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Elastic continuum theory of interface-atom mean-square displacements
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The mean-square displacements of particles near an interface between two different isotropic elastic
continua are calculated for the first time. A Green's-function method was used in the high-temperature limit.
The dependence of the mean-square displacements on distance from the interface is exhibited explicitly.

I. INTRODUCTION II. INTERFACE GREEN'S FUNCTIONS

Extensive experimental' and theoretical2 investi-
gations of surface-atom mean-square displace-
ments (MSD) have been carried out during the last
few years. The experimental values can be ob-
tained by low-energy electron diffraction, scat-
tering of atoms, ' or Mossbauer effect. These
techniques provide the atom MSD for clean sur-
faces as well as for surfaces covered with an ad-
sorbed monolayer. One can expect that the atom
MSD of surfaces covered with several monolayers
will also be measured. The atom MSD near an in-
terface between two solids can be measured quali-
tatively in this way, and may be measured quanti-
tatively by more sophisticated techniques.

In the present paper, we study for the first time
the MSD of particles near an interface between two
different solids. We use an approach based on the
Green's functions for two semi-infinite sotropic
elastic media bounded by a planar interface. This
approach' was used previously to calculate the sur-
face-atom MSD as function of distance from the
surface in the high-temperature limit. The values
at the interface are obtained here in a way similar
to that used for the surface. ' We find in the pre-
sent case that the difference between the interface
and the bulk MSD becomes inversely proportional
to the distance to the interface. This behavior was
also obtained for the difference between the free
surface and the bulk MSD. ' '

The necessary interface Green's functions have
already been used for the calculation of the inter-
face specific heat at low temperatures. ' We will
derive them in Sec. II. Then, (Sec. III) we will de-
rive the atom MSD for atoms near an interface.

We consider now two different elastic isotropic
media 1 and 2 occupying, respectively, the half-
spaces x, &0 and x, &0. We need to know the
Green's function U for the two crystals connected
by this planar interface. The procedure is similar
to the one used' for the surface. Let us first in-
troduce the Green's function for crystal 1 which,
inside the crystal, satisfies the equation

1~ Q2

=6 „5(x-x'), (2.1)

gv xti exv

5(x- x') . (2.2)

In order to obtain the Qreen's function U for the
two crystals connected by a planar surface, we
have to solve Eqs. (2.1) and (2.2) subject to the
boundary conditions at x, = 0:

where C»„are the position-independent elastic
moduli of the material, p is the mass density, ~ is
the frequency of the time-dependent elastic dis-
placement field in the medium, and n, P, p. , v are the
Cartesian indices x, y, or z. For an isotropic
crystal, the C»„are functions of the more usual
elastic constants C„, C, and C„=C„-2C„.

The equation satisfied by the Green's function for
crystal 2 is obtained from the one above by chang-
ing p and C ~„„, respectively, to p' and C ~»,.
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g C„,„U„2(x,x'; &u)

= Q C '„2„„U22(x,x'; (cr)

U 2(x, x'; 111)
~

2= ~= U 2(x, x'; (u }),

7

x3= "0
(2.3)

(2 4)

where x„and k are both two-dimensional vectors
with components (x„x„0}and (k„k2, 0}
=—k(cosy, sing, 0), respectively. We then use the
isotropy of the medium in the plane x, =0 and car-
ry out a similarity transformation on our set of
equations with respect to a matrix S(k) which ro-
tates the vector k into the vector (k, 0, 0):

Condition (2.3) comes from the continuity of the
stresses across the interface and condition (2.4)
from the continuity of the displacements. As a
consequence of the symmetry of translation paral-
lel to the interface, the Green's function U can be
Fourier analyzed in the following manner:

2

(2.5)

cosy siny 0
~

~S(k) = -sin92 cosset 0

0 0 1/

In this transformation d is transformed into g and
the Eqs. (2.1) and (2.2) can be written in the fol-
lowing matrix form:

1 d'

—(C„+C„)k

(u' 44 —k'

2 d-(c„+c„}kd
gxx gxy gxe

g3x gas g3~

22..),

1 0 0

=6(X2 —X2') 0 1 0

001
(2.6)

An analogous equation is obtained also for medium 2. The boundary conditions (2.3) and (2.4) become

gxo s gxe d g

@fan

I d g3t fx

d g' C44 d kg
I C44 d C44 ddx3 x =+03

dx3 i x,=-0 3 x3=+0 3 x3=-0
(2.7)

d ~

x =+03 3 x = 03

(2.8)

From these equations, one sees that, as for a
semi-infinite crystal, ' one has here also

I

dx2
—~t dx2- ~i gxx

gyo = g~y = 0
~ Q =x or z .

One can then calculate separately g„, {g, g,„),
and {g„g„j.As an example, let us describe
briefly the calculation of {g,g

ln medium 1, one has from Eq. (2.6):

where

Q2 =k —(d /C2,

1 d' n2
6(X2 -X2'),C', dx', C,

t22 k2 ~2/C2

(2.10)

(2.11)

2 11 k2 44 dg+
d 2 g +—(C,2+C„)k =0,

(2.9a)

(C C )k g22+ ~2 44 k2+ 11 g 0
d

p
12 44 dx p p dx 2 8x

(2.9b)
Eliminating g between the two Eqs. (2.9), we ob-
tain a new differential equation for g

C, = (C«/p)' ' and C, = (C»/p)'~' are, respectively,
the transverse and longitudinal speeds of sound in
medium 1. The general solution of Eq. (2.10) can
be written

g»= g»+ A, e t"3+A, e (2.12a)

where g4, is a particular solution of Eq. (2.10) giv-
ing the bulk Green's function
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g ',„(k, Id
l x» x,') g„„=g' +A,'e tx3+A', e '1x3,

k'
1 3 3 — e & 3 3

2Q1 (d k

In the same manner, one has in medium 1

g = g',x+B,e &3+B,e P3,

with

(2.12b)

g'„(kId lx„x,')
= (ik/2'') sgn(x, —x,')(e "*& '3 —e 't '3 t ) .

where n', and n'„g„'„, and g' are defined as in
Eqs. (2.11) but with the parameters of medium 2.
Here also B', and B', can be obtained as functions of
A,' and A,'.

Finally the four boundary conditions for gxx and

g [Eqs. (2.7} and (2.8}]give a system of four lin-
ea.r equations with four unknowns A„A„A'„and
A ', . We write it in the matrix form

As a matter of fact, the coefficients A „A„B„
and B, are not independent and with the help of
Eqs. (2.9) one can obtain, for example, B, and B,
as functions of A, and A, (Ref. 9);

II

e-at lx' )

A,' e-a' I x' I
3

A — e
(2.14)

B,=i(k/n, )A, , B,=i(n, /k)A, .

In medium 2, one has in the same way

(2.13)

where

A'
1

e-a'1 I x3l

-C„(n', +k')/n,

-2iC, 4 k

-2C44 n

zC „(n', + k')/k

-C,', (n,"+k')/n, '

2iC44k

-2C,'4 ™
iC,', (n,"+k')/k

(2.15)

and

ik/n, i n, /k ik/n', i n', /k

sgnx C —sgnx
k2 + ~/2 k2

s gnx3 -C44—2 g2(d (d

kaq
zC 44 (d2

—nt/2td

ik
2 SgnX3

2(d

442 2
1

k /2n t(d

ik
2 SgnX3

2(d

, kn,'-iC,',
M

n't/2(d'

ik
2 SgnX32'

k k'+ e12
zC'

44 2

-k'/2n'&d'

ik
2 SgnX32'

(2.16)

Assigning the lines and columns 1 to 4 of ma-
trices H and K to the indices t, l, t', and l', re-
spectively, we obtain from Eqs. (2.14)-(2.16)

g (k, (d lx»xs} g m(kt Id lxs xs)

1
A,. = det(A, ,)e '' "~

det(H) t tttt ~=, , ,
(2.17)

—det(Atf)e 't '3
det(H) t I t t;t=. .

where A,.~ is a matrix obtained by replacing column
i in H by column j of K.

Finally with the help of Eqs. (2.12), (2.13), and
(2.17) we obtain for x, &0

g„,(k, Id
l x» x,') —g '„,(k, Id

l x» «,')

1
t(A ) e- ta t I xtl +IX&

det(H} t=t, I J=tt, t It', '

(2.18}

$Q1
+ 'det(A .)e ™t"e ~

k

(2.19)

For x3& 0, the expressions for the Green's func-
tions are obtained by interchanging in Eqs. (2.18)
and (2.19) the parameters of the two crystals 1
and 2 and by changing the sign in the second mem-
ber of (2.19).

In the same manner as described above, one ob-
tains for x3 & 0, for instance,



DJAFARI-ROUHANI, DOBRZYNSKI, AND WALLIS 16

with

det(H' (=3,(,=3, ), 3~, ( ~

(2.20)

k' nog' (k (d ~(x x'}= t 3x) I t J e o g I x3x3 I

3& 3 2o ~2 k2
t

d„,(k, ( „')—Ir (k„(x,„*')= — . P ' det(A,'.)e "*" —det(A', .)e ~* ~)e
g=t, i.t, r k

where

g„,(k, (dx3, x~) =(ik/2(3) ) sgn(x —x')(e ~& *& *& e ~) "2 "& )

H'=

iC„(k'+ n', )/k

2C44o,

-in, /k

2ikC44

—C„(k'+ n', )/n 3

-ik/n,

—iCd'd(k'+ n,")/k

-2C4«
in', /k

-2iC44 k

-Cd'd(k + n,")/n(3

ik/n',

and the matrices A',.J are obtained by replacing column i in H' by column j of K',

k k2+ o2t
zC 44 2n t

k2
C4, ~ sgnx,'

ko,
-1C44 2(d

k'+ n'
—C4 2 sgn x3

240

k k'+ o"t
I
t

I I-C44~ sgnx,
(d

ko',
44 ~2

k2+ ot"
C44 2 sgn x3

ik
, sgnx,'2'

k~/2n (d~

ik
sgn x32'

—n )/2(d

ik
2 SgnX3

-k'/2n '(d'

ik
2 sgnx

n )/2(d

Finally g„can be written, for x, &0, for example, as

g„(k, (d ~x„x,') -g'„„(k, (d ~x„x,') = [e 3 " ' /2(n, C„+n, C„)]
x {pe 3 "&'[(n', /nd) Cdd/C„— sgnx,']+ p'e t "3 (sgnx~ —1)j, (2.21)

III. INTERFACE-ATOM MEAN-SQUARE DISPLACEMENTS

At high temperatures, the atom MSD are given
by"

(u,' Qx) = (ks T/p) U„(x-,x; 0), (3.1}

where T is the absolute temperature and kh is the
Boltzmann constant. The Green's function
U„(x,x;0) can be obtained' from the
g„(k,0ix„x,):

(xd, x, )= (2'), f 'Rrkdkd„(k, d(x„x,), (3.2e)
0

where

g„',(k(d
~
x„x,') = (1/2n C')e

In Sec. III, we use these Green's functions for the
calculation of the mean-square displacements of
atoms near an interface.

rr (x, x;3)= .f de f kdk
0 0

&& [cos'yg„„(kd 0
~
x„x,)

+ sin'3' (k, 0~x„x,)],
(3.2b)

rr„„(., x;O) ', f def -kdk=
o 0

&&[»n'qg (k, 0~x„x,)
+ cos'(pg„(k

3
0 ~x„x,)],

(3.2c)
where k, is a cutoff one has to introduce in order
to calculate the MSD of a certain volume of elastic
matter. Such a cutoff arises naturally in a lattice
theory, where the allowed values of the wave vec-
tor are restricted to the first Brillouin zone. The
order of magnitude of k, is the reciprocal of a
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)~
2r k dkz [g,„(k,0

i x~, x~)
0

+g,„(k,0 I xs~xs)]

(3.2d)
In these expressions one takes the value of g
for (d = 0. We will make an expansion of the
g„„(k,&u~x„x,) for ~/c, k«1 before taking the limit
(d = 0, because otherwise g and g„would have an
indeterminant form. Let us introduce

C', C~ C
C2' C'2' y C1 44

Q=kx, . (3 3)

We obtain, for x,&0, for example, the following
results:

g (k, 0ix„x,)
= (1/4kC,') [-(1+v)+ e "'3($ (f)/n)], (n =x,z}

(3.4a)

g„(k,0~x„x,) = (1/2kC,')[-1+e '~3(y —1)/(y+ 1)],
(3.4b)

lattice spacing. The need to introduce a cutoff
arises in the continuum theory because the MSD

of a point in an elastic medium is infinite, and one
must therefore consider a finite volume. The re-
lationship between this finite volume and the cut-
off on the wave vector is the following. We know

that in a lattice theory the volume of the first
Brillouin zone is proportional to the reciprocal
of the volume of a unit cell, or for a crystal with
one atom per unit cell, the volume associated
with an atom. When we apply a cutoff only to the
two components of wave vector parallel to the
surface, we are in effect taking a Brillouin zone
in the shape of a cylinder whose height is infinite,
because there is no restriction on the third com-
ponent of wave vector. Therefore, the corre-
sponding volume of an atom is represented in real
space by a plate whose lateral dimensions are on
the order of a lattice spacing, but which is infinite-
ly thin. This partially resolves the problem, but
is not entirely satisfactory, because we still do
not have a nonzero volume associated with an
atom. Later in the paper we introduce a cutoff
on the wave-vector component perpendicular to
the interface and consider a Debye sphere rather
than the cylinder of infinite height. The radius of
the Debye sphere can be taken to be (2z/a)(3/4z)'I~
=—3.89/a, where a is the lattice parameter. The
corresponding volume in real space is of order
a' and is therefore nonzero and characteristic of
the volume one associates with an atom.

Let us remark that Egs. (3.2b) and (3.2c) can
also be written

II„„(x,x;0)= U (x,x;0)

and

&.(0) = y'(1 v')-(P..+P,.0+P,.0')

+ yv'(Q..+ Q,.4+ Q..4')

+(1+v')(R, +R„Q+R„Q') (3.5b}

P~=P~= (1+ v)', P„= P„=--2(1 —v'};

P~=P~= 2(1 —v);

Q~=Q~= 2v(1+ v); Qi, = -Q„= -4(1 —v );

Q =Q =4(1 —v)',

R~ =Ra, = -(1+ v ); R, = -R„=2(1 —v~);

R~=R2g= -2(1 —v) .

(3.5c)

ln the expressions (3.4) for the g, the first term
comes from the bulk g' and the second one is the
interface contribution. Let us introduce

k~x3
I„= X"e ~dX (n=0, 1, 2).

0
(3.6)

With these notations and the help of Eqs. (3.1)-
(3.6), one obtains in medium 1:

&u', (x,)&= ~eC (1+ v)k, ——'—,AT
44 &x, ' (3.7a)

&u„'(x,)& = &u„'(x,)&

(3+ v)k, ——+ (1 —e~~&) —,k~T 4x y —I ~ 1
1&rC & y+ ]. x

(3.7b)
where the & (a =z or x} are obtained by replacing
P" in $,($) by I„. The first terms of these MSD
independent of x, are the bulk values of the MSD of
an elastic plate. The second term, which goes to
zero w'hen x,-"1, is the interface contribution
&u', (x,)&z. Let us remark that in the limit of C,',
-0, the expressions (3.7) are the same as those
given by Wallis et al.' for a semi-infinite crystal.

If we now turn our attention to the bulk contribu-
tions, we are immediately faced with the situation
that the two bulk components are not equal. The
anisotropy is related to the introduction of a
Debye cutoff to the two-dimensional wave vector.
As has been mentioned, one is dealing with a
cylinder of infinite height in wave-vector space
and with a plate in real space. One can restore
the bulk isotropy by introducing an integration over
a Debye sphere rather than over a cylinder. This
was done before for a semi-infinite medium. The
symmetrized and unsymmetrized results for the
surface contributions were almost the same except

where

&+y'(1 —v')(1+ v)+ 2y(1+ vv')+ (1+ v')(1 —v),

(3.5a)
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in the close neighborhood of the surface (k~x, ~ 1).
In this region, the symmetrized results are more
reasonable by comparison with other calcula-
tions.""

We give in the Appendix the symmetrized re-
sults. Let us remark that these symmetrized
results for the MSD are not continuous across the
interface ((u' (+ 0)) a(u'(-0))). This is easily un-
derstood, since for x, =+0, we calculate the MSD
of a sphere of medium 1, and for x, = -0, the
MSD of a sphere of medium 2. In fact forx3 0,
one has half of these spheres in medium 1 and
half in medium 2. With the unsymmetrized re-
sults, one is calculating the MSD of a thin plate
of matter; the MSD is continuous across the inter-
face under the assumption one is choosing the
same cutoff, k„ for both media. However the
cutoff k, is related to the interatomic distance and
can be chosen differently for the two media. In
an atomic model one would calculate the MSD of
atoms located, respectively, at+~d, where d
would be the distance between the two surfaces
when they are in epitaxy. In general, one may
have diffusion of atoms of medium 1 into medium
2 and vice versa. In this more realistic case, it
would be even more difficult to define the MSD of
atoms in the vicinity of the interface. One sees
then, . that the only unambiguous term given by
elasticity theory is the 1/x, term, which was
found" to be accurate already within a few per-
cent for the second atomic plane below a free sur-
face.

Coming back to Eq. (3.7), and noticing that when
k,x,» 1, I„I„andI, become, respectively, 0.5,
0.25, and 0.25, one has

(u' (x3))q = (ke T/1St C~4)(I' /x, ),
where

(3.8)

I', = (I/&)[ —y'(1 —v'}(v'+ 3) —2yv'(v' —v+ 2)

+ (1+ v')(v' —2v+ 3)], (3.9a}

I'„=r,
= (I/24)[ -y'(1 —v')(3v'+ 1) —2yv'v(3v —1)

+ (1+v') (3v' —2v+ 1)]+(1 —y)/(1+ y).

(3.9b)
This result is the only one which is exact in elas-
ticity theory as it is independent of k, . In the close
neighborhood of the interface, the integrals I„
have terms like e ' ~' which have an atomic char-
acter and cannot be considered as giving exact
results within elasticity theory. They are, how-
ever, necessary to obtain a finite value for
(u'. (0)&g.

Let us now specify the coefficients I' appearing
in the 1/x, laws. For example in the numerator

1.4—

1.2 I v=0.25

}v~0.5

0.9

0.8

0.7

0.25 0.5 0.75 v

FIG. 1. Determination of the signs of l and l~. The
curves in full lines give I'~ =0 and I'~=0. For given
values of v and v', I'~ and I'~ are of the same sign if y
is between the two full curves and of opposite signs
otherwise. Along the broken curve the bulk atom MSD
are the same in both media.

and denominator of I, one has polynomials of de-
gree two in y with coefficients depending on v and
v'. Let us recall that from the stability of the
crystals y &0, and 0& v, v' &0.75. One finds easily
that L &0. The equation I,=0 has a negative unac-
ceptable root in y and another positive one we call
y, =R(v, v'). In the same manner one obtains for
medium 2 a positive root yo = fR(v', v)]

' of the
equation I".= 0.

Depending on the respective values of y, yo and

y,', the coefficients I, and I", can be both positive,
both negative, or of opposite signs. Figure 1 shows
in the plane (v', y) and for a few values of v, the
curves I', =0 and I",=0 (full curves); for given val-
ues of v and v', I', and I", are of the same sign if
y is between the two full curves, and of opposite
signs otherwise. In Fig. 1, we have also shown the
line y=(2+v')/(2+v) (broken curve), i.e., the
curve corresponding to (i~ )8 = (u~) e, when one
chooses the same k, for both media. In a region
outside the full curves but between one of them and
the broken curve we have (u')e & (u')e, while I",
&0, T', &0, or vice-versa. Let us remark that for
each value of v the three curves intersect each oth-
er at v' = v and y = 1.

This behavior is different from that obtained for
the surface MSD. Jn that case I', =(v' —2v+3)/
(1 —v) &0. Starting from the bulk, the MSD always
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y=l19

Y=1.199

0
6x' C44 & u2&,

~c
2.6-
2.5-
2.4-

2.27-

2.26-

225-

2.25-

1.199, and 1.4, the g, ' behavior of MSD in each
medium (the arrows indicate the bulk MSD}.

Finally this discussion is also valid for the MSD

parallel to the interface. As a matter of fact the
numerator of l, is a polynomial P(y}, of degree
three in y, having the following properties: P(0)
&0, dP/dy(y = 0) &0, and dP/dy has only one posi-
tive root. P(y) has then only one positive root yo

R (v, v'). This case is described in Fig. 3 in the
same way as in Fig. 1.

%e can also compare in one of the two media,
for example in medium 1, the coefficients I', and

More precisely, one can write

2.2-

2.1-

2—

kc x3

FIG. 2. Different behavior of the atom MSD in the
vicinity of the interface for v= 0.25 and v' = 0.7. The
arrows give the bulk values.

increases when one goes towards a free surface.
For an interface, one may have a different and
more interesting behavior, illustrated by Fig. 2.
In this figure we have represented for p =0.25,
v' =O.V, and for four values of y, say y = 1.1, 1.19,

where Q(y) is a polynomial of degree 3 in y, with

Q(0) &0 and Q(+~) =+~. Therefore Q(y) has at
least one positive root. In other words, depending
on the values of y, v, v', one can have I', &I"„ or l„

Figure 4 shows in the plane (v', y) and for a
few values of p, the curves I', =I'„. For given v

and v', we have I', &l „ if y is below this curve and
I', &I'„ if y is above it. This behavior is also dif-
ferent from that obtained for a semi-infinite crys-
ta.l where one has always' I', &I „.

Let us finally look into the limit of a plane defect
which can be defined in an atomic model by suppos-
ing for example that one has different interatomic
interactions between two adjacent planes. In the
above result, if one supposes the two media iden-
tical (y= 1, v =v'), Eqs. (3.7) and (3.8) give
(u'„(x, )), =0. One has the results of an infinite

1.4— 1.4—

1.3 y=0 1.3

1.2 v=0.25 1.2

v=0.5

@=0.75

0.9 0.9

0.8 0.8

0.7—
0.25 0.5 0.75 ~'

0.7
I I

0.25 0.5 0.75 v.
FIG. 3. Determination of the signs of I'„and I"„as

in Fig. 1.
FIG. 4. Determination of the sign of I'~- I„. For

each value of v, one has I;& I'„below the curve.
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crystal. However in a Montroll-Potts" type mod-

el, one finds" that near a plane defect, the MSD

reach their bulk values according to an x, law,
rather than x, '. Such differences near an inter-
face or a plane defect, were also obtained for oth-
er physical entities. For example the low-temp-
erature specific heat of an interface' goes like T',
while for a plane defect one has" a T' law. One
also has similar results for the interaction of an

isotopic impurity with an interface, "as well as
for the interface low-temperature specific heat or
the interface magnetization for two coupled Heisen-
berg ferromagnets.

IV. CONCLUSION

We have calculated the Green's functions of two
isotropic elastic media bounded by a planar inter-
face. The knowledge of these Green's functions
enables one to obtain numerous physical proper-
ties of an interface.

The Stoneley wavesM and their existence con-
ditions" can be obtained from the poles of these
Qreen's functions, or in other words from the
roots of det( H) = ((),a,' /n, c((' ) det(H') = 0 [see Eqs.
(2.18)-(2.21)]. We recently generalized this study
to the case of an interface between two different
hexagonal crystals. " The interface Qreen's func-
tions enabled us also to calculate the interface
specific heat at low temperatures. ' They also en-
able one to study the scattering of phonons by the
interface and by interface defects.

In the present paper, we calculated for the first
time the mean-square displacements (MSD) of par-
ticles near an interface. The elasticity theory en-
ables one to obtain exactly the I' /x, law (o. =x,
y, or z) which gives the difference between the in-
terface and the bulk mean-square displacements,
a few atomic layers away from the interface. We
derived in closed form the coefficients l and I",
respectively, for media 1 and 2 and found that they
can be either both positive, both negative, or of
opposite signs. On the other hand, the coefficients
Z' = l „and p, of one of the media can satisfy I',
&l, or l,&I"„depending on the respective values of
the elastic constants of the two media.

These results are different from those obtained
for a free surface" of an isotropic elastic me-
dium where I'„&0 (the MSD always increases when
one approaches the surface) and I', &I; (the MSD
perpendicular to the surface is always larger than
the parallel one).

Finally we have discussed for a few elastic prop-
erties the difference between an interface and a
bulk plane defect.

APPENDIX

We give in this Appendix the symmetrized re-
sults for the bulk and the interface MSD.

The terms e "k ~ "z "3~ (i = t or I) appearing in the
bulk Green's functions can be Fourier analyzed'
along the direction

'" dk 2n- &
g I

x'3-&~3 I — ~ »z ( x'3-x'3
I. 2m' ~,. +k

In the calculation [Eqs. (3.1) and (3.2)] of the bulk

MSD, the Fourier transformation will now be done
in the three-dimensional wave vector space (k, k, ).
Integrating over a sphere of radius k„one ob-
tains':

k~T
(u')z =, (2+v)k, , ((x =x, y, z) .

44

In order to use this procedure for the calculation
of the interface MSD one does the Fourier trans-
formation of g„a (k, ~ ~ x„x,), with the help of the
following additional identities:

~'" dk,~-2kx3 z e2 jkgx3
2m

1 2k2
k'+k' (k +k') }'

+" dkX2 e-2kx3 ~82fkgx3
2r

3 4k2"
( " ')' ( '+ ')'} '

where we choose x,&0, for example, and suppose
k &0. Once this Fourier transformation and the in-
tegration over a sphere of radius k, are done, one
obtains for the difference between the interface and
the bulk MSD

k~T
(u', (x,)), = —

8
' —,(u,'(x, )), = (u,'(x, )),

44 Lab X3

k~T &„2 y-1 1—*+— Si(2(}),)16mC~ 6 n y +1 x3

where (f), =k, x„and the t). „(o=z or x) are the ex-
pressions one obtains by replacing in (g „[Eq.
(3.5b)] the variables p'(=I), p, and (f)', respec-
tively, by the quantities Jp Jy and 42 with

8, = (1/(t) Si(2y, ),
8, = I/2v [cos2@,/(t), —sin2(t), /2(t)z+Si(2$, )],
8, = 1/2v [(3/ t,' (')) c+os 2(t), /(t),

+(—,
' —3/2(t),') sin2(t), /y,'+Si(2(t), )].

In these expressions Si(x) is the sine integral func-
tion.
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