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Two-component particie transport and superionic conductors
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The rapid motion of distinguishable species of charged particles in superionic conductors allows one to
perform a variety of possible transport experiments. TPe general theory of transport for the case of two species
of mobile charge carriers is presented, and several applications of the formalism are discussed.

I. INTRODUCTION

Superionic conductors exhibit large ionic conduc-
tivities typical of liquid electrolytes even though
they are solids. " The rigid structure and high
conductivity coexist because one can generally
divide the particles in superionic conductors into
"mobile" and "immobile" classes; the mobile ions
produce the large ionic conductivity and the im-
mobile particles provide the rigidity. Interstitial
sites in the immobile lattice are occupied by the
mobile ions, and the rapid motion of the mobile
ions appears to be closely related to an excess
number of available sites compared with the num-
ber of mobile ions. The details of the ionic mo-
tion are not well understood.

The transport properties of superionic conduc-
tors are important probes of the ionic motion.
Because superionic conductors allow the motion of
distinguishable particles, transport experiments
yield a richer variety of data than for the case of
single component transport. Not only can the mo-
tion of different isotopes of the mobile ions be
monitored, ' but in mixed conductors4 both electrons
and ions carry current, and some superionic con-
ductors such as P-alumina allow the simultaneous
transport of chemically different mobile ions.

An example of the utility of transport experi-
ments is the comparison of the isotope diffusion
constant with the ionic conductivity. This compar-
ison has yielded parameters which have been cor-
related with the hopping theory of ion motion. A
number of other transport properties besides the
total conductivity and the diffusion constant can be
measured. The relative amount of current car-
ried by the various charges (transport numbers)
can be obtained. By using electrodes which allow
the passage of only one type of charge carrier,
one can measure a separate conductivity charac-
terizing that charge. ' Thermoelectric effects can
also be obtained.

A system with two types of charge carriers is
the simplest example of multicomponent trans-
port. The two types of carriers are assumed to
move through the immobile ion structure which

for brevity is called the "lattice. " Since this lat-
tice serves to define the coordinate system, it
must be assumed that the lattice itself does not
participate in the charge transport. Although the
motion of the lattice through defect motion or any
other mechanism must be ignored, this lattice
need not be perfect, static, thermally insulating,
or undistorted.

The two types of mobile charges, denoted A. and

B, may be different isotopes of the same mobile
ion, electrons, and mobile ions in a mixed con-
ductor, or chemically different mobile ions.
Transport experiments on superionic conductors
involve temperature gradients and gradients in
the densities of the A and B charges. These gra-
dients can distort the lattice. Despite this distor-
tion, the wost convenient coordinate system is a
lattice-based coordinate system. This means that
the particle densities n„and n~ are proportional
to the number of particles per unit cell. Compo-
nents of the current densities J„and J~ are pro-
portional to the number of particles crossing unit:
cell boundaries per unit time. Despite the peculiar
coordinate system, the continuity equation is
obeyed. Because of the lattice-based coordinates
the condition that the system be electrically neu-
tral is simply

q„Vn„+q Vn =0. (1)

General transport theory relates "forces" and
"fluxes. "' ' The obvious choice of the fluxes for
the two component superionic conductors are the
current densities of the A and & charges (J„and
Js) and the heat current (Je). The corresponding
forces can be chosen to be the electrochemical
potential gradients for the two charges (c„and es)
and the temperature gradient ( VT/I) The v-ec-.
tors ~~ and &~ are related to the electric field and
the chemical potentials by

e„=E—(1/q„)Vu„, ee =E —(1/qs)Vus,

where u„and u~ are the chemical potentials for
the A and B ions. The condition of charge neu-
trality [Eq. (1)] means that at a given temperature
u„and u~ depend on only one parameter which is
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chosen to be n„. Hence

~a =E +yH'~

where

1 du„-1 du 3
yA 2

g g dPlg gag~
(4)

yB = I/pnsqB& (6)

where p=i/kBT. In practice, y„and yB will have
this form only in the limit that the particle density
becomes very small. In this case, (y„+yB}will be
dominated by the dilute charge term. If, for ex-
ample, there are only a few 8 charges, and many
A charges,

(y +y, )-I/Pn, e', .
If (y„+yB) is negative, the system is unstable and
a phase separation will take place. Qualitatively,
this can be seen from Eq. (3}. If an electric field
is applied so that the B charges experience no net
field (eB =0), then the effective force on the A
charges is

F„=&„e„=-(y„+yB)q'„&n„.

If (y„+yB) is negative, the A charges will move
toward the region of larger n„. A more convincing
demonstration that the vanishing of (y„+yB) leads
to a phase separation will be seen when diffusion
is discussed in Sec. II.

The most-general linear relations between the
fluxes and forces are

Jg AB6g + AB B + XAQ(- T/ ),
JB =os~eB + oBBeB + XBo(-vT/I')

&

Jo+Xo„e + XoBcB+Loo( VT/T) . -
For simplicity, the coefficients which appear in
the above relations are taken to be scalars rather
than tensors. The Onsager reciprocal relations'
imply that

xa —aa~, XAQ
——Xpw, Xap ——XQ8 (7)

The coefficients O, X, J cannot be calculated exact-
ly in realistic systems. The quantities a;, are or-
dinary conductivities since a fictitious electric

Physically, y„and y~ are measures of the change
in chemical potentials produced by a change in the
density of A ions in the electrically neutral sys-
tem. In Secs. II and III it will be shown that for
most experimental measurements, the important
parameter is (y„+yB). If the A and B charges
were free and noninteracting particles obeying
Boltzmann statistics, then

y~ = I/Pn~&B

and

field E„which exerts a force on only the A charges
would produce charge currents J„=o»E„and
J~ =o»E„. Note that the conductivity o» is not
the conductivity of the system with only A charges
present. Rather it is a measure of the current of
A charges produced by a field which acts only on
the A charges. If the A and B charges were total-
ly independent, v» would be zero. In general,
v» is nonzero because the motion of the 8 charges
produced by &~ will tend to move the A charges.
There is no a priori reason to expect o» fo be
very small. If the A and B charges are different
mobile ion isotopes in a materia1 with one-dimen-
sional or tunnel-like structures, o» should ap-
proach (&„„oBB)'

The conductivities o;, can be formally obtained
from Kubo formulas involving current-current
correlations. ' If both the charge carriers are
ions, the classical version of the Kubo formulas
may be valid. If the ion motion proceeds as simple
hops involving the motion of a small number of
ions the classical Kubo formula becomes the tradi-
tional expression involving lattice constants, hop-
ping frequencies and correlation factors. ' " The
thermal and thermal-electric terms l.pp, X„Q, and

X~p could also be calculated for a sufficiently
simple model of a superionic conductor.

The general structure of two component trans-
port in superionic conductors is described by Eqs.
(3), (6), and (7). Application of these formal re-
sults will be described in Sec. II.

(oAA +oAB}E 'VA A(yB+AA yB AB)

JB (oAB ++BB)E —qA~nA(yAoAB ysoBB) ~

(8)

The relations between the current densities J„and
JB, the electric field E, and the density gradient
Vn„are completely specified by the three conduc-
tivities o», o», and a» and the thermodynamic
parameters y„and y~. As the four following ex-

II. APPLICATIONS

The generality of Eqs. (3), (6), and (7) means
that they may be applied to essentially all trans-
port measurements involving two types of charge
carriers. However, this generality means that
there are a large number of transport coefficients
and there has been considerable work done based
on approximations which reduce the number of
coefficients. Here, simplifications will be avoid-
ed, and a number of examples will be presented
to demonstrate that actual experiments often mea-
sure simple combinations of these transport coef-
fic ients.

If one is concerned only with isothermal currents
in superionic conductors, Eqs. (3), (6), and (7)
can be combined to give
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amples of idealized experiments will show, most
experimentally measurable quantities depend only
on the sum (y„+ys) so the isothermal transport
depends on only four independent numbers. Re-
sults (i}-(iv) can all be simply obtained from Eq.
(8).

(i) The total conductivity v, is the ratio of the
total current magnitude i J„+Jsi divided by the
electric field in a system with no density gradients.
Thus

~p = &AA+~aa+2~AB ~

(ii) The transport number for the A charges is
the ratio of the current iJAI to the total current ob-
tained in a conduction experiment

IJAI/i JA+Jsl =(vAA+vAB}/v. . (10)

(iii) By using electrodes which block the passage
of the 8 charges, a conductivity for the A. charges
alone, v„, may be obtained as a ratio of i JAi to

JA(VBB VAB}
QAV P2A ———~ BV+B Det(v)(y„+ys) '

where

Det(v) vA v vA

(12)

(iv) The diffusion constant d is the ratio of the
current J„, to the negative gradient of A. charge
( qAVnA-} in a system where no net charge is al-
lowed to flow (J„+Js =0). The result is

d = [Det(v)/v ] (y„+ys) . (14)

At this point the choice of a lattice-based coordi-
nate system becomes significant. In an absolute
coordinate system, a gradient of A charges could
distort the lattice so that qAVnA+qBVna ~ 0. Then
two slightly different diffusion constants for the
A and B charges would be obtained, and each of
these constants would depend on the lattice distor-
tion.

In general, the condition that JA+Ja =0 can be
satisfied only if the electric field E is nonzero.
This field, which is produced by the accumulation
of small amounts of charge on sample surfaces is
given by

VA AA +AB/VBB '

The condition that Ja =0 means that there is a
gradient of the densities of the A and B charges for
single-component conduction given by

For example,

eA =[(vAB+vss)/Det(v)] JA. (16)

Although the conductivities and the quantity

(y„+ys) cannot be calculated exactly, there are
some bounds on their values. As was mentioned
earlier, (y„+ys) must be positive if no phase
separation is to take place. This can be seen in
the diffusion constant [Eq. (14)], where the diffu-
sion vanishes as (y„+ys) vanishes. The conduc-
tivity ap =oAA+o»+2oAB must be positive, and if
(y„+y„))0, d must also be positive. This means
that Det(v)) 0. Also, since v„ is positive, v» and

~BB must be positive.
It is, in principle, possible to obtain the four

numbers which characterize isothermal transport
(v», v», vAB, and y„+ys) from experiments.
For example, using Eqs. (10), (11}, and (16}, vss
can be written in terms of observable quantities

AA Aa

VAS+'» (18)

An important special case of two component
transport occurs when one of the charge densities
(ns) is very small. This situation is encountered
in tracer isotope diffusion experiments, ' and in
mixed conductors when the number of electrons is
very small. ' In these situations, all of the pre-
vious relations remain valid except that (y„+ys)
can be replaced by (pnsq2B) ' [see Eq. (5)]. For
tracer isotope experiments, further simplifica-
tions can be made because v»» (v», ivAsi) if

Hence,

(
1 Det(v)

BB ( AB + Bs) 2 I
AA AB/ BB AB + BB

or (1 7)

vss = (Js/Z);;(1/vA);;;(JA/eA);, ,

where the subscripts ii, iii, and iv denote the par-
ticular experimental situation discussed in the
numbered examples. Once a» is known, all other
parameters are easily obtained from experimental
data.

Not all experimentally observable isothermal
transport effects are independent since they are
all related to four numbers. For example, the
ratio of transport numbers in simple conduction
is equal to the ratio of electrochemical potential
gradierts in diffusion. From Eqs. (10) and (16)

JA[yA(vAA + vAa} —ys(vAa + vaa}]
Det(v)(y„ +y, )

(15)

The quantities &A and ea in diffusion, which are
more directly measurable have a simpler form. Det(v) —v„„vss . (20)

and, except for the pathological case where mobile
ions lie in channels and cannot get around each
other,
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This simplifies the diffusion constant, and

d QBB/pt?Bqs . (21)

The simplest form of the Nernst-Einstein relation
for isotope diffusion states that

0'0 =d pPBg (22)

where q„=q~ =q and n =n„+a~. This relation is
not obeyed and an experimental factor f is defined

by

f = Pnq'd/(?, . (23)

According to E(l. (21), a theoretical expression
for f which depends only on the assumption that
the tracer isotope (B}is dilute is

f =(Q.,/n, )/(Q. /n, ). (24)

where I is the hopping frequency of an A ion, a
is the hopping distance, and the lattice is assumed
to be cubic.

The second contribution to the conductivity occurs
when X, (0) and X&(t) are nonzero by virtue of two
distinct vacancy hops. If the 8 ions are dilute,
there will be no significant correction to a» from
this effect because the vacancy motion is random
in direction and it is surrounded by A ions. There
will, however, be a correction to o» because the
isolated B ion which hops from site m to site m'
is relatively likely to return to site m. Summing
over all later vacancy hops yields"

(? /n =&P q'I'(?'[(1 + C)/(1 —C)],
where C is the average value of the cosine of the
angle between two consecutive jumps of the B ion.

As an example of how one can obtain hopping
model results from these formal expressions,
consider the motion of isotopes A and B caused by
the hopping of a small number of vacancies on a
lattice. Assuming the classical Kubo formula is
valid gives

(?„„= Z X,(O)X,(t) dt,
0

where X,(t) is the x component of the velocity of
the )th type A ion at time t. An analogous expres-
sion holds for o~~. The ion motion consists of
hopping from one site to a nearest neighbor site
and oscillations about fixed sites, but the oscilla-
tory motion is irrelevant for dc conductivity.

In general. , there are two contributions to the
conductivities from hopping motion. The first con-
tribution occurs when i =) and t is small so that
the velocity correlations are nonzero due to a
single hopping process. Integrating t over a hop-
ping time gives

A AA AB? BB s
2 /

XA XAQ QABXBQ/oBB t

LQ LQQ —XBQ—-/(?BB.

(26)

The Kelvin relations remain valid with the re-
normalized coefficients. When experimental coef-
ficients are written in terms of the original trans-
port coefficients of E(l. (6}, the resulting expres-
sions become fairly complicated. For example,
the thermal conductivity is

K =(1/T)(LQ —X'A/(?A)

or

( (X'„a ~ X' a„„—2X„X v„))
T QQ Det(o)

A gradient in n„and n~ can be produced by a
temperature gradient (Soret effect), ' and if one
imposes the condition that no current flow in the
sample, the density gradient is given by

qAI &??Al Ix„(o„„+Q„,) —x ((? +o )I

(y„+y )T Det((?)

(28)

III. DISCUSSION

An important conclusion one can draw from the
discussion of two-component transport is that
there is a generally applicable formalism which
allows one to relate theoretical transport coeffi-
cients to experimental data. Little has been said
about the calculation of these coefficients since
they cannot be obtained exactly and will depend on
the theoretical model considered. Similar formal
relations apply to transport cases when there are
more than two types of mobile charge carriers,

Substituting the hopping expressions for (?AA/n,
and (?BB/nB into E(l. (24) yield the standard hopping
expression for the correlation factor f.

If one considers temperature gradients as well
as particle gradients, there is s confusing variety
of conceivable thermoelectric experiments, and
a lot of transport coefficients contained in E(l. (6).
For simplicity, we consider those experimental
situations with J~ =0. For example, one might be
performing thermoelectric experiments on a mixed
conductor in which no ionic currents are allowed.
By setting J~ =0, and eliminating e~, one obtains
the standard equations characterizing single-com-
ponent thermoelectric effects.

ZA =(?AeA+XA( VT/T-),

JQ
—XAFA+ LA(-V T/T) . (25)

The important point is that the coefficients in this
equation are renormalized, and
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but the number of theoretical coefficients becomes
so large that fewer practical results are obtained.

In some special cases, however, the results ob-
tained here can be generalized. For example, a
mixed conductor with two isotopic species of mo-
bile ions is an example of a three component sys-
tem. More than one type of diffusion can take place
in such a system, but if one of the isotopes of the
mobile ion is very dilute, a simple well-defined
expression for isotope diffusion can be obtained
which is essentially identical to Eg. (21). Two
examples of this type of three component system
are the mixed conductors o.-Ag, S and o.-Ag, Se with
small amounts of '" Ag added. Okazaki" has
compared the diffusion of the rare silver isotope
with ionic conductivity measured with blocking

electrodes which eliminate the electronic current.
He found that the diffusion was unusually small as
compared with the ionic conductivity. One is
tempted to suggest that the mixed conductor nature
of these materials may lead to these anomalous
results, but in fact the converse is true. Denoting
the abundant and rare Ag isotopes by A and B,
and the electrons by C, Okazaki actually measured

OBB/SB

( AA A f+CC~I A

and this quantity is larger, not smaller, than one
would expect if coupling between the ions and the
electrons were ignored and the anomalous value
of f cannot be explained by mixed conductor ef-
fects.
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