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Microscopic model of charge-density waves in 2H-TaSe2&
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A microscopic model of charge-density waves in 2H-TaSe, at zero temperature is developed and applied to

calculate the lattice dynamics in the commensurate phase. The results are compared with the Raman data of
Holy et al. At finite temperatures the conventional microscopic approach is to assume that the important

excitons are electrons excited across the Peierls gap in the band structure. This conventional theory leads to

gross inconsistencies in attempting to fit the experimental data for 2H-TaSe2. The theory is reformulated,

assuming that the coherence length is very short and that the dominant entropy is the lattice entropy. The

lattice-entropy model is in good agreement with experiment at the semiquantitative level; the quan-

titative discrepancies appear to be due in part to the neglect of critical fluctuation effects.

I. INTRODUCTION

Our present understanding of charge-density
waves (CDW) in metals follows from the early
work of Peierls, ' Frdhlich, ' Overhauser, ' and Chan

and Heine. ' In the past two years there has been
an extensive experimental study of CDW's in one-
dimensional organic materials [e.g. , (tetrathiaful-
valene-tetracyanoquinodimethane) TTF-TCNQ]'
and the transition-metal dichalogenides' (e.g., 2H-

Tase, }. There is now sufficient experimental data
for one material, 2H-TaSe„ to quantitatively test
the microscopic models that have been proposed.

The Peierls model and most of the subsequent
theoretical work is based on the following physical
picture: One starts with a normal metal and in-
troduces a periodic lattice distortion (a static
phonon distortion of finite amplitude and wave vec-
tor j). The lattice distortion creates a band gap
in the one-electron band structure. If the wave
vector q spans nested portions of the Fermi sur-
face, the energy of many occupied electronic states
will decrease and the total electronic energy will
decrease. If the gain in electronic energy more
than offsets the increase in elastic energy the
distorted state will be the ground state. The oc-
cupied electronic states are nonuniform and there
is a CDW with wave vector q which screens the
lattice potential. Thus, the three physical proper-
ties go together, the periodic lattice distortion,
the energy gap in the band structure, and the CDW.
I believe that this physical picture is correct for
2H-TaSe, and do not challenge it in this paper.
However, in order to calculate the properties of
the CDW state at finite temperature the conven-
tional approach is to include the entropy of elec-
trons excited across the energy gap. This ap-
proach predicts an energy gap at zero tempera-
ture 2W, =3.5 krlN, where T» is the incommensur-
ate to normal-state transition temperature, and

a BCS-like temperature dependence of the energy
gap. This approach should be correct if the co-
herence length (, is long; however it leads to gross
inconsistencies in attempting to fit the experi-
mental data for 2H-TaSe, as we show in Sec. IV.

In Sec. V, we reformulate the microscopic theory
at finite temperatures assuming that the coherence
length is short and that the phonon entropy rather
than the electronic entropy is important. This
short coherence-length model is in good agreement
with the available experiments. We find a coher-
ence length =3.5 A and an energy gap = 30 kT,„
which agrees with the infrared gap observed by
Barker et al.

We conclude with a few remarks on the relation-
ship between charge-density waves and chemical
bonding.

II. THEORETICAL MODEL AT T = 0

W', (x}=op',(x}, (2)

where 2 ~W', (x) ( is the local energy gap in the one-
electron band structure due to the lattice distor-

We adopt a simplified theoretical model of CDW's
in a metal similar to that used by Bilbro and
McMillan. ' We write the displacement of the i th
Ta atom in the lth layer from its lattice site R; as

u, (R, ) = Imgq, g~g(R, )s'q& (l)
J=i

where q& is the nesting vector of the jth CDW and

p, (R;) is the local complex amplitude of the CDW.
The three q; form a star in the I'M directions. Ac-
cording to the Chan and Heine model the screening
of the electron-phonon interaction is temperature
dependent in the normal state and temperature in-
dependent in the CDW state. We neglect the tem-
perature and q dependence of the electron-phonon
coupling constant n and write
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tion. Only a portion of the Fermi surface wQl be
affected by the energy gap W~ and we assume a
simplified band structure for this nested portion:
we assume perfect nesting with a Fermi velocity
v~ and an electronic density of states (of one spin}
of Ni(0) (for each CDW). Then the electronic en-
ergy is easily shown to be

-Nq(0) l~'( ) I'», ~(Wg x

~ vito)Clvtv', (*)I*), (o)

where EI, is the electronic band width and Eo is the
correlation length which is of order hvar/2W We.

have taken a correlation length which is isotropic

in the plane even though an anisotropic correlation
length is permitted by symmetry. Electrons near
the gap edge cannot respond to lattice vibrations
with wave vectors further than 1/gq from the nest-
ing vector and we assume that Qgg(x) is a slowly
varying function with momentum space cutoff of
k', =1/(q. The number of phonon modes which par-
ticipate in the CDW phase transition is limited by
this physical cutoff.

There are several other energies which are im-
portant in this problem; we will first write down
the complete energy expression and then discuss
the individual terms. Since we will deal primarily
with phonon frequencies we will use Q instead of
W as a variable. The total (potential) energy is

o,=-'2 f "* g Ialo I
clo' '—I toto '/o I' c',elvo'I' —Rvt~ ol v'"" ")+FReto'o'„, )Ij

+c(lol orat'+ IololI'+to'o*l'& ~ Rv(oo o o*)}'*

where 0 is the area of the normal-state unit cell
in one plane, and B and E are complex constants.
The first term in the energy is the unscreened
elastic constant, and the second and third terms
are the electronic contributions from (3}. The
fourth term is the lock-in term; it contributes only
when the wavelength of the CDW is three times
the lattice spacing. The fifth term is the inter-
layer interaction due to Coulomb and Van der
Waals interactions. The sixth term is a CDW in-
teraction which arises when two CD%'s compete
to open an energy gap on the same portion of Fer-
mi surface. Finally, the seventh term is a weak
CD% interaction permitted by symmetry.

The lattice kinetic energy is
d'x sy', (x)

where the Se atoms are assumed to adiabatically
follow the Ta atoms and with the same ratio of Se
displacement to Ta displacement as observed at
low temperature'; this yields M*= 206 au. Equa-
tions (4) and (5}constitute a dynamical model for
the longitudinal-acoustic-phonon modes near @.

and expand the potential energy to second order in
~ and P~. For the amplitude modes we find

,'M*~,' =4C—-3 ~a I q q+ 8Dgtg'q+Eq q

+2F 2F cos(—,'k, c-)+C(,'k' (1oa)

tween planes and above a Ta atom} we have B,*
=B„,and

e, =--,'e(a, ),

where e(B, ) is the phase of B, Then .minimizing
the energy with respect to Q, we find

4+cd, ', gt q'-c 1 n( 4ta/Q,
'}+c—2 ~IB(4gq

+2Dttg', + ,' Re(Egg" -qg, ) —F =0, (8)

which determines Q,.
In order to find the phonon frequencies we add a

small phase or amplitude distortion to the static
distortion

qggg(x) =[&,+(gg., +ip~)cos(k x+ ,' k,~lc)]e' "-' q

III. LATTICE DYNAMICS AT T = 0
,'Mo'qg„' =4C —3—~a

~
ttgq- 4Dqg'q —2Egtgq

+2F -2Fcos(-,'k, c)+Cg', k', (10b)
At T =0 in the commensurate phase the equili-

brium state is found by setting

@/(&) 4, &g(eg v6q ~ x) (6}
where Ag=-', Gg —q, . The lock-in energy dominates
in fixing the phase 8, of the CDW. %'ith the origin
of coordinates at the inversion center (midway be-

where E = Re[E exp(i 3e, )] For the .phase modes
we find

,' M*'td2g, = 9 J B ( Qq
——3Eqg, +2F —2F cos(-,' k,c) + C Pk'

(10c)
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Af2'~22 =9 ~B) p, +2F —2E cos (-,'k, c}+C)',k'.
(10d)

The (10b) and (10d) modes are doubly degenerate
giving six modes. These modes are formed from
the star of six longitudinal-acoustic modes at
a (fb +aq), j= 1, 2, 3 which are mapped back into
the origin of reciprocal space by the CDW. Note
that since the unit cell is two layers in the c di-
rection, wave vectors k=0, k, =0 and k=0, k,
= 2/c appear at 1' so that there are twelve modes
at I; six from each of two layers. The symme-
tries of these modes were given in Ref. (9). From
the Raman data' the following parameters were
determined:

F = 0.03 eV/A' ~B (P, =0.053 eV/A';

i&go I
= o 036 eV/A';

C = 0.29 eV/A, D f22 = 0.031 eV/A;

A/C+t'oaq'-lnl&2/0'2I'=-0 90.

interlayer and cubic terms in Eq. (4} are small
enough to be neglected. The CDW interaction term
(with coefficient D) is large enough to be impor-
tant; however it does not affect the transition
temperature and it reduces the heat-capacity jump
which, as we shall see, increases the discrep-
ancy between theory and experiment. Since that
discrepancy is large enough to be convincing al-
ready, for our present purposes we can omit the
CDW interaction term also. Thus the only impor-
tant energies are the band-structure energy (3)
and the quadratic lattice energy. We assume a
perfectly nested Fermi surface for each CDW and
write for the energy bands in the normal state

F.' =+ (k'n' ik„- —,'qi'+ W')'" (12}

and the total energy per unit volume per CDW is

In the presence of a static lattice distortion the en-
ergy bands are

1V. CONVENTIONAL THEORY AT FINITE T

There is now sufficient experimental data on 2H-
TaSe, to provide a quantitative test of theoretical
models of charge-density waves. Susceptibility,
resistivity, and transition temperatures are
available from Wilson, DiSalvo, and Mahajan'
and a complete neutron crystallographic study
has been performed by Moncton and Axe. ' Barker
eI, al. ,

"have observed an energy gap of 0.25 eV,
which they interpret as the CDW energy gap. Re-
cently, Craven" has measured the heat capacity
near the phase transition using the high-resolution
ac technique and Klein's group' have measured and
interpreted the Haman spectrum. Thus we have
the opportunity, for the first time, to find out
whether the theoretical models really work for
real materials. We first examine the "convention-
al theory" and find that it fails badly at finite
temperatur es.

If the ideas of Sec. II are correct, we have only
to add the appropriate entropy term to do the
theory at finite temperature. If the coherence
length is long (compared with the lattice spacing
or the interelectron spacing}, the phonon frequen-
cies are modified only over a small region of re-
ciprocal space and the phonon entropy is unim-
portant. The important entropy is that of elec-
trons excited across the energy gap in the band
structure. Note that for long coherence lengths,
critical fluctuations are unimportant and mean-
field theory is exact. We wish to calculate the
transition temperature and the heat-capacity jump
at the incommensurate-normal-state transition.
The lock-in energy does not contribute and the

+ n2 ln n2 + (1- n 2 )In(1- n z )] ~ (14)

Minimizing the free energy F =E —TS with respect
to n', we find

n', =1/(e 2ir+1). (15)

Finally, minimizing the free energy with respect
to the gap parameter 8' we find the gap equation

=2N (0) tmh ( ++ )
'2 0 (

2 +~2)1/2

where E~ is the electronic bandwidth. This gap
equation is equivalent to the BCS" gap equation
and was derived by Chan and Heine. ' Fromm BCS
we find the transition temperature

keT,„=1.13 Ea exp[ —Nr, A/2a2N&(0)]

the energy gap at T =0,

2W(T = 0) = 3.52 k2T~,
and the heat-capacity jump at g»,

4C2 ——3 x9.4 Nt(0)k22T(n,

where the factor of 3 is for the 3-CDW state. The
change in susceptibility is due to the opening of

(13)
k

where nI', is the occupation probability of the k'
band state and N~, is the density of Ta atoms. The
electronic entropy is

S =2 p [n2 ln n2+(1 —n2)ln(l-nz }
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the band gap and is

+X= X(TIN) X(0) =1 3 4ltr &t(0} (20)

including an electron-electron enhancement factor
of 1.3. These results are well known and are in-
cluded here for completeness.

In order to compare the model with experiment
we take Di8alvo's' value aX =55 x10 ' emu/mole
and use (20) to find the Nt(0) =0.33 (states/eV
Ta-atom). Using (19), the model then predicts
a specific-heat jump of 0.8 (J/mol K). Craven"
finds a specific-heat jump of 4 (J/molK) which is
a factor of 5 larger. This discrepancy is in-
creased if the CDW interaction term is retained
in the theory. The theory predicts an energy gap
2W(0) =0.037 eV, whereas Barker et al."find an
energy gap of 0.25 eV. These gross discrepancies
force one to conclude that the "conventional theo-
ry" presented in this section is not applicable to
2H-TaSe, .

V. PHONON ENTROPY MODEL AT FINITE T

We next examine the finite-temperature theory
in the opposite limit, that of small coherence
length. If the coherence length is small phonon
frequencies are modified over a large region of
reciprocal space and the entropy of the phonons is
important. If the phonon entropy is large enough,
it reduces the transition temperature sufficiently

glen 4 l(Xmn) (21)

We require that the number of lattice sites be
equal to the number of modes in momentum space
of the continuum model which gives a square lat-
tice spacing of ~$,. Replacing the gradient term
in (4) by the difference we find

that the electronic entropy is unimportant at the
transition. For large coherence lengths, the en-

ergy gap at T =0 is approximately 3 5 kTjN In or-
der for the short coherence-length limit to apply,
the energy gap at T =0 must be of order 7 kTjN.
or greater. Then the electronic entropy is cer-
tainly negligible .

At low temperatures, phonons are quantized ex-
citations. However, near the transition tempera-
ture the phonon energies are 1.ess than kT and we

can use classical statistical mechanics. Equation
(4} is the energy of a microscopic phase-transi-
tion model with three complex order parameters
in three dimensions; the interlayer interactions
are weak. It is a continuum model with a mo-
mentum space cut off. In order to calculate its
properties we first transform to a discrete model
and then use the mean-field approximation. On

each plane we define a square lattice with lattice
sites x „. We define a lattice order parameter

by the value of the continuum order param-
eter at the lattice site

(22)

(23)

(24)

(25)

The probability of a particular configuration is

+D(l@r' rt'r I
+ Irt'r rj'r I

+ lkr 0'r'

We neglect the small terms in the energy. It may be important in a more exact calculation to retain the
interlayer interaction since that term makes the problem three dimensional; within mean-field theory it
is unimportant. We next transform to dimensionless quantities

exp( Ep/T) = exp(--er, /t ) (28)

2

en=2 2 C
ln —' +(fnr&q)' ly'r I'+ lrtr'r I'Inlrtr, I' — ' Re(rtt, )1' f 0

+—„a (I&'r--&r-. r. l'+ l&r -er ., r I')+
C

' (Irtr', er I'+ Ior'-Or':I'+ ler'..er' .I') (27)

Within the mean-field approximation each mode moves in a potential

A ~t)
2 4 8 2DQ BQv(y}=

C
-in

&
+—,+(trqg)' Irj'I'+ Iql'In Irt I'- —,Re(y*(y))+

C
' Irtl'(Iyl') — C' Re(y') (28)
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in the commensurate phase; in the incommensur-
ate phase the (n, q E )' term and the cubic term are
omitted. The thermal average value of a quantity

is

and one must solve for (g) and (1)))1'), the two or-
der parameters, self-consistently

(g) day gs-v~($)/t
v

d2~ ~-v~($)/t
y (30)

( I
I)') = f d

I
)I')'e "'"' ' f& )e '"' "(u')

+(Z.n q}' & I)) I'&+())'in4'&

D$2
+ c' &141'&'- ~' &Re(4')&, (3

and the classical entropy is

d2$ plnp,

where

(33)

()1)) is the long-range order parameter and is pro-
portional to the mean static displacement of the
lattice; it vanishes in the normal phase and is fin-
ite in the incommensurate and commensurate
phases. (1/1') is a short-range order parameter
and is proportional to the mean-square local lat-
tice displacement and to the mean-square local
energy gap. All the parameters in (27}have been
determined from the Haman-scattering experi-
ments except (ghq)'. We find ($+q)s = 0.065 from
fitting the incommensurate-commensurate transi-
tion tempe rature.

The thermodynamic quantities can be easily de-
rived within mean-f ield theory. The energy per
mode (in reduced units} is

transition is second order. Note that the rms lo-
cal energy gap [which is proportional to ((1g'1)}'~']

drops to 86/p of its zero-temperature value at the

onset transition and then increases slowly. This
is in marked contrast to the large coherence-
length model where the energy gap vanishes at
the onset transition. The entropy jump at the
commensurate-incommensurate transition is
0.10 k~ and the heat-capacity jump at the onset
transition is 1.67 k~. The dimensionless transi-
tion temperature is 0.296.

We can also calculate the temperature depend-
ence of the phonon frequencies within the mean-
field approximation and using the adiabatic ap-
proximation (u)T «1, where ~ is the longest re-
laxation time in the system). The elastic constant
appropriate to the symmetric amplitude mode
[the A„mode of equation (10a)] at 1 is propor-
tional to s'F/s(g)' and the computed temperature
dependence of theA«mode is shown in Fig. 2.
The mode frequency agrees with the Raman mea-
surement at low temperature since the model
parameters were determined by fitting the Raman
frequencies. At room temperature, the computed
frequency agrees fairly well with Moncton's neu-
tron data. At 125 K just above the phase transi-
tion, Moncton's data show a peak of reduced in-
tensity at 4.5 meV; resolution effects complicate
this measurement and it is suspected that the real
frequencies are somewhat lower. However, the
mode does not appear to go totally soft at the phase
transition as predicted by the mean-field theory.
It appears that the adiabatic approximation has
broken down due to critical slowing down near the

phase transition.
We now test the short coherence-length model by

comparing it with experiment. We can extract two

p(g)=g-, t~)i fg*) -,t~)i

Finally, the free energy is

(34) I.O Alii &

F =E-TS

=—(y&' — 0 ( 1q1')' —T ln d')I) e
4 D$2
w2 C

(35)
The self-consistency equations can be derived by
minimizing the free energy with respect to the or-
der parameters. The order parametexs versus
temperature are found by numerical solution of
the self-consistency equations and are shown in
Fig. 1. Within the approximations used here the
commensurate-incommensurate transition is first
order and the incommensurate-normal metal

0.5—

0
0 IOO 200 500

FIG. 1. Long-range order parameter gr) and the
square root of the short-range order parameter (1$1t&
vs temperature according to the short coherence-length
theoretical model.
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FIG. 2. Solid curve is the calculated phonon energy of
the symmetric amplitude (A &~) mode vs temperature.
The open square is from the Raman data of Holy et al.
and the open circles are from the neutron data of Monc-
ton et al.

parameters from the experimental transition tem-
perature and heat-capacity jump. Craven's heat-
capacity jump is =4(J/(mol 'K) which is 0.46k' per
Ta atom. With b, C =1.67k~ per mode we find three
modes per ten Ta. atoms or three modes per super-
lattice unit-cell area. The correlation length is
therefore about w), =10A which is equal to the
super-lattice unit-cell length which is as short as
is physically reasonable for a correlation length.
We can confirm this magnitude of the correlation
length by comparing with other data. Moncton has
measured the ratio of the basal-plane correlation
length (actually the longitudinal one in the q di-
rection) to the c-direction correlation length and
finds a ratio of 3. Within mean-field theory, that
ratio is [Ct'JF-,'c'] ' '= 2.0 which is satisfactory
agreement since we have neglected the anisotropy
of the basal-plane correlation length. The extent
in k. space of the Kohn anomaly should be = 1/t',
= 0.12(4w/v'3a) which agrees with the extent of the
anomaly observed in the Z, ,[100] longitudinal-
acoustic-phonon branch of 2H-TaSe, by Moncton
and Axe. Thus, the short coherence length is con-
sistent with several experiments and it is clear
that 2H-TaSe, is in the short coherence-length
limit. The computed transition temperature is

T,„=0.296 C(wf y, )'/2n . (36)

With T~=122 K, C =0.29 eV/A, and (wt, )'/0=10,
we find p, = 0.16 A. Moncton has measured Q, di-
rectly using neutron crystallographic techniques
and finds Q, between 0.05 and 0.09 A which pro-
vides another experimental test of the model.

With such a short coherence length, the energy
gap is the same order of magnitude as the Fermi
energy. We can obtain a rough order-of-magni-

I.O ==-

0.5—

0
0 50

T(K)
IOO

I

I 50

FIG. 3. Comparison of the long-range order para-
meter of the theoretical model (solid curve) with the
square root of the superlattice Bragg scattering inten-
sity from Moncton et al.

tude estimate of the energy gap as follows. From
Mattheiss's" band structure (for 2H-TaS, ) the Fer-
mi energy is 0.35 eV and the (isotropically aver-
aged) basal-plane band mass is about 5 electron
masses. Using (,=hvar/2Wwe estimate 2W, =0.3
eV which is in order-of-magnitude agreement with
the weak absorption edge (at 0.25 eV) observed in

infrared reflectivity by Barker et aL The ob-
served energy gap of 24 k~T» fits in nicely with
the short coherence-length model but is inconsistent
with the long coherence-length model.

The short coherence-length model works very
well in a semiquantitative way in comparing orders
of magnitude of quantities. Since Moncton and Axe

have measured the temperature dependence of the
long-ranged order parameter in 2H-TaSe, we can
have a detailed quantitative test of the model
(within the mean field approximation). This com-
parison is shown in Fig. 3. The model is not in
quantitative agreement with the measured order
parameter, particularly near the onset transition.
The deviation is in the direction expected from the
effects of critical fluctuations with the measured
order parameter rising more rapidly (smaller
exponent) and to a larger value than the computed
order parameter. With a short coherence length
one expects strong critical behavior and this be-
havior is clearly present in Craven's heat-capacity
data. Thus the mean-field approximation is at
least partly to blame for the disagreement in Fig.
3. Since the mean-field theory is not quantitative
the estimates of Q and P, are accurate only with-
in a 50% ~ The drop in order parameter at the
commensurate-incommensurate transition (at
90 K) is several times smaller than predicted. At
least part of the reason for this discrepancy is the
fact that amplitude and phase distortions of the or-
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der parameter, which are known to be present in

the incommensurate phase, ' "have been left out
of the present theory. The dynamical behavior
near the phase transition is also poorly predicted
by the mean-fieLd calculation. Since all these dis-
crepancies may be due to defects in the mean-
field approximation rather than defects in the phy-
sical model, it is very important to have more
quantitative calculations based on the physical mo-
del.

The physical picture of charge-density waves in
2H-TaSe, which we have arrived at is as follows.
The CDW modes in different superlattice unit cells
can be treated as independent local modes with
intercell interactions. In each superlattice unit
cell, each mode consists of a localized longitudi-
nal phonon together with a localized electronic
energy gap. The phonon mode has both amplitude
and phase, and at low temperature, there is long-
range phase coherence of the phonon modes and
one has a uniform periodic lattice distortion and
a constant energy gap. At the phase transition,
the long-range phase coherence breaks up and the
long-range order parameter goes to zero. How-
ever, there is still a large amplitude of the local
phovon mode in one superlattice unit cell and a
large but fluctuating local energy gap. The tem-
perature dependence of the long-range order
parameter (g) and of the local rms energy gap
are shown in Fig. 1. The rms energy gap is quite
large at the phase transition and increases with
increasing or decreasing temperature. Fluctua-
tions of the energy gap will be strong near the
phase transition and at higher temperature and
will smear the gap structure observed in an opti-
cal experiment. These fluctuations should also
cause strong electron scattering at high frequency.
Within this model the decrease in susceptibility
observed at the phase transition is due to the in-
creased area of Fermi surface eclipsed by the
CDW as the rms energy gap grows.

VI. CHARGE-DENSITY %AVES AND CHEMICAL BONDING

The chemical bond in organic or solid-state sys-
tems has long been described as intermediate be-
tween the ionic bond and the covalent bond. " "
Both limiting cases can be understood in simple
terms. The metallic bond has not found its place
in chemical dogma. I would like to suggest that
the CDW concept forms the natural link between
the metallic bond and the ionic-covalent bond. It
may be a very useful concept in narrow band-gap
materials.

We start with a metal and consider opening a
CDW energy gap in the band structure. In order
to gain the most energy, the q vector of the CDW

FIG. 4. Ta atomic displacement pattern in the com-
mensurate phase of 2H- TaSe2 taken from the data of
Moncton et al. and Holy et al. The displacements are
exaggerated for clarity and shiv the pairing of six of
the nine atoms in the superlattice unit cell.

must span nested portions of the Fermi surface.
When the gap is small the correlation length is
quite long; if one wants to use a chemical-bond
concept one must consider a very delocalized bond

covering many metal atoms. Also, the directive-
ness of the bond is determined by the nature of the
Fermi surface, not by the configuration of neigh-
boring atoms. For a larger energy gap, compar-
able to the Fermi energy or bandwidth, the co-
herence length is short and the chemical bond is
much more localized. In addition the atomic dis-
placements are larger and the nonlinear terms in
the electron-lattice interaction become important;
the energy gap is maximized (and total energy
minimized} if the pattern of atomic displacements
minimizes bond lengths between pairs of atoms.
These nonlinear terms pick out a bonding dis-
placement pattern and cause the CDW's to lock into
the lattice. Thus, one begins to pick up the direc-
tional character of the chemical bond in this in-
termediate strength case with the energy gap of
the same order as the Fermi energy. The pair-
bonding pattern is clearly seen in the displace-
ment pattern for 2H-TaSe, in Fig. 4. Finally for
energy gaps much larger than the bandwidth, the
metallic character disappears and one approaches
the conventional ionic-covalent picture with bond
directiveness controlled by the spatial character
of the local atomic orbitals.

VII. CONCLUSIONS

A theoretical model of charge-density waves in
2H-TaSe, has been proposed which is in semi-
quantitative agreement with the available experi-
mental data. Quantitative agreement is still lack-
ing and further theoretical work is indicated. We
have shown the short coherence-length limit is
applicable to 2H- TaSe, and it follows that this lim-
it is applicable to the homologous materials 2H-
NbSe, and 2H- TaS,. It appears likely that this
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limit is applicable to other CD% materials with
low onset temperatures; however, one should be
cautious in applying this model to other materials
before sufficient experimental data is available
to test the model.
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