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Binding of one-dimensional Bloch electrons by external fields*

J. E. Avront
Joseph Henry Laboratories of Physics, Princeton University, Princeton, ¹wJersey 08540

(Received 7 May 1976; revised manuscript received 2 February 1977)

It is shown that arbitrary external fields, and in particular, antibinding ones, bind the Bloch electron in

the one-dimensional one-band model. In other words, the spectrum for arbitrary nonzero field is purely

discrete and the eigenfunctions are normalizable. This generalizes the Wannier-Stark effects to
nonhomogeneous fields,

H=e„(k)+&V(fV~), kc B. (2)

One of the fundamental results of quantum mech-
anics is that the wave function for electrons in
solids is described by an extended Bloch wave.
There are several known mechanisms that lead
to a localization of the state vector. The most
profound of these is probably the Anderson mech-
anism for localization in random lattices. In one
dimension, it is generally believed that a random
system has no continuous spectrum. Here we
would like to point out another mechanism which
leads to localization and which is fairly general.
The following analysis shows that for any external
field V(x) such that ~V~-~ as ~x~-~, in one di-
mension, a localization takes place and the spec-
trum is discrete. It is only natural to expect that
this one-dimensional localization will also have
interesting consequences for three-dimensional
systems.

The interest in this mechanism, from a theo-
retical viewpoint, is that it follows from an inter-
play between the band properties (which are pure-
ly kinematical) and the dynamics dictated by the
external field. In particular, this mechanism does
not apply to free electrons which have different
kinematics.

Consider the Schrodinger Hamiltonian

a=a, +~V(x).

H~ denotes some Bloch one-electron Hamiltonians.
When ~ is small, one expects that the spectral rep-
resentation of H~ is a suitable starting point. This
is the crystal-momentum representation' (CMR):

Hs =&„(k), kc B,
x=iV, +X (k).

&„(k) are the band functions and X „(k) are the
interband transition matrix elements. ' For a well
isolated band it is easy to show that the transition
matrix elements are small. Under these circum-
stances, it has been suggested that the one-band
approximation (i.e., setting X =0) is applicable.
Thus we shall analyze the Hamiltonian

H describes the dynamics of Bloch electrons in
perturbed crystals. [A more natural mathema-
tical definition of (2} is given in (3) below. ] B is
the Brillouin zone which is a d-dimensional torus.
This is a very important point in what follows.
Classically (or semiclassically) this means that
the orbits in k space do not extend to infinity. If,
in addition, the conjugate variables4 remain
bounded, the corresponding quantum mechanical
motion will have eigenvalues (e.g. , discrete spec-
trum) and normalizable eigenfunctions. That B is
a torus follows from the definition of the CMR.

We shall analyze the qualitative features of the
spectrum of (2) for two classes of potentials V:
External fields which we define by

~
V(x) ~-~,

~x~-~, and impurityfields, ' defined by ~V(x) ~-0,
as ~x ~-~. External fields are naturally classified
as binding if V(x)-+~ and antibinding if V(x)--~
in some sector. Hence, the positive harmonic
field ur'x' is binding while the negative harmonic
field and the homogeneous field -~ x', Ex are anti-
binding.

We shall analyze the qualitative features of the
spectrum using general theorems. Theorem 1 ap-
plies to external fields and Theorem 2 to impurity
fields. The theorems are stated to apply to Ham-
iltonians in arbitrary number of dimensions. In
one dimension, the application of Theorem 1 gives
a very general localization result namely, any
external field, whether binding or unbinding, gives
a purely discrete spectrum and normalizable eigen-
values to the Hamiltonian (2). This is quite sur-
prising because one might have expected Eq. (2)
to have similar spectral properties to those of
the corresponding Schrodinger equation. For the
latter, a discrete spectrum is typical only for
binding fields."'

That antibinding fields localize in one dimension
is not a completely new result. This was first
suggested by Wannier for the Stark effect (i.e.,
homogeneous external field). ' Wannier's result
is particularly simple because the eigenvalue
[Eq. (2)] can be solved explicitly for arbitrary
e„(k}[see Eq. (8)]. What we show here is that
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d is the dimensionality and 8 the volu~e of the
Brillouin zone.

Sketch of Proof: (i) V(l):P(L)-P(L) has a com-
pact resolvent since its spectrum is purely dis-
crete. Conditions (i)-(iii) follow from the Rellich
perturbation theory for compact operators and the
continuity of" "e(k) (iv) follows" from the min-
max principle for compacts""4 and the formula
for the volume of the unit sphere in d dimensions

n =2m t'/[dr(-.'d}].

For Hamiltonians satisfying the assumptions in
the theorem, the spectrum is purely discrete with
infinity as the only point of accumulation of the
eigenvalues. This is a mell-known property of
operators with compact resolvent. In addition,
H has only eigenvectors, i.e., normalizable states,

this is a very general mechanism and the homo-
geneity of the field is not necessary for a local-
ization.

It may be noted that our results do not depend on
the differential properties of Eq. (2). In particul-
ar, V need not have a finite power series expansion
and is in general a pseudodifferential operator.

As is well known, the Wannier ladder for V =Ex
has been the subject of controversy. ' lt is not
our intention to get into this question here, but
we wish to remark that claims sometimes made
as to the effect of experimental inhomogeneity of
E are evidently wrong.

Let L denote a d-dimensional lattice and the
superscript " the Fourier transform (with inverse
superscript ). The Hilbert space of square-in-
tegrable functions over the BriQouin zone I.'(B)
is isomorphic to the Hilbert space of sequences
over the direct lattice P(L):

( ~ ~ ) L'(B)-P(L}.

The one-band d-dimensional Hamiltonian [Eq. (2}]
is formally defined by

Hg(k) = c„(k))j(k) +X[V(l)(t(l}] (k),
kcB, lc L.

Theorem I: Assume that
~
V(x)

~

-~ in the sense
that for every M there is an R, such that ~V(l)

~

& M for all l(= L, ~l
~

& R. Then (i) H has a compact
resolvent for all &w 0. In particular, H has purely
discrete spectrum. (ii) H is self-adjoint on S,
where Q is the domain of the multiplicative V.
(iii) H is semibounded if and only if V is. (iv) Let
V(x}- hx" near infinity, then the number of eigen-
values of H with absolute value less than E,n(E),
is such that

and no extended states. "'"
It is easy to see that, in one dimension, Theo-

rem 1 holds for arbitrary external fields
[ ~V(x) ~-, ~x ~-~]. Ill 11igher dimensions, the
theorem holds for semibounded V (either from
above or from below" ). The sign of V is of no
consequence. This theorem confirms the intui-
tion one has from the nonrigorous tilted-band pic-
ture: Under the assumption on V, for every real
energy E, the set S,

S =(x
i V(x)+e(k) =E, x(= R', k(= Bt, (7)

is compact and the particle is localized in space.
Let us consider specific examples. For the ho-

mogeneous field in one dimension, V(x) =Ex, the
eigenvalues E are

E = — E„k dk+Ema .

[g~&y)]&/2/~
n(E) =(2tr)'f d l

8 0

The integral can be cQ.lculated explicitly to yield
(5)

For the sake of comparison, we conclude with
a spectral theorem for the impurity Hamiltonian,
V(x)-0 as ~x~-~.'"" Here, as expected, the
continuous spectrum of the band is preserved.

Theorem 2: Let Z~)V(l) ~&~, then the (multi-
dimensional) Hamiltonian H has the same absol-
utely continuous spectrum as the bands's spec-
trum ((t„(k)t, H may, however, have discrete
eigenvalues (impurity states) in the gape [the
resolvent set of c„(k)]. This theorem is a direct
application of the Kato-Kuroda trace class cri-
terion for the existence and completeness of the
wave operators. "

It is not very difficult to prove that, in one di-
mension, if V is on the average strictly attractive,
Z~ V(l) & 0 (or repulsive), the Hamiltonian has
impurity states in the gaps. This is an analog of
Peierls theorem for Schrodinger Hamiltonians.
Since for the latter, there is a bound state also
when j V(x) dx=0 [ but not j V(x)dx&0], we con-

a is the latttce spacing. This is the Wannier ladder
and the asymptotic distribution agrees with (5).

Consider now the harmonic field, V(x}= (d2x',

in d dimensions. The Hamiltonian (2) is formally
identical to Schrodinger's with periodic boundary
conditions

—(u'h~+ e(k), k(= B.
In the weak-coupling limit (d-0, we can use the
semiclassical Wentzel-Kramers-Brillouin to esti-
mate n(E). n(E) is proportional to the available
phase space
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jecture that for the Hamiltonians [Eg. (2)] there
exist impurity states (either donors or acceptors)
for any nonzero V. Note that whereas external
fields localize all states, impurities localize only
special vectors.

Theorems 1 and 2 are exact results for an ap-
proximate theory —the one-band approximation.
In what sense do they approximate the spectral
properties of Schrodinger Hamiltonians and real
solids? In the strict mathematical sense, the
answer is that they do not. For example, it is
known that the spectrum of a Schr5dinger Ham-
iltonian with an external homogeneous potential

and a periodic field is absolutely continuous. "
This obviously contradicts Theorem 1. However,
we still feel that the physics is correctly described
by the approximate theory (that this is not impos-
sible, recall the perturbation expansion for the
atomic Stark effect). However, the results must
be suitably interpreted and in particular the "dis-
crete spectrum" of the theorem should be loosely
taken to mean "resonances" as well as " bound
states. " This interpretation of the one-band ap-
proximation is obviously nonrigorous, but I have
gained some confidence in it by verifying it in de-
tail for the homogeneous field. '
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