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Orbital magnetic susceptibility of electrons confmed in a rectangular box*0
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The orbital magnetic susceptibility of a gas of noninteracting electrons confined by hard walls to a rectangular
box has been calculated in the low-magnetic-field limit. The result for the size-corrected susceptibility in the
high-temperature limit is g = yt [1—Xr(L„'+L» ')/16m'"] where gL is the Landau diamagnetism, XT is the
thermal de Broglie wavelength, and L„and Ly are the dimensions of the box perpendicular to the direction of
the magnetic field. A slightly more complicated formula for the case of Boltzmann statistics is accurate for the
range XT (2L. A similar expression is found for Fermi-Dirac statistics valid for high values of the Fermi
energy. The result corrects an error by Papapetrou, and agrees with the recent results of Angelescu, Nenciu,
and Bundaru. When applied to the case of infinite slabs (L„»oo), it agrees with the results of several previous
authors. The result, however, indicates that calculations by Dingle and Osborne for spherical and cylindrical
volumes are in error. Numerical calculations for the case of Fermi-Dirac statistics at temperatures a few
percent of the Fermi level give results which agree reasonably well with the size-corrected susceptibility
formula even for a very few electrons in the box (X„&2L, where X~ is the de Broglie wavelength at the Fermi
level).

I. INTRODUCTION

for T =0, and

Xg = —9 s/2~I = —3 P s ~, (1.1b)

in the high-temperature limit. In the above, p. ~
= e)f/2mc is the Bohr magneton and t is the energy
of the Fermi level. Though Teller' and Van Vleck'
constructed treatments of the surface effect, based
on the correspondence principle, that also gave
Landau's result, the question is quite subtle and
several authors have published works indicating
important size corrections.

In the present work, we treat only the low-mag-
netic-field case, where both the cyclotron radius
and the radius of gyration l = (Kc/eB)' ', become
infinite, so that any finite sample is in the "size-
effect regime. " We shall comment on the finite-
field ease in Sec. IV. We shall treat only hard-
wall containers: i.e., the electrons under consid-
eration are confined by infinite square-well-type

The question of size effects upon the diamagnetic
susceptibility of noninteracting electrons confined
to fixed volume is an old one. Bohr's argument'
that there is no diamagnetism in classical me-
chanics examined the orbits of electrons colliding
with the surface, and seemed to require that the
radius of the cyclotron orbit, v=—(2mE)' 'cleB, be
small compared to the dimensions of the container
L. However, Van Leeuwen's theorem' does not
require such a condition. In his quantum-mechani-
cal calculation Landau' treated the surface in an
approximate way and obtained for the magnetic
susceptibility per electron

(l.la)

potentials. In this regime the important lengths
are the sample size L and the characteristic de
Broglie wavelength: Xz ——2wh'/(2m&)' 2 for T =0 or
&r =2m'(P/2m)'~' for high temperature.

In 1937 Papapetrou' calculated the magnetic sus-
ceptibility at T =0 for a thick slab, whose short di-
mension is perpendicular to the field direction,
and obtained the Landau result. In 1939 he calcu-
lated' the susceptibility for a rectangular box at
T =0 and found the Landau result when the ratio
of the lengths of the box perpendicular to the mag-
netic field is irrational, but found a very different
result, X

- X~(L/Xz), when the lengths are equal!
Friedman' calculated X for the thick slab in the
high-temperature limit and for T =0. He found
the Landau result in the high-temperature limit.
His result at T =0 differed from Landau's by a
constant factor, but Denton' has pointed out that the
correction of an error yields the Landau result.
Nedorezov' has calculated for a thin slab at low
temperatures. He finds the Landau result plus a
correction proportional to X~(X~/L) and an oscilla-
tory term. Moriya, Ohtaka, and Yanagawa" and
Ohtaka and Moriya" have calculated the surface
current and correction to diamagnetism due to one
plane surface at both high and low temperatures.
Their results are in harmony with Nedorezov's.
Very recently, Angelescu et al."have calculated
the susceptibility for a rectangular box for high
and low temperatures. They obtained the Landau
result plus correction terms proportional to X/L.
Their result is in harmony with those for the slab.
In contrast Dingle" and Osborne" found results
of the order of X~(L/X~)'~' for cylindrical and
spherical volumes.

In Sec. II we derive results for the case I » A.
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which agree with those of Angelescu et al. ,
"but

go to higher order in X/L. In Sec. III we present
numerical calculations in the opposite limit (A.z
& 2L), where only a few electrons are in the box.
The results for a temperature a few percent of the
Fermi energy agree well with the formula from
Sec. II. Discussion of the results, and of the effect
of using a self-consistent surface potential, is
presented in Sec. IV.

II. CALCULATION OF THE SUSCEPTIBILITY FOR X « L

We first calculate the orbital magnetic suscepti-
bility in the high-temperature limit, for which
Boltzmann statistics may be used. We then use
the Laplace transform method of Sondheimer and
Wilson" to obtain results for Fermi-Dirac statis-
tics. We obtain the partition function by calculating
the trace of the operator exp(-PX), where

3C=K o+B(ea'p/ m)c+e' aB'/2mc (2.l)

and we write the vector potential A=aB. We ignore
the effect of electron spin, which has been treated
for the thin slab by Nedorezov. ' We use the meth-
od of Goldberger and Adams" to expand the parti-
tion function to order B', and use the standard low-
field definition of the susceptibility, y = P '8'InZ/
SB'~s o. The result for the susceptibility per par-
ticle is

e2

ZomC

1

x Tr g'e ~o- — ds a'pe ""~~oa'pe '~~o
0

set of unperturbed eigenstates, and express the
products as matrix multiplications. If the integra-
tion on s is carried out before the summation in
the trace, then we would obtain the same results
as from applying nondegenerate perturbation theo-
ry to find the changes in the energy eigenvalues,
except that the energy denominators would appear
in factors such as (e oe" —e o )/(8„—8 ). Thus
degeneracy or near degeneracy would not cause
any difficulties. " This explains why Papapetrou'
obtained the correct result for the case of an irra-
tional ratio of lengths of the sides. However for
the case of equal lengths he treated some degen-
eracies explicitly, but ignored others and obtained
a spurious result. Our point of view concerning
this error differs somewhat from Denton's. ' We
shall perform the summations before the integra-
tions on s, as then the sum is the product of sim-
pler sums associated with thex and y directions.

Before carrying out the summation, we modify
the formula for X by combining the results for
three different gauges with the magnetic field in
the z direction,

a, =(o, x, o),

a, =(-y, o, o),

a, = —,'(-y, x, 0) = o(a, +a,).

(2.3a)

(2.2b)

(2.3c)

The final susceptibility must be the same in any
gauge. By taking twice the result for gauge 3 and
subtracting one-half each of the results for gauges
1 and 2, we obtain

e2P 1

X=- de Trgp e onoyp e ohio
2Z m'c0 0

x

where

Z, = Tr(e '"o) .

(2.2a)

(2.2b)

+yp e 'll-s)Nco~p e Bno)

(2 4)

In the derivation, we have used the result that
Tr(a pe o o) = 0. This vanishing can be proven in
several ways, "and without it there would be a
permanent magnetic moment in the system at high
temperatures. The formula (2.2a) is very close
to those derived by Kubo" using the Wigner dis-
tribution function. In our treatment Xo is the ki-
netic energy of the electron, and the effect of the
confining potential is in the boundary condition
which requires that the wave functions over which
the trace is taken vanish on the boundaries. Even
though one takes traces over a set of functions
which already obey the boundary conditions im-
posed by the potential, one must not assume that
the potential V is zero thereafter. The full Hamil-
tonian Xo= T+ V must be used when evaluating
commutators of p and a with Xo. However, our
calculation does not involve any commutations.

We shall evaluate (2.2a) by using the complete

0, „(~,y, e)=V, (~)V„(y)V'„(e), (2.5a)

co(lsv/L), l odd,
y, &) =(2/L )'"

sin(lw/L„), leven, (2.5b}

h, „=(&r' 2m/)[(l L/, )' (m+/L, )'+ (n/L, )'], (2.5c)

where the origin is in the center of the box of
sides L„, L„and I., The matrix e1ements needed
are then

This formula has the advantage that the cancella-
tion between the large a' and (a p)' terms in Eq.
(2.2a) has been eliminated, though we have verified
that our method gives the same answers as putting
the Landau gauge a, in Eq. (2.2a). Papapetrou' ob-
tained an equivalent result by manipulating the
specific sums. We now choose the same normal-
ized eigenstates as Papapetrou' and Friedman'
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(l
I
x

I
l'}= (4/w )L,/i '/(1" —l'),

(l
I p, Il ) = (»h/wL. )ll /(l" —l')',

(2.6a)

(2.6b}

if l —l' is odd and zero otherwise, in agreement
with Friedman and Papapetrou. Substituting the
matrix elements and energy into Eq. (2.4}, and

using Friedman's notation

a'„=w%'P/2mL„'= (Xr/2L„}',

and Moriya's" formula to the four faces parallel
to the magnetic field. We can obtain the result
for a slab by letting L„-~, a, —0. The result then
agrees with a result to second order in a„which
can be found by making a trivial extension of
Friedman's' sum formula (2.6).

To find the expression for Fermi-Dirac statis-
tics, we follow the Sondheimer-Wilson" prescrip-
tion of applying the transformation

we find

2p 1

}(=—4 s, ds J[(l —s)a', , sa„']J[(1—s)a,', sa,'],
0 0

C+gao

im
Ca g oct

(2.12)

where

l2li2

l l'

(2.7a)

In the above, the sum on l' is over odd values if
l is even, and over even values if l is odd. We
have used the result that the summation on n (in-
volving the s coordinate) cancels against the
same term in Zp Zp includes the summation on
l and m only (x and y coordinates). The double
sum J(x, y) is evaluated in Appendix A for high
temperatures (small a). With an accuracy of better
than 0.5% up to a=1, we have

J [(1 —s)a', sa'] = [w'~'(1 -2s)/4a]

—[sin '(1 —2s)

+2(1 —2s)s' '(1-s)' ')/2w. (2.8)

Friedman's evaluation of Zp is good to better than
0.004%%uo up to a„=1,

where }(s(P) is the susceptibility for Boltzmann
statistics, Zo(p) is the trace of the Boltzmann dis
tribution function, X» is the susceptibility for
Fermi-Dirac statistics, and f is the Fermi-Dirac
distribution function. This expression gives the
total susceptibility of all the electrons in the vol-
ume and includes the spin degeneracy. The total
number of electrons is given by N = —SQ/8 t, where

C+( I
Q= —im ' dS

@
dPZpP e~ P", 2 13

C~t~

which also includes the spin degeneracy.
For high temperatures, the correction to g for

use of Fermi-Dirac statistics is proportional to
X~IS' ' for the three-dimensional case, so that the
correction is of higher order than is kept in Eq.
(2.10). For a two-dimensional case (appropriate
to a layer structure) this correction is proportion-
altox P.

For T =0 we find for the Fermi-Dirac case

y (yam/3wah3)(2m&)'/'L L, L

s, = Q exp(-12a'„) =w'~'/2a„— —,',
l

(2.9) x[1 —2n, ;(n„+n—)

where &p z z&z and Zp z z
&

Substituting the
results for the summations into Eq. (2.7a) and in-
tegrating on s we have where

+ —,(3 —256/1 5w') n„n, w

+ 9n, (n„+ n, )/16w], (2.14)

1 —(9/8w'~')(a„+a, )+ (3 —256/15w')a~, /w

1 —w '~'(a„+a,)+a,a„/w

(2.10)
The result is the high-temperature expression for
X, but it has an accuracy better than 0.5% up to
a =1, for which X~=2L. We see that the leading
term is the Landau term, for all ratios of L„and
L,. In order to compare with other work, we
Taylor expand the denominator, though this will
reduce the accuracy, to obtain

)(=)(~[1—8(a„+a )w
' ' —8(a„+a )'w

+ (2 —256/15w')a„a, w '] . (2.11)

The result through order a is exactly that of
Angelescu eI; al."and that given by applying Ohtaka

n'„=h w /2mL„f =(Xw/2L, )'.
The leading term is the total Landau susceptibili-

ty of an electron gas at T =0 in the volume L„L,L,
and with Fermi level f. Note that in contrast to
the case of Boltzmann statistics, there are correc-
tions associated with the face of the box perpendi-
cular to the field direction (involving n,). For the
slab case, o,, =n, =0, the first-order correction
in n„agrees with the nonoscillatory term of Ne-
dorezov, ' but does not reproduce his term which
is oscillatory in L„/Xw This is becaus. e our result
is an expansion in inverse powers of f. The ef-
fect of the Sondheimer-Wilson transform on the
neglected terms in Zo(P)Xs(P) presumably would
produce the oscillatory terms. Note that there is
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x [1——,'(a,+ a, + a,) (3/4—v)a„a a,
+3(a„a,+ a,a, + a a )/2p] . (2.16)

Angelescu et al."express their susceptibility in
terms of carrier density p=N/L„L, L, and Ohtaka
and Moriya" express their results in terms of fo,
the Fermi level which would correspond to the
same carrier density p = (2m', /5')'~'/3w' if there
were no surface effects. The relationship is

no error from Taylor expanding a denominator
as Z, (P)}(s(P) is the numerator of (2.10) times z,.
The correction linear in &, is in agreement with
that of Allen" for a thick slab perpendicular to
the magnetic field, when specialized to our poten-
tial model.

The relation between the number of electrons
and the Fermi energy is (including spin degen-
eracy)

N= (3m') '(2m//K')' 2I.,L, L,

0

f

0
0 1000

N

I

2000

FIG. 2. Total orbital diamagnetism of electrons in a
flat box vs the number of electrons in the box. The
ratios of the sides of the box are L„/L~ = 0.3/m and
L„/L g = 0.1. The curves are: (solid line) Landau
diamagnetism, T = 0; (dash-dot line) size-corrected
diamagnetism of Angelescu et al ., T = 0; (broken line)
exact result, kT= 0.1$; (dashed line) Nedorezov's ap-
proximation for an infinite slab, kT= 0.1&.

t, [1+—-,'(a', + o.„'+a',)],
where

a', = (n'/2m'-, )'~'v/L„= ~,/2L,

(2.16)
than Eq. (2.17) as a increases. However, we shall
see in Sec. III that the difference between the two
formulas is not very great.

With this substitution we find to first order in &

X = -N(p', /20. )[1 - -' a', —,(a', + a,')] . (2.17)

This expression agrees exactly with that found by
applying Ohtaka and Moriya's results to all six
faces of the box, and with the result of Angelescu
et al. when one takes into account the fact that they
do not include the spin degeneracy. Our formulas,
Eqs. (2.14) and (2.15), should be more accurate

III. CALCULATION OF THE SUSCEPTIBILITY FOR X~ ~& 2L

In this section we calculate the diamagnetic sus-
ceptibility in the case of Fermi-Dirac statistics
when only a few electrons are in the box. We start
by expressing the total Landau susceptibility in
terms of L„L„L„andN (eliminating the Fermi
energy). We obtain

(p, m/5 )(L L„L /3z ) N' =X N'~

(3.1)

which is quite similar to the formula for atomic
diamagnetism, "

X„=-(p, 2sm/5') (x'+y') . (3 2)

0 20

FIG. 1. Total orbital diamagnetism of electrons in a
nearlycubical box. The magnetic field is in the z direc-
tion and yo is defined by Eq. (3.1). The ratios of the
sides of the box areL„/L =3/7t and L„/Lg =1. The
curves, all for T =0, are (solid line) Landau diamag-
netism; (dash-dot line) size-corrected diamagnetism of
Angelescu et al. ; (dashed line) size-corrected diamag-
netism of the present work. The points are exact cal-
culations for different temperatures: ~, T =0; x; kT/f
=0.15; +, kT//=0. 3.

X(l', 0) = (psm/II')(L, '+L-,') 'S(R),

where

(3.3a)

Viewed this way, Landau diamagnetism and atomic
diamagnetism do not seem very different, and one
may expect that size effects are not large. The
Landau susceptibility is plotted in Figs. 1 and 2,
for an almost cubical box and for a flat box. Our
corrections, Eqs. (2.14) and (2.15), and that of
Angelescu et al. , Eq. (2.17), are also plotted in
Fig. 1.

We now calculate the exact susceptibility. If
there are no degenerate unperturbed states con-
nected by matrix elements of xp„, then the total
susceptibility at T = 0, ignoring spin degeneracy,
can be written



766 D. B. BIVIN AND J. %. McCLURE 16

215 2 2~&2 I2

v 2 ~ ~ ~ ~ (l" —1')'(m" —m')'[(1" —l')(1+R) + (m" —m')(1 —R)] ' (3.3b}

and R = (L,' —L'„)/(L,'+ L'„), the sums on l, m, and

n are over occupied states such that 8, „&f, the
sum on l' is over odd integers if / is even and over
even integers if l is odd, and similarly for the
sum on m'. Formula (3.3), which can be derived
by perturbation theory or by transforming Eq.
(2.7), agrees with Eq. (27) of Papapetrou. '

We first evaluate S(R) for the ground state, l =m
=n =1. For the slab case, R =1, the sum can be
done analytically, yielding S(1) = 3(1 —6/v )
=0.1307. The sum decreases slightly as R is re-
duced; the value found by direct summation for
R =0(L,=L,) is 0.1276. For the square cross sec-
tion (R = 0) the diamagnetic atomic term, Eq. (3.2),
corresponds to S = ~ (1 —6/v'). The 2.4% decrease
to 0.1276 represents the Van Vleck paramagne-
tism, "which is small for this most symmetric
case. The Van Vleck paramagnetism is more im-
portant for other values of R. The exact suscep-
tibilities at T =0 for one electron and two elec-
trons (one spin up and one spin down) are plotted
in Fig. 1.

For more than two electrons, we must reckon
with the degeneracies which concerned Papapetrou.
For exact degeneracy, a small magnetic field pro-
duces Zeeman splittings (found by using degenerate
perturbation theory). First suppose that the tem-
perature is put to zero while the field is kept small
but finite. Zeeman splittings of states entirely be-
low or above the Fermi level then produce no ef-
fect on the magnetic moment. However, if only
part of a group of Zeeman levels is occupied, they
produce a ma, gnetic moment independent of the
field strength. This is the case studied by Den-
ton' (for spherical containers) who showed that
significant deviations from the Landau suscepti-
bility occur, and who argued that the results could
explain the saturating paramagnetic moment found
by Meier and Wyder' in small indium particles.
We shall trea. t the other limit, putting the field to
zero while the temperature is kept small but fi-
nite. In this case, the Zeeman levels within a few
kT of the Fermi level produce a Curie-type para-
magnetism which is proportional to 1/T Even if.
no exact degeneracies occur, the near degener-
acies will produce small energy denominators in
Eq. (3.3b), causing large paramagnetic excursions
at low temperatures.

For simplicity, we have evaluated Eq. (3.3b) for
cases without exact degeneracies in the region
studied, LJL, =0.3/w, 1.5/v, 3/w; R =0.9802,
0.62S7, 0.0460 85. Several different values were
used for the ratio L„/L,: 1, 0.5, 0.1. The sum-

mation on m' was done analytically by techniques
similar to those used by Friedman. ' Part of the
sum on l' was done analytically. The remaining
sum on /', which was done numerically, con-
verged very rapidly. The sums on I, n, and m

were performed numerically. For small l and n

the results were checked by direct summation.
As many as 200 levels (without spin) for fixed I
were treated, and the susceptibility was calculated
for as many as 3000 levels (including spin). For
L„/L, = 1.5/v and 3/v the fluctuations in X vs N at
T =0 were severe, X rapidly changing from posi-
tive to negative, with values more than an order
of magnitude greater than X~. The paramagnetic
peaks are stronger but the diamagnetic peaks are
broader with the result that the averaged value is
close to the Landau value. The calculations of
Denton' correspond to starting at B = 0 at one of
our paramagnetic peaks and following the evolu-
tion of the magnetic moment as B increases. In
order to obtain results to compare with the formu-
las in Sec. II, we calculated the susceptibility for
finite temperature. 'The calculation of y and N
were carried out using

(3.4)

where l'n'm' is the state with energy just above
the state lmn and the sums on l, n, and m go from
1 to ~. The most presentable curves were pre-
pared by taking the temperature to be a fixed frac-
tion of the Fermi energy. Figure 1 shows the re-
sults for the nearly cubical box for kT/r. =0.15 and
0.3. As kT/r„ is reduced below 0.15 the fluctua-
tions increase rapidly. A varia, tion of kT ~ f' '
~N' ' keeps the magnitude of fluctuations roughly
constant as a function of ¹ When the fluctuations
die out, the curves agree well with our size-cor-
rected susceptibility curve calculated for the same
temperature to Fermi-level ratio. For large N
there is very little difference between our size-
corrected susceptibility curve and that of
Angelescu et al. The fluctuations decrease with
decrease in both L„/L, and L„/L, . For example,
the curve for LQL, =1.5/w, L„/L, =O 5, and kT/g.
=0.1 fluctuates less than the curve for kT/g =0.15
in Fig. 1. We also calculated the susceptibility
for a flat box, L,/L, =0.3/v, L„/L, =0.1. The re-
sult for a constant temperature is shown in Fig. 2,
along with the Landau result, the result of Angelescu
equal. , and Nedorezov's complete result" for the
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infinite slab. The smooth oscillations are due to
the onset of oeeupation of levels with new values
of l (the change in energy with l is approximately
100 times that with m and n). For T = 0 the fluc-
tuations are much less than for the other cases,
about + 2/o of Xz for the first peak and about + 15/o
of X~ for the second peak. For lower temperatures
than shown in Fig. 2, Nedorezov's result (which
was derived for finite temperatures) deviates from
the exact result. For higher temperatures, both
approach the size-corrected susceptibility curves.
Thus we see that as long as the temperature is not
too low, Nedorezov's result for infinite slabs is
accurate for a flat box whose ratio of sides is at
least 10 to 1.

IV. DISCUSSION AND CONCLUSIONS

We have confirmed the results of Angelescu et
al. ,

" that in the limit of high temperatures, or the
limit of high Fermi energy at low but finite tem-
perature, the orbital diamagnetism of electrons
confined in a rectangular box is given by the
Landau value plus a term proportional to the
Landau value and proportional to the characteristic
de Broglie wavelength divided by a length of the
box." We have gone further than Angelescu et al. ,
producing a result for Boltzmann statistics which
is accurate for much lower temperatures (Xr ——2L)
and a result for Fermi-Dirac statistics which is
also more accurate. We have also made numeri-
cal calculations for the low-Fermi-level case (few
electrons in the box) that show that our high-Fermi
level result describes the diamagnetism for tem-
peratures of the order of a few percent of the
Fermi energy, for which Fermi-Dirac statistics
are still required. However, though our formu-
las, Eqs. (2.14) and (2.15), are more accurate
than that of Angelescu et af. , Eq. (2.17), the dif-
ference is important only for very small particles.
For lower temperatures, there are large fluctua-
tions. If any large size corrections exist in the
low-field limit, they are due to these fluctuations
which for nearly cubical samples are related to
the Zeeman splittings studied by Denton, ' or for
flat samples (or films) are given by the work of
Nedorezov. "

Our high-temperature and high-Fermi-level re-
sults agree with all the previous (corrected) re-
sults for slabs, and reinforce the interpretation
of Ohtaka and Moriya": the total value of the sur-
face current (which by classical electrodynamics
is j = & && M) is that appropriate to give the bulk
susceptibility. The current flows in a skin depth
of thickness of the order of the de Broglie wave-
length, giving corrections of the order of Xz(X/L).
Ohtaka and Moriya have calculated and exhibited

the density of this current as a function of depth
for both high and low temperatures. As we have
observed, the correct result for the box to order
W/L can be obtained by applying Ohtaka and
Moriya's results to the six faces of the box. The
effects of the square corners appear only in sec-
ond order in X/L. Thus we are confident that any
geometrical shape, all of whose dimensions are
larger than X, can be treated by using Ohtaka and
Moriya's results, and the total susceptibility will
be Xz[1 +O(X/L)]. This conclusion disagrees with
the results of Dingle" and Osborne" and thus we
believe that these authors' calculations must con-
tain subtle errors.

The hard-wall surface potential used in this
work is not self-consistent. A considerable body
of work exists which studies the question of self-
consistency and calculates its effect upon surface
properties. """The hard walls would force the
electron density in the interior to be larger than
in bulk material, "which would be prevented in a
real material by the strong electrostatic screen-
ing forces. To achieve self-consistency, the
charge expands past the original boundary which
increases the area of the current loop and thus in-
creases the diamagnetism. We shall estimate the
effect by adopting Sugiyama's model ~: the
boundary conditions / =0 are satisfied on bound-
aries outside the original boundaries. Specifically,
the new boundaries are described by using L,.'=L,.
+ -,'X~, where L„L,L, is the volume of bulk ma-
terial containing N electrons. Replacing the L,.
in Eq. (2.15) by L,'causes th.e first order correc-
tions to vanish, so that the Fermi level and elec-
tron density in the interior of the small sample
are (to first order) the same as for bulk ma-
terial. '6 2' To first order, Eq. (2.14) becomes

(4.1)

where X~ is the total susceptibility of N electrons
in the bulk material. Compared to Eq. (2.17), we
see that the effect of self-consistency is to re-
verse the sign of the size correction, and to reduce
slightly its magnitude. Perfect screening cannot
be established for the very small samples treated
in Sec. III, as the screening potential has a range
of the order of A.~. Thus the effect of self-con-
sistency should be less important for the small
samples, though it would still tend to increase the
diamagnetism. The high-temperature size correc-
tion is not changed to first order. Thus consider-
ation of self-consistency does not alter our basic
conclusion that, with the exceptions noted above,
the size effects on the diamagnetism are small
and of the order of (E/L)Xz.

We now wish to consider the application of these
results to real systems. If we consider small par-
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ticles of a metal such as indium' with an electron
density of about 0.9 &10", the free-electron Fer-
mi level is about 9 eV, which corresponds to a
temperature of about 104 K. Thus any small par-
ticle of a good metal will be in the range of large
fluctuations. In a real experiment the particles
would probably not be of uniform size, so that the
average susceptibility may still be close to that
given by the size-corrected formulas. Meier and
Wyder's'4 particles of 20 A diameter contain about
400 electrons. For this number of electrons we
find that the paramagnetic fluctuations are sup-
pressed for kT/t; greater than 0.04. The half-
width of the derivative of the Fermi function is
about 3.5 kT, so a distribution of Fermi levels
of width 0.14 of the average Fermi level will damp
out the paramagnetism at zero magnetic field.
This corresponds to a half width of the diameter
distribution of about 7% of the average diameter.
Although Meier and Wyder state that the distribu-
tion of diameters falls monatonically from 20 to

o
100 A, they do not give further information on the
size distribution. We feel it is very important to
obtain good size distribution information in this
kind of experiment.

In contrast, small particles of a semimetal such
as bismuth, with a Fermi energy" for electrons
of about 0.03 eV=350 K, could be in the regime
of the thermally smoothed curves shown in Fig. 1.
The electron density in pure bismuth is about"
10"cm '(3&&10"cm 'at4 'Ktoapproximately 2X10"
at 300'K), which means that a cubical particle
containing 20 free electrons would be about 100 A
on each side. The diamagnetism of bismuth is
dominated by the interband effect, but for pure
bismuth roughly one-third of the measured sus-
ceptibility is given by a Landau-like term".

We now wish to speculate about size effects at
higher fields. A number of authors have claimed"
that for L» x, X is proportional to X~r'~'/X~ 'L
~B ' for various geometrical shapes. However,
Nedorezov" states that these calculations are
in error, and the X is proportional toI""
Xqrl+ 0(l/L)). In Nedorezov's view the steady sus-
ceptibility is close to the Landau value at high and
low magnetic fields, but there is an important
paramagnetic contribution in the region l =I . This
seems unreasonable to us by the following argu-
ment. In classical mechanics there is no diamag-
netism' for any field strength, so that there is
no current near the surface. In quantum mechan-
ics the cancellation of current due to different
orbits cannot take place in a region near the sur-
face. The depth of this region in the low-field
case is the characteristic de Broglie wavelength,
the distance between nodes of the important wave-
functions. " At all fields the characteristic inter-
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APPENDIX A: CALCULATION OF THE SUM J

We evaluate J(x, y), Eq. (2.7b), by noting that

J(x, y)= —
2

' m'm"e '8 8 32 2

ax 8y w

I(x, y) . — (A1)

The sum I can be found from the sum (2.9) which
was evaluated by Friedman. ' A little manipula-
tion is called for because of the restriction on m',
but it is easily found for small x and y that

I(x y)=(2rx' 'y' )
' (A2)

t will be a function whose third derivative of the
type in Eq. (A1) gives I(x, y) plus (x -y) times any
function of (x+y). Other possible terms whose
third derivative is zero are eliminated as J(x, y)
is odd on interchange of x and y. The extra term
is found by evaluating Z(x, 0), which is easily done
using the same technique as Friedman, '

(As)

The desired result is

nodal distance is the de Broglie wavelength, and

X &l & x for all fields up to the quantum limit. How-

ever, this problem is full of subtle points and the
archives contain many erroneous papers on the
subject, so that our speculation is no substitute
for rigorously careful calculations. However, in
the case of slab geometry with the electrons con-
fined by a harmonic potential, Childers and Pin-
cus~ do not find important size effects in the
steady susceptibility for any field range at T =0.

In this paper we have ignored the electron spin
paramagnetism. This has been treated by Nedore-
zov" for the thin slab, and his results can easily
be adapted to the case of the rectangular box. We
have not discussed the effect of sample size upon
the de Haas-van Alphen effect, which has been
treated by several authors. " We must also rec-
ognize that band structure effects can produce
very different size dependencies, as shown by the
work of Chausse and Hoarau' on infinite ribbons
of graphite.
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Z(x, y) = [w"'(x —y)/4(x+y)"']

—(sin '[(x —y)/(x +y)]

+ 2x' 'y'"(x -y)/(x +y)']/2m . (A4)

The original sum is rapidly convergent for finite
x or y. %e have evaluated it numerically for x+y
= 1 and find the error in (A4) is always less than
0.5%a and for x+y =0.5, where the error is less
than 0.023%.
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