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The results of a series of band-structure calculations for hypothetical forms of crystalline mercury with the
fce, bee, sc, and diamond structures are applied to model the variation with density of N(E;), the density
of states at the Fermi energy, in expanded liquid mercury. This quasicrystalline model is based on
augmented-plane-wave (APW) energy-band calculations for each crystal structure with a fixed nearest-
neighbor bond distance. The Fermi energy E and N(E) for each system are derived from a tight-binding fit
to the APW results along symmetry lines in the Brillouin zone. The tight-binding wave functions are applied
to decompose the total N(E) into its s and p components, N,(E) and N,(E), respectively. It is found that
the calculated variation of N,(Ef) with coordination provides a semiquantitative explanation for the observed
variation of the Knight shift in liquid mercury with density. However, the corresponding variation of N(Ej)
with density fails to resolve the apparent contradiction between the Knight shift and the electronic transport

properties in the ‘‘strong scattering” regime.

I. INTRODUCTION

Because liquid mercury possesses a relatively
low critical temperature and pressure, it can be
expanded to very low densities by heating it under
pressure. This has led to experimental studies
of several of its physical properties as a function
of density, including its electrical conductivity,'"3
thermopower >3 Hall coefficient,* and Knight shift?
Each of these properties exhibits remarkable vari-
ations with density. For example, it is found that
the electrical conductivity decreases by eight
orders of magnitude as the density is reduced from
13.6 to 2 g/cm3. A comparison of these conductiv-
ity, thermopower, Hall-coefficient, and Knight-
shift data leads to the conclusion that a rather
gradual metal-semiconductor transition occurs in
liquid Hg in the range p=~8-9 g/cm?.

As is well known, this type of metal-semicon-
ductor transition is expected at reduced densities
for a divalent metal such as mercury when the 6s
and 6p conduction bands no longer overlap. In the
case of a liquid, the sharpness of this transition
would probably be reduced by density fluctuations
and the general loss of long- and short-range
order.

Mott® has proposed an intuitive theory for liquid
Hg that is based on these simple theoretical ideas.
According to Mott, the band structure for a hypoth-
etical form of crystalline Hg in which the lattice
parameter is gradually increased would produce
initially a minimum in N(E) near E and ultimately
a band gap. Mott suggests that the general features
of this crystalline model for Hg would survive in
the liquid state, with band edges and critical points
smeared out by density fluctuations and the loss of
long- and short-range order. Thus, Mott replaces
the fundamental energy gap for crystalline Hg by
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a “pseudogap” or minimum in N(E) at E, in the
liquid. Mott” proposes that when the magnitude of
N(E) in this “pseudogap” decreases to some criti-
cal value, the electrons in these states become
localized rather than itinerant, thereby producing
a metal- semiconductor transition.

An alternative model for explaining the metal-
semiconductor transition in liquid Hg has been
proposed by Cohen and Jortner.® Their model
emphasizes inhomogeneities in the local density of
the fluid that are caused by density fluctuations.
They suggest that these fluctuations lead to the
simultaneous presence of semiconducting and
metallic regions within the liquid. At high mean
densities, the metallic regions dominate so that
metallic paths extending throughout the material
are more likely. As the mean density isdecreased,
the volume fraction of these metallic regions also
decreases. They propose that when a critical value
is reached, these extended metallic channels are
no longer available and the liquid becomes semi-
conducting.

Analysis of the properties of liquid Hg in terms
of these models is complicated by an apparent in-
consistency of the Knight shift and the electronic
transport properties.®> Both the Mott description
and that of Cohen and Jortner contain a “strong-
scattering” transport regime which applies over
an intermediate range of densities between the
normal liquid metal and the metal-semiconductor
transition. In this regime, it is supposed that
the electronic wave functions are itinerant, ex-
tending throughout the material, but that the scat-
tering is so strong that the electron mean free
path is reduced to one interatomic spacing a.

This strong-scattering situation has been discussed
extensively by Cohen,’Mott,'° Hindley,'! Friedman,'?
and others. The essential theoretical prediction
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is that, as the density is reduced, the conductivity
o and Hall coefficient R, vary with a parameter

X =Ny (E p)Ja® according to 0 xzX? and R,z X",
Here N,(E,) is the density of states per unit vol-
ume at the Fermi level, J is an interatomic trans-
fer integral, and z is the coordination number.
This behavior is consistent with the data of Even
and Jortner* who found Rj' < 0o'/2 over a density
range of roughly 9-11 g/ecm3. The conductivity
varies from 300 to 3000 (2 cm)™! over this region.
In contrast, however, the Knight shift is found to
be independent of density over this same range.
This suggests that the s component of the density
of states is constant and so raises a serious chal-
lenge to the strong-scattering description unless it
can be shown that the Knight shift is influenced by
additional factors or, for example, that the ex-
pected decrease in N(E ;) with decreasing density
is compensated by an increase in fractional s
character at E,. It is therefore of considerable in-
terest to investigate independently the expected
behavior of N(E ;) and N, (Ej) in liquid Hg as a func-
tion of density.

One approach to this problem is to model the
electronic structure of the liquid by means of band-
structure calculations for appropriate crystalline
structures. The validity of this method rests onthe
assumption that gross features of the electronic
structure are determined by the density and local
arrangement of atoms and are relatively insensi-
tive to the degree of long-range order. The small
changes of the electronic properties observed for
most metals on melting provide support for this
assumption. Even in cases where the bands are
far from the free-electron form, there may still
be little change in N(E) on melting, as strikingly
demonstrated by the recent x-ray photoemission
study of Bi by Baer and Myers.!3

There have been several recent band-structure
calculations carried out for hypothetical forms of
crystalline Hg in the low-density limit. The first
calculations were by Devillers and Ross,'* who
applied the pseudopotential method to calculate the
energy bands for crystalline Hg with the bcc, fcc,
and rhombohedral structures. For each structure,
they obtained a band gap at p~8.5g/cm3, in gen-
eral agreement with the transport data. More
recently, Overhof e? al.!s have carried out rela-
tivistic Korringa-Kohn-Rostoker (KKR) calcula-
tions for expanded fcc and simple cubic (sc) Hg.
Unlike Devillers and Ross, Overhof ef al. find
that the semiconducting gap occurs at different
densities for the two structures. They find that
fce Hg becomes semiconducting at p=9.3 g/cm?
while s¢c Hg remains a conductor until p=5.5
g/cm®, A similar dependence on crystal structure
was obtained by Fritzson and Berggren,'® who

carried out pseudopotential calculations for ex-
panded fcc, bee, and sc Hg and found that band
gaps open up at p=6.5 g/cm? for fcc, 5.5 g/cm?
for bee, and 4 g/cm? for sc Hg.

A very different approach has been taken by
Yonezawa et al.'” who calculate N(E) for the dis-
ordered liquid metal using a tight-binding self-
consistent single-site approximation. These cal-
culations also exhibit the development of an energy
gap, but at densities in the range 2—4 g/cm.® This
is lower than the values obtained by band calcula-
tions and also less than can be inferred from
optical-absorption'® and electrical-transport
data.!** Thus, the band models generally tend to
produce results that are in more satisfactory
agreement with experiment.

The purpose of the present investigation is to
apply a new quasicrystalline model to approximate
the electronic properties of expanded liquid mer-
cury. In this study, we assume that the nearest-
neighbor bond distance is constant so that the den-
sity variation in expanded liquid Hg is due entirely
to changes in coordination number. Although this
assumption is a likely oversimplification, available
data on liquid structure suggest that it is a sound
first approximation. For example, x-ray studies
by Waseda and Suzuki'® on liquid Hg at low tem-
peratures (p= 13.6 g/cm?) suggest a temperature-
independent nearest-neighbor bond distance of
3.07 A and a coordination number of 10~11. Less-
complete determinations of the structure factor
for liquid Hg at higher temperatures by Waseda
et al.?° suggest the likelihood that the nearest-
neighbor bond distance remains essentially un-
changed and that density reductions are due pri-
marily to a decrease in the coordination number.
This would be analogous to the situation in liquid
argon, where the coordination number decreases
from 10+2 at high densities to 4+ 2 near the crit-
ical point with little concommitant change in near-
est-neighbor distance.?

The present study is based on a series of aug-
mented-plane-wave (APW) calculations for crys-
talline Hg with the fce, bee, sc, and diamond
structures and a fixed nearest-neighbor bond dis-
tance of 3.07 A. Ina perfectly ordered crystal,
these calculations would correspond to densities
of 16.3, 15.0, 11.5,and 7.5 g/cm?®, respectively.
However, it is argued that these densities are
reduced by disorder, fluctuations, etc., in the
liquid state for the structures having z2<12 so
that these quasicrystalline results correspond to
liquid densities of 16.3, 10.9, 8.1, and 5.4 g/cm?,
respectively.

The results of these calculations show that the
Hg 6s and 6p bandwidths and their overlap are
reduced systematically as the coordination number
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is decreased at a fixed nearest-neighbor distance.
In particular, the 6s-6p band overlap is reduced
to about 0.1 eV in the tetrahedrally coordinated
diamond structure. A band gap is then opened up
if the nearest-neighbor bond distance is increased
by about 1% to 3.10 A. The Slater-Koster linear-
combination-of-atomic-orbitals (LCAO) inter-
polation method?? has been applied to fit the re-
sults of these APW calculations along symmetry
lines in the Brillouin zone. Using these LCAO
eigenvalues and wave functions, we have calculated
accurate density-of- states curves for each struc-
ture, including their decomposition into s and p
components.

The details of the present APW calculations for
Hg are described in Sec. II, along with the LCAO
model and its application to the density-of-states
calculation. The results of these calculations are
presented in Sec. III. These include E(K) and N(E)
curves for hypothetical fce, bee, sc, and diamond-
structured Hg. The application of these crystalline
results for interpreting the electronic properties
of liquid mercury is considered in Sec. IV, while
Secs. V and VI contain, respectively, a brief dis-
cussion and a summary of our results and con-
clusions.

II. DETAILS OF THE CALCULATIONS
A. APW calculations

The present APW calculations utilize approxi-
mate crystal potentials that are derived from over-
lapping relativistic Dirac-Hartree- Fock-Slater
atomic charge densities®® for Hg involving the con-
figuration 6s? and full Slater exchange (a=1).%
The choice a=1 is often regarded as optimum for
calculations in which the potential is not determined
self-consistently. The present calculations have
been carried out for fcc, bee, sc, and diamond-
structured Hg with a nearest-neighbor bond dis-
tance of 3.07 A. In each case, we have included
the corrections to the muffin-tin potential in the
region between the APW spheres. As DeCicco has
shown,?® these warping corrections to the muffin-
tin approximation are readily introduced into the
APW formalism; they require the addition of one
extra term to each muffin-tin APW matrix ele-
ment, namely, the Fourier coefficient of the warp-
ing correction.

These corrections to the muffin-tin potential
become more important as the nearest-neighbor
coordination number is reduced. This is illustra-
ted in Fig. 1, where the muffin-tin potentials near
the APW sphere radius R for each crystal struc-
ture are compared. The four values for the con-
stant potential in the interstitial regions between
the APW spheres are shown to the right. The dis-
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FIG. 1. Plot of the muffin-tin potentials near the APW
sphere radii R =2.9 a.u. for Hg with the diamond, sc,
bee, and fee structures. Values of the average potential
between the spheres are shown to the right.

continuity in the potential at R varies from 0.13 Ry
in the close-packed fcc structure to 0.39 Ry for
the diamond structure. In each case, the APW
sphere radius is 2.9 a.u. or half the nearest-neigh-
bor bond distance.

Because of its large atomic number (Z = 80),
relativistic effects are expected to be important for
Hg in calculations dealing with the atomic, liquid,
or solid state. This is evident from the relativis-
tic APW results for rhombohedral crystalline Hg
by Keeton and Loucks?®® and the perturbation-theory
atomic estimates by Herman and Skillman.?” Ac-
cording to Herman and Skillman, the combined ef-
fect of the Darwin and mass-velocity corrections
is to lower the atomic 6s level of mercury by about
0.15 Ry relative to the energy of the 6p state. It
is clear that these relativistic effects are an es-
sential ingredient in any theoretical model for the
metal-semiconductor transition in liquid Hg.

By comparison, the effects caused by spin-orbit
coupling are considerably smaller than these Dar-
win and mass-velocity corrections. For example,
an extrapolationof the Herman-Skillman results for
Pb and Po suggest that the Hg 6p spin-orbit param-
eter £,~0.02 Ry. As is well known, the principal
effect of spin-orbit coupling on the energy-band
states in solids is that of reducing the spatial de-
generacy of states with wave vectors at symmetry
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points and along symmetry lines of the Brillouin
zone by causing splittings which are proportional
to &.

In the present investigation, the bulk of the en-
ergy-band results have been obtained using a
“partially relativistic’ APW method®® in which
the Darwin and mass-velocity corrections are
taken into account but spin-orbit effects are
neglected. In addition, limited calculations were
carried out using the fully relativistic-APW
(RAPW) method.?® A comparison between these
partially and fully RAPW results allows one to study
the way in which the partially relativistic bands
are changed by spin-orbit coupling. In each struc-
ture, it is found that the bands near the Fermi en-
ergy E are spatially nondegenerate. As a re-
sult, the energies of these states were only slightly
altered by the effects of spin-orbit coupling.
Therefore, it is concluded that, for the purposes
of the present study, spin-orbit effects can be
safely neglected.

This is not the case for the Hg 5d bands. In their
relativistic calculation for rhombohedral Hg,
Keeton and Loucks?® find that the Hg 5d bands are
located about 8 eV below E ,, near the bottom of
the 6s-6p conduction band. The relativistic KKR
results of Overhof et al.'® for expanded fcc and sc
Hg place the 5d bands slightly below the bottom of
the 6s-6p conduction band. In both calculations, it
is clear that the 54 spin-orbit parameter £,
~0.06 Ry is comparable with the 5d bandwidth so
that spin-orbit effects are essential in an accurate
treatment of these states. Similar results are ob-
tained in the present investigation. It is found that
the Hg 5d bands fall slightly below the bottom of the
6s-6p conduction bands in the diamond structure.
These 5d bands gradually overlap the bottom of
6s- 6p band as the nearest-neighbor coordination
number increases. In the fcc structure, the posi-
tion of the 5d bands relative to the 6s-6p bands is
comparable to that obtained by Keeton and Loucks
for rhombohedral Hg.

B. LCAO model

The Slater-Koster LCAO interpolation method??
has been applied to fit the results of APW calcula-
tions along symmetry lines in the Brillouin zone for
each crystal structure. For simplicity, this LCAO
model has included only the Hg 6s-6p conduction
bands and neglected the 5d bands. This leads to a
4 X4 matrix for the sc, bce, and fcc structures
and an 8 X8 LCAO matrix for the diamond struc-
ture, where there are two Hg atoms per cell.

In most cases, the LCAO matrix elements are
obtained directly from the tables published by
Slater and Koster.?® We have included up to third-

neighbor interaction parameters in our LCAO
matrix. For the diamond structure, these are
obtained from the work of G. Dresselhaus and
M. S. Dresselhaus® and Alstrup and Johansen,®
who also correct some misprints in the Slater-
Koster tables.

The LCAO parameters were determined by a
nonlinear-least-squares fitting procedure that
has been described previously.3? A slight modifi-
cation of this procedure was introduced in the
present investigation in order to simplify its ap-
plication. Namely, instead of reducing the LCAO
matrices at the various symmetry points by hand
into their irreducible components, the proper
matching of LCAO eigenvalues g with the appro-
priate first-principles energy E, was achieved
within the computer codes by examining the sym-
metry of the LCAO eigenvectors.

The number of LCAO parameters included in this
fitting procedure ranged from 16 for the fcc struc-
ture to 22 for the diamond structure. These pa-
rameters were treated in their most general form
and did not involve the two-center approximation.
Nearest-neighbor overlap of the 6s-6p orbitals was
treated explicitly in this LCAO model. These
overlap parameters were particularly effective in
improving the accuracy of the fit along symmetry
lines where s-p hybridization is important.

In those cases where bands originating from the
more highly excited atomic states of Hg overlapped
the 6s-6p manifold, it was useful to assign these
upper bands a reduced weight in the LCAO fitting
procedure. This helped to improve the overall
accuracy in the more important energy range near
Eg.

The results of Table I summarize the details of
the LCAO interpolation scheme and its application
to each of the four crystal structures. For each
structure, the LCAO parameters were determined
by fitting APW results at a uniformly spaced set
of mesh points such that the A or (100) axis of
the Brillouin zone was subdivided into either four
(sc) or eight (diamond, bce, fcc) intervals. This
provided roughly 100 band energies/atom in the
unit cell for each structure. The rms error in the
fit, including the reduced weighting of the upper

TABLE I. Summary of the LCAO fit to the Hg 65—6p
bands.

Structure
Diamond sc bee fec
No. of LCAO parameters 22 18 19 16
No. of wave vectors’.ﬁi 27 22 26 27
No. of energies E, (k;) 216 88 104 108

rms error (Ry) 0.008 0.009 0.014 0.017
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DIAMOND

ENERGY (Ry)

FIG. 2. APW results for
hypothetical Hg with the
(a) diamond, (b) sc, (c)
bee, and (d) fee structures.
The cross hatching indicates

ENERGY (Ry)

the approximate energy
range of the 5d core states.

r a x z M z r A R
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unoccupied bands, ranged from 0.01-0.02 Ry.

The LCAO band structures for each of these
crystalline forms of Hg have been applied to de-
termine the corresponding density-of-states curves
N(E) using the tetrahedral method.?*3* This ap-
proach subdivides the Brillouin zone into tetrahe-

dra, within which E(K) is assumed to vary linearly.
The values of E(ﬁ) at each of the vertices de-
termine the coefficients in simple analytic ex-
pressions for the density-of-states contribution
from each band.

In the present application of this method, we have



16 BAND MODEL FOR THE ELECTRONIC STRUCTURE OF... 629

bcc

ENERGY (Ry)

Figure 2 (continued)

ENERGY (Ry)

(d)

included approximately 4000 tetrahedra within =
of the Brillouin zone. A comparison of these re-
sults with those obtained using half as many te-
trahedra yield negligible changes in the details of
N(E) curves.

In addition to determining the total density of

states N(E), we have also determined its 6s and
6p components, N (E) and N)(E), respectively.
This involves the weighting of each contribution
to N(E) by the average s and p character of the
LCAO wave functions at the four vertices of the
tetrahedron.
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III. RESULTS

The results of the “partially relativistic” APW
calculations for each of the four hypothetical crys-
talline phases of Hg are shown in Fig. 2. In each
case, the zero of energy corresponds to the aver-
age value of the potential in the region between
the APW spheres (Fig. 1). The Fermi energy E,
is indicated by the dashed horizontal lines. The

approximate positions of the 54 j=3 and j= 3 core
levels are indicated by the cross-hatched areas
along the Z and G symmetry lines of the Brillouin
zone. These were determined by means of limited
RAPW calculations for each structure.

The lowest pair of bands in Fig. 2(a) involve pri-
marily the Hg 6s orbitals. At each point in the
zone, these bands are about 0.2 Ry lower in energy
than the lowest 6p bands. However, it is found

15

0.2

ENERGY (Ry)

FIG. 3. Comparison of
(a) nonrelativistic and (b)
partially relativistic en-
ergy-band results for Hg
with the diamond structure.
(c) Results of a partially
relativistic calculation with
the lattice parameter ex-
panded by 3.3%.

(b)
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that the top of the 6s valence band (T,,) slightly
overlaps the lowest conduction-band state (Z,),
thereby predicting semimetallic behavior. This
6s-6p band overlap gradually increases as the
coordination is increased from 4 to 6, 8, and 12
in Figs. 2(b), 2(c), and 2(d), respectively. This
leads to metallic behavior in the closer-packed
structures. It is also clear that the bands become
more nearly “free-electron”-like as the coordina-
tion is increased.

This transition from fairly narrow tight-binding
bands in Fig. 2(a) to broad nearly free-electron-
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like bands in Fig. 2(d) is reflected in the accuracy
of the LCAO fit to these bands, as summarized in
Table I. It was noted in Sec. II B that this LCAO
model neglected some of the higher-lying bands
that evolve from excited atomic states. Some ex-
amples of these are the bands originating from the
upper T, state in Fig. 2(a) as well as the M, and
R,, states in Fig. 2(b).

To illustrate the importance of relativistic ef-
fects (Darwin and mass-velocity corrections) on
these results, we compare in Figs. 3(a) and 3(b)
the nonrelativistic and partially relativistic band
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FIG. 4. Plot of N(E) and N (E) curves (upper and lower lines, respectively) as a function of energy for each crystal

structure.
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structures for tetrahedrally coordinated Hg. The
results in Fig. 3(a) have been determined from a
completely independent APW calculation involving
a charge density derived from the nonrelativistic
Herman-Skillman program.?” Equivalent results
are obtained if one sets the velocity of light ¢ =
in the partially relativistic calculations of Fig.
3(b). The ordering of levels in Fig. 3(a) is similar
to that usually found in calculations for group-IV
elements with the diamond structure, where a
semiconducting gap separates the fourth and fifth
bands.

The slight overlap of the 6s-6p bands in Fig.
3(b) disappears in Fig. 3(c) when the lattice con-
stant is increased by 3.3%. Assuming a linear
variation, it is estimated that this band overlap
is zero for tetrahedral coordination when the
nearest-neighbor bond distance is increased by
1% from 3.07 to 3.10 A.

The density of states N(E) has been calculated
for each structure, using an LCAO interpolation of
the results shown in Fig. 2. The lower energy
portions of these N(E) curves are shown in Fig. 4.
In each case, the upper curve corresponds to the
total density of states N(E) while the lower one
represents the 6s component, N (E). The dif-
ference between the two curves is, of course, the
6p contribution, N,(E). The appropriate Fermi
energies E ; are indicated by the dashed vertical
lines.

In the case of the diamond structure, E falls
very near the lower edge of a very sharp peak in
N,(E) that is due to the conduction-band minima
along T and @ (Fig. 2). The values of N (E ),
N,(Ep), and N(E,) for each structure are sum-
marized in Table II. It is found that the value of
N,(E ) is roughly constant for each structure so
that the variations in N(E,) are determined pri-
marily by the N (E ;) contributions. These are
small (~0.09) for the diamond structure, inter-
mediate and constant (~0.56) for the sc and bece
structures, and significantly larger (~1.26) for the
close-packed fcc structure.

IV. APPLICATION TO LIQUID MERCURY
A. Structural model for expanded liquid mercury

As is well known, experimental knowledge of the
structure of monatomic liquids is represented by
the static liquid structure factor S(¢) which can
be measured by x-ray or neutron diffraction. The
structure factor is related by Fourier inversion
to the pair distribution function g(»),

sinkr
o . ()

Sk)=1+ f " 4o [g(r) - 1]

where n, is the number density. The radial dis-

TABLE II. Summary of density-of states results
[states/(Ry spin atom)] at Ep for Hg as a function of
crystal structure. The quantity g is defined as the
ratio of N(Ep) to the free-electron value N (Ef).

Structure Ep(Ry) Ny(Ep) Ny(Ep) N(Ep) g

Diamond 0.076 0.088 0.984 1.072 0.242

sc 0.169 0.579 1.342 1.921 0.578
bee 0.319 0.555 0.936 1.491 0.534
fee 0.367 1.256 0.997 2.253 0.854

tribution function n(r) = 47¥*ng () determines

the number of neighboring atoms n(r)dr in a
spherical shell of radius 7 and thickness d» cen-
tered on a particular atom of interest. The aver-
age nearest-neighbor distance a is given by the
position of the first peak in n(r), whereas the
average coordination number is determined by the
area under this peak. Because there is usually
considerable overlap between the first- and
second-neighbor peaks, experimental values of z
depend quite sensitively on the method employed
to define and integrate the first neighbor peak.?
Uncertainties in z of +2 atoms are common as a
result of this ambiguity. Variations of z, say as
a function of temperature, can be determined with
more reliability as long as a consistent definition
of the coordination number is used.

Structural data for expanded liquid metals, and
for Hg in particular, are very limited. A number
of liquid metals with high boiling points has been
investigated over relatively wide ranges of tem-
perature (Rb,* Cs,* Sn,%+37 Cd,%" In,*® Ga,’""%°).
However, the density reductions achieved in these
experiments were less than 10%. Aninteresting
feature of these data is the fact that the positions
of the main peak in S(k) and g(r) remain virtually
unchanged over the ranges investigated whereas
the value of z tends to decrease with the density.
There is some evidence, in fact, for a slight de-
crease in a at higher temperatures.®® In the case
of liquid Hg, x-ray measurements over the density
range 13.68-12.87 g/cm® indicate a constant value
a=3.07 A, 1%20

The only monatomic liquids whose structures have
been investigated over wide ranges of density are
the rare-gas liquids. Argon, in particular, has
been investigated over the full range from triple
point to the region of the critical point.2* Re-
markably, a remains virtually constant while z
decreases from about 10 near the triple point to
roughly 4 at the critical point. Of course, as we
have said, the absolute values of z are rather un-
certain but the qualitative behavior is quite clear.
Less-complete data for Ne (Ref. 40) are similar
although a slight (2.5%) increase in a was re-
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ported for a mean density variation of about a fac-
tor of 2. The reported values of z drop from
roughly 8to 4 over this range.

Recently, neutron measurements of S(k) for Rb
have been reported for densities down to about 70%
of the triple point density p,.** These data cover
only a limited range of # values around the princi-
palmaximum and are insufficient for Fourier trans-
formation to obtain g(»). The position of the peak
in S(k) is constant down to p~0.9p,, then shifts to-
ward lower k values by a few percent at the lowest
density obtained. This suggests indirectly that a
increases somewhat more in Rb than in the rare-
gas liquids, but the change is much less than re-
quired for uniform expansion at constant z.

In selecting a structural model for liquid Hg we
have assumed a=3.07 A over the entire liquid
range. In addition to the advantage of simplicity,
this assumption has the rationale that Hg becomes
insulating well above the critical density and there-
fore might be expected to resemble the rare-gas
liquids at low densities. In this respect Hg differs
from Rb which is monovalent and (if it behaves
like other alkali metals*?) transforms to an in-
sulating state only in the near vicinity of the crit-
ical point. The present model might be elaborated
by allowing some increase in a at low densities.
However, we take the point of view that the dom-
inant effect of density reduction on the electronic
properties derives from the reduced average co-
ordination number rather than an increased near-
neighbor separation.

The simplest structural model with constant a
is one in which vacancies are introduced randomly
on a close-packed lattice. Furukawa?*® has de-
scribed such a model for normal high-density
liquid metals based on an fcc lattice. This ex-
pression for the average coordination number

z=6V2 na (2)

yields z=10 for Hg at the melting point, in agree-
ment with most measurements.!® If we assume
that a is constant and that z remains linearly re-
lated to the density in the expanded liquid, we find
from Eq. (2) that z =4 near the critical density
(p.~5.5 g/cm®). Thus, the predicted coordination
number at the critical point is the same as ob-
served for liquid Ar, and our extension of Eq. (2)
to low densities is consistent with the assumption
that Hg and Ar have similar structures near the
critical point.

B. Density of states and Knight shifit

Our calculated values of N(E ;) can be combined
with the simple structural model described above
to yield the variation of N(E ;) with density in ex-

panded liquid mercury. The four crystalline struc-
tures we have considered correspond to z=12, 8,
6, and 4. Taking a=3.07 A in Eq. (2), we find p
=16.3, 10.9, 8.1, and 5.4 g/cm?, respectively, for
the corresponding liquid densities. The fact that
the liquid densities are lower than the crystalline
ones for coordination 8, 6, and 4 reflects the loss
of long-range order in the liquid. There is no
such “density defect” for z =12 since the intro-
duction of disorder in a close-packed crystalline
structure must necessarily reduce the mean co-
ordination number.

The variations of N(E ) and N((E ;) with density
shown in Fig. 5 were obtained by drawing simple
smooth curves through the calculated values for the
four crystalline structures. The main features of
interest for the present discussion are a sharp
drop of N (E ) between 16.3 and 11 g/cm® and an
essentially constant value in the range 8-11 g/cm?.
It is important to note that the total density of
states N(E) actually increases with decreasing
density in the latter range.

The interpolated value of N(E ;) at the melting
point is N(E ) =1.70+0.15 states/(Ry spin atom).
This compares well withthe value N(E;)=1.6
states/(Ry spin atom) calculated by Chan and Bal-
lentine using a nonlocal pseudopotential and the ex-
perimental liquid structure factor S(k).** Since
the melting point falls roughly midway between
the densities assigned to the fcc and bece struc-
tures, this agreement represents good evidence
for the validity of our interpolation.

A second check on this interpolation in the high-
density limit is provided by low-temperature heat-
capacity and tunneling data for crystalline Hg.
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FIG. 5. Interpolated N(E) and N (Ey) as a function
of density (lower scale) and coordination number (upper
scale). Densities for four, six, eight, and 12-fold co-
ordination were determined from Eq. (2). Arrows indi-
cate melting point.
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McMillan*® has combined experimental values for
the electronic heat-capacity coefficient y with the
observed electron-phonon coupling constant A to
determine the band structure density of states at
Ep, Ny(Ep), for rhombohedral Hg (p=14.5 g/cm?).
He obtains the value Ny (E ;) =1.99 states/(Ry spin
atom), whereas the upper curve in Fig. 5 predicts
that N(E ;) = 1.85 states/(Ry spin atom) at p=14.5
g/cm?,

The Knight shift is related to the density of states
at the Fermi level through the Pauli paramagnetic
susceptibility:

K= 350 |9 rxe ©

where (|#(0) | p is the probability amplitude at the
nucleus averaged over all states at the Fermi level
and y, is the electron spin susceptibility per atom.
Since |zp(0) [2 is nonvanishing only for states having
s character it is convenient to restrict the average
in Eq. (3) to s states and to replace x, by its s
component. Explicitly
2

K=21([pO]> ,,, LalEe @
in which pg is the Bohr magneton and (1 - @)™ de-
scribes the enhancement effects of electron-elec-
tron interactions. There are, in general, addition-
al contributions to the Knight shift due to p-
electron core-polarization effects and orbital pa-
ramagnetism. However, these are expected to
be substantially smaller than the s-electron term
in s-p band metals. For purposes of the present
discussion we can safely neglect these additional
contributions.

It is of interest to estimate K using Eq. (4) and
our calculated N (E,). To do this we must esti-
mate (|¥(0)|?,, and (1- @)™. As a rough ap-
proximation we take the atomic value Iw(O) [2=3.5
X 1026 ¢m™3 determined from optical hyperfine mea-
surements®® on the %S, ,, state in Hg. Use of the
atomic hyperfine coupling tends to overestimate
( [¢(0) |2) r,s Since the wave function should spread
out more in the metallic state.*” The value of
(1- @)™ can be estimated from the Korringa re-
lation between the shift and the °°Hg spin-lattice
relaxation rate T,: K2T,TK(a)= (% /4nkg)(v./Y uo)?
in which y, and y 4, are, respectively, the elec-
tronic and nuclear gyromagnetic ratios.*®*° The
correction factor K(a) has been calculated for a
free-electron gas®®5! and thus the experimental
value®? K(a)=0.69 may be used to obtain (1 - a)!
=~1.7 for Hg. This is a typical value for simple
metals. The value of N(E,) at the melting point
obtained by interpolation in Fig. 5, N (E ;) =0.75
+0.05 states/(Ry spin atom), then yields K=2.91%.
This is to be compared with K, ,,=2.72%. The
agreement is very good considering the approxi-

mations involved and may, in fact, be fortuitous.
Nevertheless it is gratifying that the calculated
value is somewhat larger than the experimental
one, as we anticipated from our use of an atomic
hyperfine coupling, and the result lends further
support to the interpolation used for obtaining

N (E,) at an arbitrary density.

The density dependence of N (E ;) is compared
with the experimental Knight shift values in Fig. 6.
The interpolated curve was normalized to the ex-
perimental data at the melting point. It can be
seen that Ny(E ;) and K exhibit essentially the same
density dependences over the range 9-13.6 g/cm?.
In particular the model values of N (E ) reproduce
the plateau in the range 9-11 g/cm?®, reflecting the
nearly equal values of N (E ) in the sc and bee
structures. At lower densities the model yields
a sharp drop of N (E ;) but this occurs below 8
g/cm?®, whereas the drop in the experimental data
occurs between 9 and 8 g/cm®. Some possible ex-
planations of the discrepancy will be discussed in
Sec. IV C.

The quantitative success of the model calcula-
tion in the density range 9-13.6 g/cm?® is strong
evidence that N(E ;) is predominantly responsible
for the density dependence of the shift. This con-
clusion is strengthened by the qualitative sim-
ilarity of the behavior of N((E ) and K over the
entire liquid range including a sharp drop at low
densities. One cannot exclude contributions from
the density dependence of { |¥(0) |? 5, , and (1- @)™,
of course, but the present result shows that these
effects are not essential to an explanation of the

KNIGHT SHIFT (%)
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FIG. 6. Experimental (open circles) and calculated
Knight shift as a function of density. Solid line: varia-
tion of N, (Ep), normalized to data at p=13.6 g/cmd.
Broken line: normalized N (E) averaged over density
fluctuations for sampling volume containing 20 atom
volumes.
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data. Finally we point out that the constant shift
in the range 11-9 g/cm?® does not reflect a com-
pensating rise in fractional s-character at the
Fermi level as the total density of states de-
creases, as required by the “strong-scattering”
theory. On the contrary, the results of Table II
show that the fraction of s character at the Fermi
level actually decreases from 0.37 to 0.30 as the
density drops from 11 to 9 g/cm3,

C. Refinements of the model

We consider now two important effects which
have been neglected in the simple model described
so far. The first of these, obviously, is the pos-
sible increase in a at low densities. The second
is the increasing importance of density fluctuations
as the critical region is approached. It is neces-
sary to estimate the consequences of these effects
in regard to conclusions drawn from the model in
its simplest form.

1. Variation of the near-neighbor distance

It is clear from the calculations that the value of
N(Ep) is extremely sensitive to changes in a in the
low-density region. As we have seen, only a 1%
increase is required to eliminate the band overlap
in tetrahedral coordination. The fact that Hg ex-
hibits semiconducting transport properties for
p<8 g/cm? (Refs. 1 and 2) is evidence that a does
in fact increase somewhat in this range. A modest
increase in @ would also tend to shift the sharp
drop in Ny(E ) to higher densities in better accord
with experiment. It is likely in fact that one could
fit the model calculation to the Knight-shift data by
allowing a to be a free parameter. However this
would not be very convincing, in the absence of
independent structural data, and would require
extensive computations. Furthermore, it is
possible that part of the discrepancy simply re-
sults from errors in density values due to ex-
perimental errors in the available data for the
equation of state of Hg at low densities.

In addition to circumstantial evidence drawnfrom
the model there is reason to expect that a should
change in the region of the metal-nonmetal tran-
sition. In this region there should occur a change
in the pair potential from one characteristic of
ions in a metal to one describing the interaction
of two neutral Hg atoms. Since the value of the
mean interparticle separation in a liquid should
be determined mainly by the pair potential, one
should expect a change in a at the electronic trans-
ition. That the interparticle separation in the Hg,
molecule is about 3.2 A can be taken as evidence
for this.’®* An increase in a of roughly this mag-
nitude (~4%) would be consistent with the experi-

mental data and, as we have said, would improve
the agreement between experiment and theory.

2. Density fluctuations

The effects of density fluctuations in liquid Hg
have been much discussed, particularly by Cohen
and Jortner.® These authors attribute the metal
to nonmetal transformation below 9 g/cm3 to a
percolation transition in a microscopically in-
homogeneous medium. The present band model
shows, however, that at least the Knight-shift
behavior can be understood without introduction of
microscopic inhomogeneity. On the other hand,
it is clear on general thermodynamic grounds that
density fluctuations are present and become in-
creasingly important as the density decreases. It
is therefore of interest to consider the incor-
poration of density fluctuations into our model.

The Knight shift is a highly local property de-
pending on the average magnetic field experienced
by individual nuclei. The shift is relatively in-
sensitive to long-range structural properties,
being primarily determined by the local density of
conduction electrons. If we consider the liquid
divided into an ensemble of small volumes V whose
densities are distributed according to a probability
distribution P,(p), the average (observed) shift
may be written

K= jo‘ e K(p)pP,,(p)dp/ fo = PP,(p)dp,  (5)

where p,,, is the maximum density possible in the
system. For Hg we should take p,,.=16.3 g/cm3
corresponding to the ideal close-packed structure
(fcc). The appearance of a factor p in the inte-
grands of Eq. (5) accounts for the fact that the con-
tributions of different regions to the intensity of the
NMR signal depend on the number of nuclei present
in each region.

In order to test the effect of fluctuations on K we
use the Gaussian approximation for P,(p) (Ref. 54):

P,(p)= (21?2 exp(~7?/2£2) , (6)
E¥=kTx,/V, v=(p-p)/P,

where y , is the isothermal compressibility and

p is the mean density. Values of x, can be derived
from the available PVT data for Hg.5® The va-
riation of K with p is shown in Fig. 6 for V=4.1

X 10722 cm?® and with K(p) given by the interpolation
of the calculated values of N(E;). This choice

of sampling volume V contains 20 atomic volumes
of the fce crystal and is about the minimum size for
which a local Knight shift K(p) is meaningful. A
larger choice of V, of course, leads to a narrower
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distribution P,(p) and hence reduces the effects
of fluctuations.

The results of numerical integration of Eq. (5)
are compared with the data and with the original
version of the model in Fig. 6. As should be ex-
pected, the fluctuations are negligible at high
densities but begin to introduce noticeable modifi-
cations below p~ 12 g/cm®. The overall effect is
a slight improvement of the agreement of the model
with experiment. Extension of the calculation to
densities less than 9 g/cm?® was considered un-
reliable because of large uncertainties in the value
of x, at low densities. In summary we find that in-
clusion of density fluctuations, at least in the sim-
ple form of Eq. (6), does not drastically affect the
essential features of our model for densities above
9 g/cm®. The situation at lower densities remains
unclear.

V. DISCUSSION

One of the more interesting features of the en-
ergy-band results shown in Fig. 2 is the dependence
of the Hg 6s and 6p bandwidths and their overlap
on the nearest-neighbor coordination number. It
is found, for example, that the 6s bandwidth A, in-
creases systematically from 0.54 Ry for the dia-
mond structure [where A =E(T,,) -E(T,)] to 0.80
and 0.91 Ry for the sc [A,= E(R,)-E(T,)] and
bee [A=E(H,) -E(T,)] structures, respectively.
This trend is apparently interrupted in the fcc
structure, where the 6s bandwidth [A;=E(X,)
-E(T,)] is approximately 0.78 Ry.

The present LCAO model provides a simple
explanation for this phenomenon. In the case of
the diamond, s¢, and bce structures, the 6s band-
width is determined by the energy difference be-
tween states that are fully bonding (T')) and those
that are fully antibonding (T,.,R,,H,, respectively)
with respect to nearest-neighbor interactions.

It turns out that a fully antibonding state is in-
compatible with the translational symmetry of the
fcc lattice; this limits the 6s bandwidth to % the
maximum value (~1.2 Ry) that could be attained
in a disordered system.

Similar trends are found in the variation of the
Hg 6p bandwidth A, with coordination. In this case,
A, depends more critically on the geometrical
distribution of nearest neighbors because of the
directional bonding characteristics of the p,, p,,
and p, orbitals. As a result, larger changes are
likely in the energy distribution of p-type states in
the liquid.

The present LCAO model predicts that 6s-6p
hybridization is approximately independent of co-
ordination in these hypothetical crystalline forms
of Hg. The integrals of the 6s component of the
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density of states N in Figs. 4(a)-4(d) predict that
the occupied bands in Figs. 2(a)-2(d) contain

71%, 78%, 82%, and 76% 6s character, respective-
ly. It is reasonable to expect that the same degree
of 6s-6p hybridization would persist in the liquid
state, at least within the density range of 8-14
g/cm®. This predominance of 6s character in the
occupied bands of Hg is clearly the result of the
strong relativistic effects which lower the top of the
6s band (T',,) by about 0.25 Ry in Fig. 3(b) relative
to the nonrelativistic bands of Fig. 3(a).

The relatively constant degree of s character in
the totality of occupied states clearly does not
apply to states just at the Fermi level. Here
the fractional s character f, is found to decrease
monotonically from 56% to 8% on passing from the
fce to diamond structures. This trend is opposite
to that required to reconcile the Knight shift and the
strong- scattering transport model. For example,
Cohen and Jortner®® have shown recently that the
strong- scattering model requires the product
FL9(0) |35 (1= @) to increase by roughly a fac-
tor of 2 between 11 and 9 g/cm3. Moreover, they
assumed that the liquid expands uniformly
(@< p~'/3) so that variation of the transfer integral
J contributes to the density dependence of the
transport coefficients. If the density dependence of
a is much weaker than p!/3, as we have argued
elsewhere in this paper, then an even stronger in-
crease in f( ] ¥(0) IZ) r,s (1= a)! is necessary. We
have no reason to suspect that {|$(0)|?)p ; (1- )
should be strongly density dependent in this range
and we find from our model calculation that the
density dependences of f; and N(E ) are in di-
rections opposite to those required by the inter-
pretation of Cohen and Jortner.

It appears, therefore, that there is as yet no
adequate theory for describing the electronic
transport properties of Hg over wide ranges of
density. For the highest densities where o = 3000
(R cm)™! the mean free path is sufficiently long
that the Ziman theory for nearly-free-electron
liquid metals should apply.5”5® Once out of this
range, as we have seen, thereare serious dif-
ficulties. One effect which must become important
sufficiently close to the critical region is the pres-
ence of density fluctuations. Even the simplest
Gaussian approximation of Eq. (6) implies a wide
distribution of local densities when the mean den-
sity is less than about 10 g/cm?. It is still an open
question, however, whether the semiclassical per-
colation approach of Cohen and Jortner is an ade-
quate way to take these fluctuations into account.

Another type of microscopic inhomogeneity may
also contribute to the decreasing conductivity. As
the coordination number decreases, the Fermi
level in Fig. 2 is systematically lowered relative
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to the average interstitial potential. This can be
expected to lower the mobility of electrons in these
regions. In addition, of course, the interstitial
volume represents an increasing fraction of the

total volume as the coordination number decreases.

Thus, even if the total density of states per atom
is roughly constant, there may be a substantial re-
duction of the conductivity due to this kind of “ex-
cluded-volume” effect.

VI. SUMMARY AND CONCLUSIONS

We have presented a model for the electronic
structure of expanded liquid mercury based on
APW band-structure calculations for hypothetical
forms of crystalline Hg. The intent of the study
was to investigate the effect on the electronic
structure of a decreasing coordination number as
Hg expands with constant near-neighbor distance.
Available structure data on liquid metals and rare
gases suggest that this is a reasonable though
somewhat oversimplified representation of the
local atomic arrangement. The energy bands and
density of states were calculated for the diamond,
sc, bee, and fcc structures using a constant near-
neighbor distance given by the position of the first
peak in the experimental pair-distribution func-
tion. The total density of states for each case was
further decomposed into s- and p-electron com-
ponents. The results showed a gradual develop-
ment of the 6s-6p energy gap as the coordination
number was reduced, although it was found nec-
essary to increase the lattice constant by 1% to
open fully a gap in tetrahedral coordination.

The calculated values for the s component of the
density of states at E; were used to calculate
the magnitude and density dependence of the Knight
shift; both are in reasonable agreement with ex-
periment. A continuous dependence of the density
of states on density was obtained by interpolating
values calculated for each of the four crystal
structures. A simple vacancy model in which the
coordination number depends linearly on density
was used to relate each crystal structure to spec-
ific liquid density values. The model reproduces
a region of constant Knight shift in the range 9

Sps1l g/em?® in agreement with experiment. Both
experiment and the model exhibit a rapid decrease
in shift at lower densities but the predicted density
at which this occurs is somewhat below that ob-
served experimentally. This is likely to be a con-
sequence of a small increase in the near-neighbor
distance at low densities. The effects of density
fluctuations were investigated using a simple theo-
ry for p= 9 g/cm®. Inclusion of fluctuations led

to relatively small changes in the predicted den-
sity dependence of the Knight shift, but these were
in the direction of improved agreement with ex-
periment.

We conclude that a simple quasicrystalline band
model represents a reasonable approximation of
the electronic structure of expanded liquid Hg. Our
results support the hypothesis that a decreasing
coordination number is the major influence on the
electronic structure as the density decreases. The
Knight shift, in turn, is affected mainly by varia-
tions in the s component of the density of states.
The calculations show, however, that the s and p
components of the density of states exhibit different
density dependences and that one cannot, therefore,
infer the behavior of the total density of states
from that of the Knight shift. On the other hand,
these differences are in the wrong sense to re-
concile the apparent inconsistency of the Knight
shift and electronic transport properties. As a
result there remain serious difficulties with the
available theory of electronic transport in liquid
Hg in the range between the domain of nearly-
free-electron theory and the metal-nonmetal trans-
ition.
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