y '. At 2 'K the figure shows that the
characteristic time for variations of the decay
current must be greater than 100 gsec for a sim-
plified kinetic theory to be applicable.

It is also found that at excitations sufficient to

create a supersaturation much greater than 10,
Eq. (27) is also violated in nucleation. At tem-
peratures from about 1-1.6 'K it is found that (27)
can be satisfied in both nucleation and decay. At
lower temperatures the nucleation theory is no
longer applicable since hysteresis phenomena
disappear and the minimum density for the ex-
istence of stable droplets crosses into the region
where the gas phase cannot be approximated as
ideal.

IV. CONCLUSION

Restrictions have been determined on the ap-
plication to situations of time dependent exciton
density of expressions for electron-hole droplet
nucleation and decay rates derived in earlier
papers. " The density variation must be suffi-
ciently slow that an induction time inequality (27)
be satisfied. Numerical studies show this cannot
be satisfied for steeply rising high intensity pulses,
nor in most of the common decay situations. The
description of these situations requires a return
to the full set of coupled kinetic equations.
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