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A comparison is made of two versions of the acoustic-mismatch theory of the thermal boundary resistance

R which occurs at the interface between a pair of solids. The most recent version predicts R ~0 as the two

solids become identical, while the earlier version indicates a finite R as the interface essentially vanishes. It

is shown that the two versions make diA'erent assumptions as to what a thermometer measures and that, if

appropriate thermometers are used, both versions give the same result. This conclusion is supported by

experimental evidence.

I. INTRODUCTION

Calculations of the thermal boundary (Kapitza}
resistance between two materials" generally make
use of the acoustic-mismatch model. This model
assumes that the resistance arises from the reflec-
tion and refraction of acoustic thermal phonons at
the interface. Little was the first to explicitly ap-
ply the acoustic-mismatch model to an interface
between two solids. The Little calculation has
often been considered to be in error'~ since it pre-
dicts the presence of a boundary resistance even
when the two materials are identical, i.e., when
no interface exists. More recent calculations using
the acoustic-mismatch model, such as that of
Simons, ' avoid this apparent paradox. The purpose
of the present paper is to compare the calculations
of Little and Simons, since the predictions of the
two appear at first to be very different, both qual-

itatively and quantitatively. %e will show that in
fact, for a given physical interface, the two cal-
culations predict the same result. The calculated,
results are then compared with experimental data.

For convenience we refex to the "Little calculation"
and the "Simons calculation" even though others
have contributed to these theories. "" The discus-
sion assumes an ideally perfect interface between
two ordinary materials, one of which is not a
normal metal. A comment is made at the end of
the paper concerning the Kapitza resistance to
quantum solids and liquids.

II. COMPARISON OF THE LITTLE AND THE SIMONS
CALCULATIONS

The net heat flux Q between two materials is
given by
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where (w&o, 8») is the fraction of energy trans-
mitted to material 2 due to acoustic phonons of
mode j, velocity ciy and angular frequency & in-
cident on the interface from material 1 at an angle
8» measured from the normal. N, ((u, 8, p) repre-
sents the directional and spectral distribution of
phonons incident on the interface from material 1.
Both materials are here taken to be isotropic.

In the acoustic mismatch model -the w, &(&u, 8,&)

are obtained from the boundary conditions of con-
tinuum mechanics. This assumption is considered
valid in the limit of low temperatures (frequen-
cies), where continuum mechanics provides a rea-

sonable approximation for the atomic lattice'
(T s 1 K}. If one material is a metal, w(~, 8) can
be complex; the imaginary portion arises from the
electron-phonon interaction near the interface and
is again appropriate in the low-frequency limit. A
complex w(~, 8} has been developed by Peterson"'"
for the Little calculation and is discussed in the
Appendix for the Simons calculation.

Equation (1), to be useful to an experimentalist,
must be rewritten in terms of measurable param-
eters such as temperatures. " To this end Little
approximated N(&o, 8, P) by the equilibrium phonon
distribution N0,
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N(&o, 8, p) =N, (&c, T}(4II) '
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factor of cos8 within the integral. Again, 0~P~1,
but etP» e ca Pat. If n T/T «1,

q =(4e,u» T'n T)(1 ——,
' P„——,

' P„) ' (9)
With considerable integration, which for a given
pair of materials can only be done on a computer,
substitution of Eq. (2) into Eq. (1) gives' " R=(l ——p ——'p )(4c,u, T ) ', (10)
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with (I/) being an "angle averaged" value of w(8),
and T~ ~ are the temperatures of the two materi-
als. (Since there can be no net heat flux across the
interface when T~= T~, it is required that «g+y2
=a,u». ) When 2(T„-Tc)(T„+Tc)'= n. T/T «1,
Eq. (3) reduces to

Q =4«,~„T'~T. (4)

A thermal boundary resistance R may be defined

R = r T/q =(4e,u„T')
or a conductance h by

h =q/E T=4&,u»T'.

(5)

(6)

q = e,u»(1 ——,
'

Pia - a Pu) '(P» —Pc), (8)

where P» is similar to u» except for an additional

(There has been some opposition to these defini-
tions since resistance and conductance generally
refer to bulk properties. ) The value of u varies
from 0 to 1, the latter value occurring when the
two materials are identical (i.e. , tII(&s, 8) =1}. But
when the materials are identical, R = (4euT') ';
i.e. , a nonexistent interface seems to produce a
finite boundary resistance. This problem was
recognized by Little, ' but a correction was gener-
ally ignored since in practice n is often consider-
ably less than unity. Only recently has the prob-
lem been looked at in detail by Simons' and
others. "

Simons notes that the phonon distribution of Eq.
(2) does not provide a heat flux within either ma-
terial. To rectify this problem, N(&o, 8, ItI) of Eq.
(1) is approximated by

N(&s, 8, @)=N, (Id, T)+ 5N(oI, T) cos8,
where N, (&T)dis again the equilibrium distribu-
tion nothin the material, but close to the interface.
&N of necessity then includes phonons transmitted
across or reflected from the interface. Equation
{7) is valid only if 6N &N, Substit'ution . of Eq. (7)
into Eq. (1}gives (see Ref. 5 for details)
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FIG. 1. Thermal boundary resistance obtained from
the Little (L) or Simons (S) calculations, as functions of
the ratio of densities ( p2/pI) of the two materials in con-
tact. The ratio of longitudinaL/'transverse phonon veloc-
ities has been taken as 2 in each material, the ratio of
the transverse velocities c2/c& for the two materials as
1.1, and the phonon attenuation as zero.

A comparison of Eq. (10) with the Little result,
Eq. (5), is shown in Fig. 1 for a range of acoustic
parameters.

For acoustically very different materials (i.e. ,
-0, P-O), the Simons result agrees with the

Little calculation as had been expected. ' However,
if the two materials are identical (u„= p» = p» = 1), the
Simons calculation yields R =0 or h = ~. Hence
the calculation avoids the problem found in the
Little calculation, namely the occurrence of a finite
R at a nonexistent interface.

There is, however, an apparent problem in Eq.
(9). For two slightly different materials g can be-
come larger than =«T', which is the maximum heat
flux possible in either material. The cause of this
is the magnitude of 6N/N„which must remain at
least less than unity. Thus, Eq. (9) (or 8) is valid
only if b. T/T-0 as u -1.

Since the heat flux across a boundary must be
~«T', perhaps it should be worrisome that h- ~
in Eq. (11) as u -1. That is, it might seem to be
a matter of personal choice whether one preferred,
as u -1, a finite conductance (finite resistance)
or zero resistance {infinite conductance) as the
most appropriate representation of an imaginary
interface within a material. This matter of per-
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Material I Material 2
A

Q(Little) = e,u»(T,' —T,') = 4e, u»T, AT . (12)

( I &)2)N(&j)+&2)N (&2)

Cfi 2 N (Ti )+ ( l QP i) N (T2)

The Simons calculation on the other hand requires
the actual frequency and directional distribution of
all phonons soithin either material but near the in-
terface. The apparent temperatures in Fig. 2 are
T, and T,. Assuming the temperature difference
is sufficiently small that Eq. (8) is valid and exper-
imentally reasonable (say I P AT/T ( 5%), Eq. (8)
gives

FIG. 2. Representation of an interface between
materials 1 and 2, with a heat flux directed to the left.
The T f t3 y 2 represent both the the rmometers and the
apparent temperatures recorded by those thermometers.
No phonon scattering occurs between the interface and
the cross-hatched regions. The N(T) are subsets of
phonons having an equilibrium frequency distribution
characteristic of temperature T, but moving with a
horizontal component of velocity indicated by the arrows.

sonal choice becomes even less important once it
is recognized that, for a given pair of materials
and AT, the Little and the Simons calculations give
the same Q.

The equivalence of the two calculations will be
demonstrated using a rather simple and pictorial,
but inelegant, approach. The purpose is to pro-
vide a clear description of what the experimental-
ist measures and how this is related to the two
calculations. Certain assumptions may at first
appear ludicrous, but will be shown in Sec. GI to
correspond to real physical situations.

Consider the configuration depicted in Fig. 2.
Two plates, acoustically different, are in contact.
For convenien ~ 0'12 ~21 ~21 P1 This
is valid as 0'. -1, and it is in this limit that the
Little and the Simons calculations appear to be
most different. The plates are large in directions
parallel to the interface so the presence of edges
may be neglected. The cross-hatched region in
either plate represents a region which is black, in
an optical sense, to phonons. Thus phonons moving
within material 1 from left to right have a frequen-
cy distribution Na characteristic of temperature
T1 Those moving to the lef t within material 1 may
be represented by a frequency distribution
(1 —u»)N, (T, ) + u»N, (T,). Corresponding state-
ments apply to material 2. Thermometers im-
mersed in the four regions, as shown in Fig. 2,
monitor the apparent temperature in their respec-
tive neighborhoods.

We now compute the heat flux Q across this in-
terface. To use the Little result, Eq. (3), we need
to know the frequency distribution of phonons in-
cident on the interface. This is given by No(T, ) and
N, (T,). If we define —,'(T, + T, ) = T and T, —T, = A T,

T,=T, +0.5 u, 2(T, —T,). (15)

Likewise

T', = T, +0.5u„(T', —T,'}.
Use of Egs. (15) and (16}reduces Eq. (13) to

(16)

Q(Simous} =e,u» (T,'- T,') =4&,u»T'AT . (17)

The computed heat flux is the same from the two
calculations. (More accurately, instead of finding
a factor of z100 difference between the two re-
sults, as reflected in Fig. 1, we find the two ident-
ical within the =10/0 accuracy of our computation. )

The real problem obviously does not lie in the
theory. A finite R as u —1 (or infinite h as u -1)
has served only as the proverbial red herring. The
difficulty lies rather in determining if the experi-
mental thermometers detect T, or T, in Fig. 2, or
neither. If the thermometer probes the phonons
incident on the interface (T,), the Little calculation
is appropriate. ' '" If the thermometer probes the
total phonon distribution within the material but
near the interface (T,), the Simons calculation is
to be used. It is even possible that the two calcula-
tions must be combined. For example, if T, and T,
in Fig. 2 were the only temperatures available ex-
perimentally, then Q = a,u»(1 —~P») '(T

~
—T,).

One additional comparison will be made, namely
a comparison of the two calculations applied to the
"sandwich" arrangement shown in Fig. 3. This
configuration is often encountered in experiments.
Using the same arguments as previously (in par-
ticular, AT/T small),

q(Little) = e, u»(T', —T', ) =4@,u» T'A T . (18)

Q(Simons) =c,u»[1 —u»] '(T', —T', ) . (13)

We wish now to compare Eq. (12) with Eg. (13),
and so T, and T, must be written in terms of T,
and T,. In steady state no net energy is exchanged
with the thermometers which are internally at
temperature T, or T,. Equating the energy exchange
on the left-h~md face of a thermometer with that
on the right gives

(14}

Or13
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Material I Material 2 Material I III. COMPARISON OF THE CALCULATIONS

WITH EXPERIMENT

Ta Tc Tb

( l fy II) N(TI )+Qii N(7j', N(T, )

N(T, ) aiiN(Ti)+(I-a)i) N(Tp)

FIG. 3. Representation of two interfaces in a sandwich
configuration between materials 1 and 2. Notation is the
same as Fig. 2.

Here ot» is obtained from the net probability that a
phonon incident on material 2 from the left-hand
side will exit from material 2 to the right. ""
That is,

~ll(ei} ~12( l)I.2 ~21(e2)] (19)

where it is assumed that no phonon scattering oc-
curs within material 2. For the Simons calcula-
tion

Q(Simons) = e,u»[1 —p»] '(T', —T',)

for the entire sandwich or

Q(Simons} =e, l2„(1——, p» ——,
' p„) '(T', —T',)

1 12( 2P12 2P21} (Tc Tc)

(20)

(21)

for either half of the sandwich. Substitution of T,
=T, +0.5u»n, T T, =IT, +[1—0.5u„] Tn, and T,
= Tl+0.5n, T into Eq. (20) or Eq. (21) yields
Q(Simons) =4@,n» T'n T. This is identical to Eq.
(18}. Using the temperatures T„T„and/or T~

0

with the Simons calculation predicts the same Q
for a given aT as using T, and T, with the Little
calculation.

If the phonon mean free path in material 2 (Fig.
3) is not considerably greater than the thickness of
material 2, then multiple reflections do not occur,
Eq. (18) does not apply, and the phonons have the
appearance of being thermalized. If this occurs,
the calculated net thermal resistance across the
entire sandwich becomes just twice the boundary
resistance of a single interface determined using
the same, Little or Simons, type of calculation
plus the bulk thermal resistance' of material 2.

In summary, it has been shown that the Little
and the Simons calculations are equally valid, but
refer to different classes of phonons. In each sit-
uation it must be determined to which class of
phonons the experimental thermometers respond.

IO

I—

LLI

5 I.P

0.4
2

Mg Al Be Cu

I I I I I I I I

IO

P'}M ~' O

40

FIG. 4. A comparison of experimental data (from Ref.
10) with the Little (0} or Simons (b,) calculation. (X)
is discussed in the text. (RT )z is the experimental
result; (RT3)z is the result of the calculation. (pc)z/
(pc}D is the ratio of the acoustic impedance of the metal
to that of the dielectric (epoxy). (RT )z/(RT }& is also
the ratio, for a given T and AT, of the calculated heat
flux Q divided by the experimentally measured value.

A few data with which to test the Little and the
Simons calculations are available in the literature.
In one series of measurements"" the experimental
arrangement was that of Fig. 3, namely a very
thin layer of epoxy between two plates of (normal)
metal. The thermal conductivity of the metal was
large so that each plate was effectively isothermal
even in the presence of a heat flux across the sand-
wich. The mean free path of a thermal phonon in
metal is very short, relative to the dimensions of
the plate, and the electron-phonon scattering is
primarily inelastic. " Thus the thermometer at-
tached to each plate could not be influenced by
phonons transmitted across or reflected by the di-
electric layer; the thermometers recorded the
temperature of the conduction electrons. Essenti-
ally the only phonons incident on the dielectric
are those produced by electrons, thus the ther-
mometers are measuring T, and T, of Fig. 3 and
the Little calculation should be appropriate.

A comparison of experimental results and the
Little calculation is presented in Fig. 4 for metals
which range by a factor of 10 in acoustic impedance
relative to that of the epoxy. The experimental
data are reproducible and independent of the epoxy
thickness. "" The calculation includes no adjust-
able parameters. " As (pc)„/(pc)a becomes large,
the theoretical value of R becomes more sensitive"
to the ratio c,/c, . For example, a combined error
of only 7% in the measured phonon velocities of
tungsten and epoxy would account for the difference
between theory and experiment for W in Fig. 4.
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Results from the Simons calculation are also in-
cluded in Fig. 4. Again, there are no adjustable
parameters.

Also shown in Fig. 4 (by X) is the maximum ratio
of (RT')z/(RT') r which is physically possible due

to the finite thermal conductance of the materials,
see Sec. II. For magnesium the Simons calculation
actually exceeds this value. In other words, using
measured temperatures, the Simons calculation
not only predicts a Q a factor of 2.4 larger than
measured, but also a factor of =2 larger than would
be physically possible even if none of the phonons
incident on the interfaces underwent reflection.

Summarizing the results contained in Fig. 4, it
may be seen that the two calculations give nearly
the same result for very different materials
[large (pc)„/(pc)cj as expected, but diverge as the
materials become more similar [small (pc)„/
(pc)~]. The Little calculation agrees reasonably
well with experimental data for all these materials,
whereas the Simons calculation is in complete dis-
agreement at small (pc)„/(pc)~ where it should
nominally be most suitable. The fault does not lie
with the Simons calculation, but merely reflects
the fact that the experimental thermometers did
not monitor the phonon distribution appropriate to
that calculation.

A similar comparison can be made using data
obtained from a more complicated experimental
arrangement. " The Little calculation is again
found to be in excellent agreement with data on in-
terfaces between a dielectric and (normal state)
In, Al, Pb, Sn, or Cu. As determined from the ex-
perimental configuration, it is the Little calcula-
tion which should be applied.

Experimental data obtained under conditions
where the measured temperatures are clearly ap-
propriate to the Simons calculation are more dif-
ficult to find in the literature. Measurements in-
volving (normal) metals are almost always ruled
out." The rather typical configuration of two long
rods of dielectrics (or superconductors) butted end
to end would appear logical. The most frequently
measured pair of materials has been In and sap-
phire. ' ' The data, however, do not reproduce,
perhaps due to surface damage ' ' which scat-
ters phonons near the interface. In any case the
data fail to support either calculation.

Unfortunately, even a perfect interface between
two rods leaves a problem for the experimentalist,
namely as to what the apparent temperature mea-
sured on the side of the rod actually represents. A
similar problem arises in measuring the "thermal
conductivity'"7 of a long rod; both "end effects"
and the fate of phonons incident on the side of the
rod must be considered. The best arrangement to
satisfy the Simons calculation is probably two

(defect free) dielectric rods having highly polished
sides to provide specular reflection. The rod would
be sufficiently long so that phonons arriving at the
thermometer (near the interface) directly from the
heated or refrigerated end subtend only a small
solid angle. Using two thermometers to "extra-
polate" a temperature to the interface of a di-
electric having a long phonon mean free path is at
best a dubious practice. If the mean free path is
short, extrapolation is possible. But then the temp-
erature drop along the dielectric rod is generally
large relative to the drop which is to be measured
across the interface. "

There are situations in which so(ur, 8) apparently
cannot be calculated from continuum mechanics, "
for example, at the interface between an ordinary
solid and a quantum solid" such as 'He. It is con-
ceivable that so(8, ~) could be measured"'" as a
function of co and 8 and the empirical result in-
serted into Eq. (1). Unfortunately such detail is
not available as yet."

In conclusion, it has been shown that the Little
and the Simons calculations of the thermal bound-
ary resistance predict the same heat flux for a
given interface, provided the thermometers used
in the measurement are capable of monitoring the
phonon spectrum appropriate to the respective cal-
culation. This conclusion is consistent with av-
ailable experimental data.
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APPENDIX

As mentioned in Sec. II, the presence of a phonon
scattering mechanism necessitates the use of a
complex (actually the amplitude of a complex)
w„(&u, 8,). In applying this to the Simons calculation,
it will be assumed that the reader is familiar with
both the derivation of Eq. (8) (see Ref. 5) and the
application of a complex co,&(&u, 8,~) to the Little
calculation (see Ref. 10). It will also be assumed
that conduction electrons scatter the phonons and
that material 2 of Fig. 2 is the normal metal.

In Eq. (8), u» is evaluated as in Ref. 10 and con-
tains the integral

(A1)

By calculating w» rather than av» one indirectly
avoids calculating the heat flux carried within ma-
terial 2 by the electrons. In addition, the electrons
make a contributionto m» only if the phonon velocity
in material 1 is less than that of the metal, ma-
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terat 3. The quantity p„of Eq. (8) contains the

integral

~„(~,8„)cos'8» sin8» d8„, (A2)

which can be evaluated in the same manner as Eq.
(A1). However P» contains

ur»(&u, 8») cos'8» sin8» d8», (A3)

where w»(&u, 8») generally cannot be written out
explicitly if phonon attentuation or scattering is
present in material 2.

The term P» arose from the assumption of a
~N cos8 contribution to the phonon spectrum, which
provided the necessary heat flux within material
2. Since the electrons also contribute to the heat
flux, iwo corrections should be applied to Eq. (A3).
First, only that fraction f of the heat carried by the
phonons in material 2 should be included in P»,

.that is the denominator in Eq. (8) becomes 1 ——,'P»
—f ,' p»—. If f- 0 as for a good metallic conductor,
one obtains the Little result for that side of the in-
terface.

Second, go»(u, 8») in Eq. (A3) needs to be known
only for those phonons which exist within material
2. Hence the integral over 6)» is taken over the
real values only and Eq. (A3) can be evaluated.
This step is equivalent to evaluating P» only for
phonons which strike or emerge within the critical
cone. Larger angles are associated with the elec-
tron-phonon interaction at the interface. This is
an approximation, but since the correction is gen-
erally small, serious errors are avoided. In addi-
tion, real experimental thermometers usually can-
not monitor the phonon spectrum within the metal
close to the interface. Hence, as discussed in de-
tail in the text, the above procedure for the Simons
calculation is generally not needed.
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