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For a system of electrons confined to a thin but finite layer, the nonlocal frequency-dependent dielectric
tensor is constructed in the random-phase approximation and used in the Maxwell equations to study the
electromagnetic properties. Retardation effects are negligible if the thickness of the electron layer is small
compared with the wavelength of the electromagnetic wave.

I. INTRODUCTION

Quasi-two-dimensional electron systems have
been studied intensively in recent years by both ex-
perimentalists and theorists. These systems are
realized in the cases of electrons on the surface of
liquid helium,' layered compounds,? and inversion
and accumulation layers in semiconductor junc-
tions.® The aim of this paper is the study of the
electromagnetic properties in these quasi-two-
dimensional systems. The thickness of the layer
occupied by the electrons in the systems men-
tioned above is typically of the order of 10 A. For
a range of phenomena in these systems, the finite
thickness is unimportant and a strictly two-dimen-
sional model of the electron gas is used. Electro-
dynamics in such a system has been studied.?*
However, there are phenomena for which the small
but finite thickness of the electron system cannot
be neglected. Its effect on the electromagnetic
properties, as well as the interaction effects of
the electrons, will be the subject of study here.

Inversion layers in metal-oxide-semiconductor
junctions provide examples of the systems to which
the application of our theory is most appropriate.
A constant electric field applied perpendicular to
a metal-SiO,-Si junction draws electrons from the
bulk silicon and traps them in states confined to a
small region on the silicon side of the oxide-semi-
conductor interface. Electron motion parallel to
the interface is considered free in the effective-
mass approximation. For a given momentum pa-
rallel to the interface, the energy levels of the
electrons are quantized. (see Fig. 1.) As func-
tions of the parallel momentum, the energy levels
form parabolic bands. The energies and wave
functions in the SiO,-Si interface have been ob-
tained by Stern and Howard,” taking the electron
interaction in the Hartree approximation. For a
typical surface density of electrons of about 10'?
cm™, the lowest parabolic band is the only one
partially occupied to a Fermi energy of about
5-10 meV. The first empty band lies about 10-20
meV above the lowest band. The ground state wave
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function is localized to within 50 A of the interface.
For the electron density in the range of experimen-
tal interest, the mean distance 7, between electrons
(in units of the effective Bohr radius), which is a
measure of the ratio of the Coulomb energy to the
kinetic energy, ranges between 0.1 to 10. By con-
trast, electrons on the surface of liquid helium are
restricted to a low-density regime (7,~ 1000) with
the possibility of a Wigner lattice. Our theory ap-
plies only to reasonably high-density electrons.
Existence of the electron bands in the inversion
layer has been confirmed by photoconductivity
measurements,® absorption of infrared radiation,®
and radiation of electrons excited by currents.'®
These experiments measure the excitation energy
of raising one electron from the lowest band to the
first or higher excited band. The excitation energy
is not equal to the energy difference of the two
bands calculated in the Hartree approximation by
Stern,” where both energy levels of the electron
are calculated under the influence of the same Har-
tree potential due to having all the electrons in the
ground state. When an electron is excited from the
occupied band, the Hartree potential is changed.
The excitation energy should be calculated taking
into account the self-consistent change of the Har-
tree potential. This polarization effect shifts the
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FIG. 1. Schematic energy levels of an inversion layer,
shown for the (typical) case where only E; is occupied
at zero temperature. The quantity €, is the two-dimen-
sional Fermi energy for motion parallel to the interface.
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excitation energy from the energy-level difference
calculated by Stern. This effect was first discov-
ered by Chen, Chen, and Burstein'' using a slab
model for the inversion layer, i.e., uniform den-
sity across the thickness of the slab. Allen, Tsui
and Vinter'? subsequently calculated the shift from
the Hartree energy-band difference of Stern.”

By using the slab model, Chen et al.'* also dem-
onstrated the existence of retardation effects on
the interband excitations. Our purpose is to in-
vestigate the electrodynamics in the inversion lay-
er based on a more realistic model utilizing the
electron wave functions as calculated by Stern. In
Sec. II, the nonlocal dielectric tensor is expressed
in terms of the electron subband energies and wave
functions in the random phase approximation. In
the limit of long wavelength but finite frequency,
any dielectric screening process which involves
the component of the electric field normal to the
inversion layer couples directly to the density
fluctuations.

In Sec. III, we investigate the longitudinal col-
lective modes involving the density fluctuations,
neglecting retardation. The poles of the density-
density response function yield the collective
modes, which consist of a low-frequency branch of
plasma oscillations inthe plane of the layer* and
high-frequency interband excitation branches with
energies shifted from the Hartree energies'? due to
polarization.!’ Although there are no new results
in this section, it provides another view of the in-
terband excitations and also facilitates the full so-
lution with retardation.

The microscopic dielectric tensor obtained in
Sec. II is used in Sec. IV to solve the Maxwell equa-
tions. With the plane geometry of the inversion
layer, the solutions are of two types, transverse
magnetic (TM) and transverse electric (TE) modes.
Explicit solutions are given in the limit where the
thickness of the inversion electron layer is much
less than the wavelength of the electromagnetic
wave or of the collective excitation. The TE
modes have their electric field in the plane
of the interface and consist of interband excita-
tions only, at the unshifted Hartree energies. In
the radiative region, their coupling to the electro-
magnetic wave is extremely weak, being of mag-
netic origin. Except for the case where the wave
vector parallel to the interface is zero, the TM
mode has an electric field component normal to
the interface. The lowest branch of the TM mode
is now the retarded two-dimensional plasma oscil-
lation, a mixture of plasma oscillation in the plane
of the interface and an electromagnetic wave.®
When the wave-vector component parallel to the
interface is of the same order of magnitude as that
of the electromagnetic wave, the interband (high-

frequency) excitations are approximately the same
as the longitudinal case neglecting retardation ef-
fects. The retardation effect is small, of the
order of the ratio of the thickness of the inversion
layer to the wavelength of the electromagnetic
wave. Unless the thickness of the inversion layer
is made substantially larger than that typical in
present systems, the retardation effect will be dif-
ficult to measure.

In Sec. V, our results are compared with those
of Chen et al.!* for the slab model. The dispersion
relations of various polaritonlike modes of Chen
et al. become difficult to distinguish from the dis-
persion relations of the electromagnetic wave and
the longitudinal collective modes, in the limit
where the slab is very thin compared with the wave-
length of the electromagnetic wave. In that limit,
the results of the slab model correspond qualita-
tively with our results.

II. NONLOCAL DIELECTRIC TENSOR
A. One-electron motion

Let the 2z axis be normal to the semiconductor-
oxide interface. The insulating oxide occupies the
half space z<0, with a dielectric constant €,. The
semiconductor occupies the half space z> 0, with
a dielectric constant €,. For definiteness, we con-
sider the case of an inversion layer formed on the
semiconductor side of the interface from electrons
in the conduction band. The electron motion is
treated in the effective-mass approximation. For
simplicity, the effective-mass tensor is taken to
be diagonal with

My=My=My, M=M,. (2.1)

The (100) surface of Si furnishes such an example.

Motionof an electron in the inversion layer para-
1llel to the interface is free. Motion perpendicular
to the interface is taken to have been solved in the
Hartree approximation,” yielding a set of discrete
energy levels E,, v=0,1,2,..., with wave func-
tions ¢,(z). The large work function (~3 eV) from
the semiconductor to the oxide makes the wave
functions approximately zero for z<0. The wave
function of an electron is a product of a plane wave
with wave vector k parallel to the interface and
¢,(z). The total single-particle energy is

E,,=E,+1%*/2m,. (2.2)

We shall only be concerned with very low temp-
eratures and assume thatat =0 only the lowest band
(v=0) is occupied, with the two-dimensional Fermi
surface with radius k; related to the surface num-
ber density ng by

ki=2mn,/s; (2.3)
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s being the number of valleys which provide the
lowest occupied band.

We assume here that the oxide layer is thick
enough for the presence of the metal to be ignored.
It is simple to extend our calculation to the case
of a finite-thickness oxide layer, as we shall do
later.

B. Linear response in random-phase approximation

Consider first the irreducible part of the linear
response,'? i.e., the response to the fotal scalar
and vector potentials rather than the external po-
tentials. In the random-phase approximation, it
is given by a bubble diagram, with the expression**
at the exciting frequency w of

- > f, . —f
PaB(r T’ w) = v'p 221
P L By —E T —w

xup | I (B) | vp"(v'p’ | T(F) | vpy,

(2.4)

where f,, is the distribution function of the elec-
tronic state vp with wave function va). J, denotes
the charge density and J,,J,,J, denote the para-
magnetic part of the current density. Although
there are indications'® that RPA may not be an ad-
equate approximation for the electrons in the in-
version layer, we use it to deduce qualitative as-
pects of the electrodynamics and return later to
discuss how to extend the calculation beyond RPA.
Translational invariance parallel to the interface
permits the Fourier transform in the x,y direc-
tions, yielding the irreducible polarization part:

Poo(Kw;z,2)= ) Fo(v2)0,,(Kw; ) FE(vz’), (2.5)
v =0

where
F (vz2)=¢4(2)¢,(2) if a=0,x,y, (2.6a)
Fva) =g (8 32 -2 102)), (2.60)
and
=N d’p e s/
9a8(kw, V) =2s f (211')2 Y“((EO” _El:-‘))'%:_l T
/i
_(EVM _qu::)hal —-—w )76)
(2.7)
with
Pe=pP3k, (2.8)
Yo= -6, (2.9a)
V= —(efi/my) b, (2.9b)

v,= —(efi/m,)p,, (2.9¢)
y,= —el/m;, (2.9d)
e,=1 if x=0,x,y, (2.10a)
e,=-1; (2.10b)

e denotes the proton charge. In arriving at the
expression (2.5) for the irreducible polarization,
we have taken the zero-temperature limit and used
v=0 as the only occupied band. Because of the
equation of continuity, the density response func-
tions are related to the current response func-
tions. The RPA expressions satisfy these rela-
tions.

C. Dielectric tensor

If we take the electric field ‘E.l('r, t) to be of the
form

E(F, 1) = B(Kw, 2)e't fimivt (2.11)

where T, is the component of T parallel to the in-
terface and K is a two-dimensional vector parallel
to the interface, and the electric displacement to
be of a similar form, then the dielectric tensor is
given by

Dy(fw;) =Y [ de’e(Razz, 2B w20,
j - o0

(2.12)

withi,j=x,y,2. We work inthe gauge ¢ =0, al-
lowed because of the gauge invariance of the RPA.

Since the electrons are confined to z>0, in the
oxide layer (for 2<0, z/<0)

€;(kw;22") = €,6,,0(z - 2') (2.13)
for 2<0, 2’>0 or 2>0, 2'<0,
€;,(kw; 22")=0; (2.14)

and in the semiconductor region, z2>0, z2’>0
6”(1-;(.0; 22")=€,0,,6(z - 2')

~(4n.e?/w?m,)8,,6(z — 2')F (02)

4w >
—W P“(kw; ZZ'),

(2.15)
The first term is the background semiconductor
dielectric constant and the second term is the dia-
magnetic term with density » F,(0z), where

Fy(02)=1{¢(2)P (2.16)

since only the lowest band is occupied. The third
term is the paramagnetic current-current response.

Equation (2.12) then forms the constitutive equa-
tion to be used in conjunction with the Maxwell
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equations. We can show that this procedure is
equivalent to solving for the full density and cur-
rent responses to external scalar and vector po-
tentials of the system of electrons interacting via
not only longitudinal Coulomb interactions, but also
the propagating photon field, provided that some
photon modifications of the vertices are neglected,
which is certainly justified in the nonrelativistic
regime.

D. Long-wavelength approximation

We are interested in the frequency-wave-vector
region near light propagation, i.e., w~ck. Thus,
in the irreducible polarization, we keep w finite
but take % to be much smaller than the Fermi ra-
dius k. Then, the polarization 8 ,(kw;v) defined
by Eq. (2.7) can be evaluated, yielding, by Eq.
(2.5),

P(k=0, w;22") ZFO(vz )Fy(vz’), (2.17)
P, (0w;zz2’) == mi; ; Fy(vz) Z‘%h,(w)F’:(VZ')
(2.18)
=+P}(vw,2'z),
P_(0 ) =503 ) F (v2)h,(w)F*(vz’)
@322 g (2.19)

P, (0w; zz'),

P,(0w;zz") = (;nh—l)z D F(v2)h(w)Fivz"),

v=l

(2.20)

where v, is the Fermi velocity &/ m, parallel
to the interface,

h(w) = [2n,e°A,/ (0 - A2)] (2.21)

and
A,=(E,-E)/k.

All other elements of P, vanish.

In a homogeneous electron gas, the quantity cor-
responding to P,, vanishes for zero wave vector.
In the inversion layer, the anisotropy makes P,
finite. This result implies that an electromagnetic
wave with a finite z-component of the electric field
couples into the density fluctuations, i.e., the lon-
gitudinal collective modes. The screening pro-
cesses will then be dominated by the density fluc-
tuations.

The diamagnetic current term in the dielectric
tensor, Eq. (2.15), which involves the position de-
pendent density, can also be put in the same form
as P,, by means of the equality

(2.22)
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(2.23)

F(02)8(z —2') Z F (vz) F*(vz')

From the Schrodinger equation for the wave func-
tion ¢,(2z), it is easy to show that

d m,A

— =] ——r 2,24

szz(vz) i— Fy(vz) (2.24)
and hence,

F(v2) =i__";1_é_z L‘tho(vt). (2.25)

We start the proof of Eq. (2.23) from the right-
hand side, which is equal to

o =
-2 J dty " F (v2)F(ot)

- LZ‘ i@t \:go(z)(sa;i g,,(z)c,,(t)) LoD &of8)

v =0

_%< i Cu(z)cv(t)> ?;o(t)é'o(t)}

\p =0

= go(z) 5(2 - Z’)go(z ') Py

using the completeness property of the wave func-
tions ¢£,(2).

Using Eq. (2.23) in Eq. (2.15), we obtain the di-
electric tensor for the inversion layer in the form

(2.26)

€;,(0w,22") =€, i,5(Z -2’

+5”2F,(Vz)aj(w; V)F}(vz'), (2.27)
v =0
where
Q n
(@ 1) = a(w; V) = __§< —5—/,> (2.28)
n 202
az(w, V):—m—' m!__LA_i)’ v+0 (2.29)
a,(w;v=0)=0, (2.30)
with
Q} =4mn.e?/m,, (2.31)
Q; =4mne®/m,. (2.32)

We note that the dielectric tensor is diagonal and
that the position dependence of the nonlocal part is
expressed in a separable form. Note also that

Eqgs. (2.23) and (2.20) combine to eliminate the
ground-state diamagnetic term [Eq. (2.30)] in €,,.
When the constitutive equation involving the di-
electric tensor is substituted into the Maxwell
equations, the latter become integro-differential
equations. The separable form of the nonlocal part
of the dielectric tensor makes the equations soluble.
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III. COLLECTIVE MODES NEGLECTING RETARDATION

We first investigate the collective modes involv-
ing density fluctuations, neglecting all retardation
effects. We examine the full density -density re-
sponse function'® 7(¥,T’; w). The irreducible part
of the density response, 7*, is given by Eq. (2.5):

n*(Ew;zz’)Ee‘zﬁ"lPoo(Ew;z,z’). (3.1)
Whereas 7* is the linear response to the fofal
scalar potential, 7 is the linear response to the

external scalar potential, related to 7* by the Dy-
son equation

w(l?w;zz')zw*(l?w;zz')
+ f dzlj dz,m*(kw; 22,)

X V(K; z,2,)m(Kw; 2,2"), (3.2)

where V(E; 22') is the effective Coulomb interac-
tion between point charges in the inversion layer®:

- 2ne® €, —€
”n_— =klz=2'| 2 1 ,=klz+2’|
V&, 22') - 2o <e £33 ) (3.3)
including the effect of the image charges in the
oxide region.
Because of the separable form of the irreducible
polarization 7*, given by Eq. (2.5),

m(kw; 22" =) Fy(vz)m¥(Kw) F(vz"), (3.4)
with
THKw) = 050(Kw; ) (3.5)

possessing the expression given by Eq. (2.7), the
integral equation (3.3) is easily solved in terms of
a matrix inversion. Let F(z) represent the row
vector with elements Fy(vz), v=0,1.2,..., F'(z) the
Hermitian conjugate and 7*(Kw) the diagonal ma-
trix with elements GU.U,wf,(f{.w). Evidently, m(kw,zz’)
has the same form as Eq. (3.4), which in matrix
notation becomes

m(Kw; z2%) = F(2) « F(kw) * F*(27). 3.6)

The integral equation (3.2) is reduced to a matrix
equation

F(kw) = T*(kw) + 7 (ko) V(R)T(Kw), (3.7)

where the Coulomb interaction matrix has elements

VW.(E)= J dzf dz'Fo(vz)V(E; zz2")F(v'z’).

(3.8)
We need to carry out a matrix inversion to obtain
T=1x1 - ViH (3.9)

which shows that the collective modes are given by

det(1 -V7*)=0. (3.10)

Let us restrict our interest to wave vector &
much smaller than the Fermi wavevector ;. The
spatial extent of the electron wave function ¢,(2) is
of the same order as 1/k;. Thus, in the Coulomb
integral (3.8), we may take kz <1 and keep only
the leading term in a small wave vector expansion.
It is convenient to express the Coulomb integral in
terms of a quantity with the dimension of length:

V= (4%e?/€,)L , (3.11)
where
L™ €,(€, + €)™k, (3.12)

1
Lm:LW:_E J' fdzdz'Fo(Oz)|z—z’IFo(Vz')

leg,-¢ f
“Tere, dz F(vz)z (3.13)

and

L,.=~ -—;— f fdz dz’' F(vz)|z —2'| F(v'z")

= f: dz ( fo ‘dleO(Vzl)x lf:dzzFo(V’zz)> s

(3.14)

where v and v’ are not zero. Equation (3.14) is
identical to the length tensor S,,. of Allen et al.'?

Typically, all the elements of L,,, except L.,
are of the order 10 A. Because of the disparity
between Ly, and L. for non zero v and ', we
shall show shortly that one may neglect the off-
diagonal elements L, and L, and factorize the
determinantal equation (3.10) into

1-Vm¥=0 (3.15)

and

det(6,,. - V,,m%) =0, (3.16)

where, in the second determinant, v, v’ are non-
zero.

Consider first the ground-state term, (3.15).
Voo is, from Eq. (3.11) and (3.12), just the Cou-
lomb interaction for a two-dimensional electron
gas in a medium with dielectric constant z(€, + €,).
m#(Kw) is just the polarization for the two-dimen-
sional electron gas, already evaluated by Stern.®
The root of Eq. (3.15) is the unretarded plasma
oscillation with frequency

2mn €2 ( 2 >]‘/2
= —_— | 1/2
w,p(k) [ —\3 e k

(3.17)
which involves oscillations of charges parallel to
the interface.

The collective modes from Eq. (3.16) involve ex-
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citation of electrons from the lowest-occupied sub-
band to higher-unoccupied bands, i.e., electron
motion perpendicular to the interface. By Egs.
(2.17), (2.21), and (3.14), we obtain

Ve THEN, () = W}, /(w? = 82) , (3.18)
where
w2, = (8mn,e?/hi€,)L,,. B, (3.19)

and v and v’ are nonzero. This result extends the
two- and three-band calculations of Allen et al. to
an arbitrary number of subbands. We note that
for these excitations at long wavelength, the di-
electric constant €, of the oxide does not appear at
all. The plasma frequency matrix wiw, shifts the
frequency of the interband resonance mode, as
can be seen explicitly by the two-band example
(v=0,1), where the collective mode frequency is
given by

(3.20)

which is the polarization effect noted by Chen
et al.!

Neglecting the off-diagonal terms V,,, the solu-
tion of Eq. (3.10) thus gives (i) A branch of two di-
mensional plasma oscillations involving motion of
the electrons in the lowest suband only. (ii)
Branches w,; of interband excitations with fre-
quencies shifted from A, by the polarization effects
in the z direction. For k <k, the lowest plasma
branch and the high frequency w,; branches are
well separated and the effects of the neglected off-
diagonal terms V,, are indeed small. They become
important only when the plasma branch rises suf-
ficiently to cross the high-frequency branches,
which occurs at wave vector k# comparable to &,
as has been verified by a two-band (v=0,1) calcu-
lation.

2 _ A2, .2
We1 =87+ Wy,

IV. RETARDATION EFFECTS

We now solve the full set of Maxwell equations

divD=0, (4.1a)

divB=0, (4.1b)
- 10B

curlE= —E —aT, (4.10)
= 18D

curlB-E _37 (41d)

The fields are put in the form of Eq. (2.11) with
the constitutive equation (2.12) connecting the elec-
tric displacement to the electric field. For con-
venience, we let the x axis be along the direction
of the wave vector k. Then the Maxwell equations
separate into two disconnected sets, one involving

E,, E,, B, and one involving only E,, B,, B,. The
former set yields the transverse magnetic (TM)
modes with the magnetic field perpendicular to
both the wave vector K and the normal to the inter-
face (the z axis). The latter set yields the trans-
verse electric (TE) modes. We treat them separ-
ately.

A. TM modes (p polarization)

Elimination of the magnetic field B, from the
Maxwell equations yields the wave equations

d? dE, ?

—;ZTE’H'ik-E{:?D” (4.23)
2
ik‘fg’ +k2E,=‘£§-D,. (4.2b)

The solution in the oxide region (z2<0) is straight-
forward. Let us concentrate on the seimconductor
region (z>0). It is convenient to define

k2= (w/c)%€, — k2. (4.3)

In the absence of the nonlocal terms in the dielec-
tric tensor (2.27), due to the polarization effects
of the electrons in the inversion layer, k2, would
be the component of the wave vector normal to the
interface. k2>0 describes propagating modes and
k%<0 describes bound modes which attenuate ex-
ponentially from the interface z=0 into the semi-
conductor region.

We have found it convenient to solve the wave
equations (4.2) by eliminating E,. The constitutive
equation is used with the dielectric tensor given in
the long-wave approximation (2.27). Thus, from
Eq. (4.2b),

ik dE, W’
= - F ;
B @ Rl Tvdede)

x | T FXueNE 2de’.  (4.4)

The nonlocal polarization effects of the electrons
in the inversion layer induce electric field com-
ponents of the form F,(vz). The evaluation of their
coefficients is best handled by matrix algebra. We
define vectors X and Z with elements

X,= J' " dzFX(v2)E(z), (4.5)

2, " dzF*(v2)E (), (4.6)

and matrices _&,, A with elements a,(w; 1)3,,. and
A,0,,..

To obtain Z in terms of i, we multiply Eq. (4.4)
by FX(vz) and integrate. The first term on the
right is
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= ik 4 dE, km,
fo de' F1(ve) Gr="phee X, (4.7)

using Eq. (2.24). Thus, from Eq. (4.4) we have

= kmy (T wP€, =\"'=
b § =2 .

Z= -5 A<I ?EN) X, (4.8)

where i is the unit matrix and ﬁ is the matrix with
elements defined by Eq. (3.18), using the equality

f " dz FXvz)F(v'z) = <%L)2A,,L,,.Au, (4.9
o

L,,. being defined in Eq. (3.14).
Substitution of Eq. (4.4) into Eq. (4.1a) yields a
wave equation for E_:

2 o
L VK, =Y Fva)B,, | deFIv2NE(2),
vt 0
(4.10)

where B, are the elements of the matrix B given
by

= B[~ (km 2»-—(* we, =\
=i e 3 - 2
B , [ax+< kiﬁ) A(IZA I ?—kﬂfN> ]. (4.11)

The integro-differential equation (4.10) can be
transformed into an integral equation with the help
of the Green’s function given by

d2 2 r 14

d—zv;+k, G(z,2")=08(z - 2. (4.12)
This Green’s function expresses the propagation
of the electromagnetic wave in the background
semiconductor without the inversion layer electrons
and satisfies boundary conditions at z2=+> and at
various interfaces. It is evaluated in the Appendix
for the cases of two semi-infinite media and of a
transmission line.*!” The formal solution for the
electric field is

E(2)= E2(z) +Z 'f ) dz'G(z,z")
x F (vz")B,,.X,., (4.13)

including _Ehe possibility of excitation by an exter-

nal field E®*. The coefficients X, are obtained by mul-

tiplying the equation with F}(vz) and integrating,
yielding a matrix equation

AX=Xext (4.14)
where
Xt = j dz FX(vz)ESt(z). (4.15)
0
The matrix A is given by
A=1-G-B (4.16)

and G is the matrix with elements
G,,,,:j dzf dz' FX(vz)G(z,z2")F (vz’). (4.17)
4] 1]

Thus, the solution of the Maxwell equations has
been reduced to the inversion of the matrix equa-
tion (4.15).

From the Appendix, the Green’s function is shown
to be of the form

Glz,2") = [2ik,(1+10)]™

X(eikzlt-z'l + xelk‘|z+z'|

_o.e-ik,l.n-z'l _ho'e'“‘z"""'), (4.18)

where Mkw) and o(kw) are the coefficients depen-
ing on the particular geometry of the layers. For
bound states where %2<0, the replacement is un-
derstood that

~ik, = B,= [F* ~(w/c)€, ]2, (4.19)

The evaluation of the integrals G, is carried out
in the long-wave approximation 2,2 <1, as in Sec.
III, since the coordinate z is limited by the wave
function ¢,(z) in the form factor F (vz). Keeping
the leading term in the small &, expansion,

Goo=(1+2)(1 - 0)[2i%,(1 +20] ™, (4.20)

Gyo=Gy,

=.1_J' dzJ dz'Fo(Oz)Iz-z’lFo(vz’)
2 J, 0

1 M+0

_Em J’o dz FO(VZ)Z,

(4.21)

Gpo=-Ly, (4.22)
where v and v’ are nonzero integers, and L, are
given in Eq. (3.14). Thus, G,,. are independent
of the geometry of the layers and of the retardation
effects of the electromagnetic wave in lowest or-
der.

The collective modes are given by

detA=0 (4.23)

In the matrix B, the matrix elements B,, and B,,
are zero. For the same reason as in Sec. III, i.e.,
because of the disparity between the magnitudes of
Gy and G,,,, we may neglect the elements G,, and
decouple the determinantal equation into

Nyo=0 (4.24)
and

det(A,,.) =0, (4.25)

where v and v’ are nonzero. We examine separ-
ately these two solutions.
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1. Two-dimensional plasma oscillations

Equation (4.24), with the help of Egs. (4.11) and
(4.20) reduces to

. 2me® (1+2)(1 o)
w =
m€, 1+)o

B, (4.26)

These modes are the two-dimensional plasma oscil-
lations including the effects of retardation and the
geometry of the layers.>®!%!% Since the plasmons
are bound modes, occurring only for k2<0, we have
used the replacement of —ik, by B, of Eq. (4.19).

Consider first the simple geometry case of the
semiconductor occupying z>0 and the oxide z2<0.
Then, from Eq. (A5)

=0, (4.27)
x:(%%-l)(%:—:fu)d (4.28)

the classical reflection coefficient, with B, defined
in a similar way to Eq. (4.19) except replacing ¢,
by €,, the dielectric constant of the oxide layer.
The frequency of the plasmon reduces to Stern’s
expression® if we put €, =€,. For large wave vec-
tor &, i.e.,

kL > k2> (w¥/ )€, > (w¥cy)e,, (4.29)

the plasmon frequency approaches the longitudinal
plasma frequency Eq. (3.17). For small 2, such
that

k2 < w?p€,/c? (4.30)

the retardation effect dominates the plasmon branch
and

w~ ckeM?, (4.31)

The frequency approaches the light line of the
semiconductor from below.

A physical picture of the two dimensional plas-
mon mode can be constructed. The electrons re-
main in the lowest subband and oscillate parallel
to the interface, giving rise to a diamagnetic cur-
rent. The resultant electric field has only x and z
components, does not excite the electrons to high-
er bands, i.e.,

J dz £,(2)E(2)¢o(2)=X,=0, v#0 (4.32)
1]
and depends sensitively on the surrounding media
(through ¢ and A). For example, for the trans-
mission line geometry, where the semiconductor
occupies 0<z<¢,, the oxide —#,<z<0 and both are
bounded by perfect conductors, Eq. (4.26) becomes

€8 -1
<:Bf cothB,t1> . (4.33)

In the limit of a very thin oxide layer, B,#, <1, the

4mn e®
2_—‘
w ———*—‘iz B, <cothﬁztz+

plasma frequency becomes
w z(47rnse2/rnt)k(t1/€1)1/2.

The frequency is considerably depressed since the
electric field is forced to be nearly normal to the
interface in the inversion layer.

(4.34)

2. High-frequency modes involving interband transitions

Now we consider the zeros of Eq. (4.25). The
contribution of the polarization a, to the elements
B,,. for v, v’ nonzero in Eq. (4.11) is negligible
compared with the a, term provided,

k> kph,/m,c?.

Subsitution of Eqs. (4.11) and (4.22) into (4.16) re-
duces Eq. (4.25), after some matrix manipulation,

to
a7 (i-5)-

det[(l _?F‘:N I-N/|=0.
The roots of det(I-N)=0 are precisely the high
frequency w,; modes given by Eq. (3.16) and (3.18)
which we found in Sec. III neglecting retardation.
These frequencies cross the semiconductor light
line (B,=0) and are independent of & provided that
k <<k and not so close to zero as to violate the
inequality (4.34). In the extremely small region of
k near zero (k< kpA,/m,c?), the frequencies tend
to A,, the interband transition frequencies. A
qualitative plot of these frequencies versus wave
vector is shown in Fig. 2 for the two semi-infinite
media case. We can now justify the neglect of the
A, coupling of the low-frequency plasma branch

(4.35)

k

FIG. 2. Transverse magnetic (TM) collective modes.
For simplicity only one interband excitation w, is
shown. The curve labeled w,, is the intraband two-
dimensional plasmon. Also shown in the inset is the
small splitting 6 where a transmission line mode (dotted
line) would otherwise intersect w,.
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and these high-frequency interband transition
modes, since for k <k they are far apart.

For these high-frequency modes, the electron
motion involved is normal to the interface due to
interband excitation. The resultant electric field
has both x and z components with

j dz £(2)E (2)Eo(2) =0 (4.36)

4]

decoupled from the two-dimensional plasma oscil-
lation. The broken translational symmetry allows
the coupling of the transverse electromagnetic
wave to the longitudinal density response which,
therefore, dominates the screening process, shift-
ing the interband excitation frequencies and making
the retardation effect negligible. The modes are
insensitive to the dielectric property of the oxide
layer.

For k2<0, these modes are truly bound modes;
for k2>0, they are radiative. We shall consider
their effect on the reflectivity presently. For a
transmission line geometry,®!” the propagating
cavity modes in the absence of the inversion layer
electrons are given by (see the Appendix)

w=tank,t, + 2’;’;8 tank, 4, =0, (4.37)
z
where
k2= (w?/c®)e, - k2 (4.38)

To the leading order in the expansion in powers of
k/ kg, the high-frequency modes are independent
of the geometry. In order to investigate the cou-
pling of the high-frequency modes to the cavity
modes, we must retain the next order terms in
G,,.. Then, to Eq. (4.22) we must add

G0 =k,2,2,0/ I, (4.39)
where
2, = f dz F(vz)z. (4.40)
0

In the secular determinant in Eq. (4.35), to the
term I — N must be added elements,

k® 8mnge® Az,2,
L e
Lk, RKe, w®-A45°

14

(4.41)

These determine the splitting of the interband
modes and the cavity modes where they would
otherwise cross. The size of the splitting is rough-
ly (see Fig. 2)

6~ w,y2,(t,L,;)™ /2~ 0.01w,, (4.42)

using the thickness of the silicon layer #,~ 0.02
cm, L,,~2.5A, and z,~15 A. 6 is much less than
the width of the w,, resonance, which is about
0.2w,,.

3. Reflectivity

For the configuration of two semi-infinite media,
consider the reflection of an electromagnetic wave
incident from the semiconductor side at an angle
0; to the normal. The exciting electric field is

Eott = (67, 4 pe ity o) gt miot (4.43)
with

k,=(w/c)€s cosb;, (4.44)

k=(w/c)€,}?sind,. (4.45)

The first term on the right-hand side of Eq. (4.43)
is the incident wave with unit amplitude and the
second term is the reflection from the interface in
the absence of the inversion layer electrons. This
field should be put in Eqs (4.13) and (4.14) to ob-
tain the actual electric field, which contains a re-
flected wave of the form E’et*<*-*“* for large and
positive z, where

E'=7x+,—1f dz'(etk2 L reikes")
2ik, J o

X Y F(vz")B,.Ajb. X%,  (4.46)
vyt
where
Xext o f dz F(vz)(e™*s 1 Aettes), (4.47)

Using the expression (4.47) on the integrals in
(4.46) yields the matrix expression

E'=X+(1/2ik )Xt - B« A= - Xoxt, (4.48)
The reflectivity is simply
R=|E'|2 (4.49)

The first term of the reflection coefficient E’ in
Eq. (4.48) is just the reflection term of the bare
semiconductor-oxide boundary, and the second
term is due to the inversion layer electrons. The
second term can be expressed as a sum of con-
tributions from various modes worked out Sec.
IVA2. For a propagating electromagnetic wave,
k< (w/c)\/?z. For this region, there is no resonance
in the intraband plasmon branch, and the reflec-
tion behavior is similar to the usual plasmon con-
tribution. The interband modes, however, can
resonate with the propagating electromagnetic
wave and absorb its energy, thus greatly reducing
the reflectivity. This behavior is explicitly dem-
onstrated by a two-subband model, for which

i(L+NEQE i(1-N%2 2} ol - A}

T - .
E w®+ik 2 2k L, o -w

(4.50)

2z

The second term on the right-hand side comes from
the intraband plasmon, with
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Q= (2mn,e?/m,€)(1+1). (4.51)

The third term comes from the interband excita-
tion, with resonance at w,,, given by Eq. (3.20).

B. TE modes (s polarization)

For the TE modes,'® the electric field is parallel
to the interface and is along the y axis. If the mag-
netic field is eliminated from the Maxwell equa-
tions (4.1), the resulting wave equation is

d°E
Tz} - sz,= -(wz/Cz)Dy. (4.52)

Solution in the oxide region (z<0) is straightfor-
ward and has to be matched with the solution in the
semiconductor region (2> 0), given by

——# +k2E,= ZF(Vz)< a(w v)>

x [ azFywaE2),  (459)
(4]

using the constitutive equation (2.27). This equa-
tionis solved in the same way as Eq. (4.10). We
simply have to replace the matrix B by the dia-
gonal matrix —(w?/c? a,, and the Green’s function
by one appropriate to the TE mode (see the Ap-
pendix).

Thus, the normal modes are given by

det[T+(w?/c?G - a,]=0. (4.54)

Again, we can approximately partition the deter-
minant into v=0 and v+ 0 terms. For the case of
the two semi-infinite media, the Green’s function
has the same form as the TM mode case, except

A=(kpy=Fy)/ (Boy+Ry), (4.55)

where k,, is the &, in Eq. (4.3) for the semicon-
ductor region and &,, is an analogous quantity for
the insulator region.

The intraband normal mode would exist if the
v=0, v'=0 element of Eq. (4.54) vanishes, i.e.,
if

w? Q2
1+'c—§GooCty(0)= 1+@;—+—éz)—cg (456)
vanishes [when the replacement (4.10) is effected],
an impossibility for real frequencies w and wave
vectors k. The absence of the corresponding plas-
mon in the TE mode is understandable since the
electric field is completely transverse.

The determinant on the right-hand side of Eq.
(4.54) has poles at the unshifted interband fre-
quencies A, and has zeros shifted from A, by a
minute amount, of the order #A2/m,c®. The zeros
correspond to normal modes. In the case of re-
flection, these modes are extremely weakly cou-

pled to the electromagnetic wave since it is the
magnetic field rather than the electric field which
excites these modes. The coupling strength of the
TE modes relative to the TM modes is again of the
order 7A,/m,c?, i.e., about 107°. It is not possible
experimentally to align an electric field E exactly
parallel to the surface. Consequently, the slight-
est component of an electric field normal to the
interface will drive the TM resonances at the shift-
ed frequencies w,;, overwhelming the TE reson-
ances.

V. DISCUSSION

Chen et al.* used a slab model of the inversion
layer with constant electron density and obtained
apparently more modes than we did in Sec. IV. Al-
though the dielectric tensor we used is very non-
local, in the limit of a very thin inversion layer the
form of the dielectric tensor of the slab model is
qualitatively correct. The terms G,,. in Eq. (4.22)
which involve propagation of the electromagnetic
wave inside the inversion layer cannot be re-
produced except very approximately in the slab
model. In the slab model, if the thickness of
the inversion layer is negligible compared with
the wavelength of the excitation, then the mul-
titude of modes which Chen et al. obtained coalesce
and correspond to just those in Sec. IV. Our for-
mulation may also be applied to the thick inversion
layer case if the long-wave approximation in Eq.
(2.17) and Eqgs. (4.20)—(4.22) is not used.

Finally, we have shown that retardation and
boundary effects are negligible for the high-fre-
quency modes w,;. Consequently, any improve-
ment on the values for w,; must come from a cal-
culation of the density polarization beyond the ran-
dom phase approximation. Corrections to the RPA
bubble consist of (i) exchange and correlation cor-
rections to the electron self-energy (ii) vertex cor-
rections, which are just the electron-hole attrac-
tion. Estimates by Vinter'® indicate that these two
corrections are large but of opposite sign. There-
fore, great care must be taken in going beyond
RPA in including both types of correction. One
guarantee is to make the self-energy and vertex
satisfy the Ward identity®° (i.e., to take diagrams
which form a conserving approximation®). We
hope to deal with this problem in a later work.
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APPENDIX: ELECTROMAGNETIC GREEN’S FUNCTIONS

We present here a brief derivation of the Green’s
function

(g:—,-+kﬁ>6(k,:z,z')=6(z—z’); 0<z<t, (A1)
subject to homogeneous boundary conditions

6(0, 2") -a%%(O,z’):O, (A2)

G(2,,2") - “'Zi_ G(t,,2")=0. (A2)

Application of standard methods?? leads to
G(k,:zz") = [(2ik,)(1+20) ]

X (eikzlz-:.'l +reikelzre’]

_o.e-ikzlzwz'l _ o')\e'”’z“"' I)’ (A3a)
MR, = =(1 +ik,a)(1 —ik,a)™, (A3b)
olk,) =(1 —ik,a’)(1 +ik,a’)™, (A3c)

which can be continued to the nonpropagating sec-
tor 22<0 by Eq. (4.19). We now turn to calcula-
tion of A and o for particular geometries.

1. Two semi-infinite media

A dielectric with constant €,(€,) occupies z>0
(<0). The requirement of outgoing waves at z =+«
demands 0=0, while A depends upon the particular
mode (TE or TM).

For TM ( p polarization) modes we require con-
tinuity of E,(0), D,(0). Equation (4.2b) and the van-
ishing of £,(2=0)=0 lead to

e, 05
(Ex_ ke€, dz z-»o*—o’ (A9

where %, is defined by Eq. (4.38). Thus Egs. (A2)
and (A3b) demand

a= (ikzlez/ki€1)’

A= [(ky€r/ k) 1] [(Ry €0 RyE) +1]7

(A5)

just the usual reflection coefficient'® in the ab-
sence of the inversion layer.

A similar argument for TE (s polarization)
modes, with E(0), dE(0)/dz continuous, gives

a=ik} (A8)
A= [kz/kzl.) _1][(kz/ktl) + 1]-1

the classical S-reflection coefficient.!®

2. Wave guide configuration

Consider the oxide bounded by a perfect conduc-
tor at z= —¢, while the semiconductor is similarly
confined at z=+¢,. For simplicity we restrict at-
tention to TM modes, in which case the vanishing
of E(z2=t,) requires a’=0, so that

o= e?ketz, (AT

Continuity of E(0), D,(0) leads, by arguments sim-
ilar to those giving Eq. (A5), to

a= —(ikz €,/ k2€) tan(k 4, t,),
A= [1+(ky €,/ k€, tan(k 58] (A8)
X [1 ~(k €,/ 4¢,) tank,,t,)]™.

Finally, the dispersion relation for wave-guide
modes is given from Eq. (A3a) as 1+0r=0, sat-
isfied by

(kz./€) tan(ky,t,) + (k,/€,) tank 4£,= 0. (A9)
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