PHYSICAL REVIEW B

VOLUME 16, NUMBER 2

Method for calculating surface electronic structure of noble and transition metals

Henry Krakauer and Bernard R. Cooper
Department of Physics, West Virginia University, Morgantown, West Virginia 26506
(Received 2 September 1976)

We present a new method for the calculation of the electronic structure of noble and transition-metal
surfaces that is based upon the linear combination of muffin-tin orbitals (LCMTO) technique. We adopt the
by now common technique of using film calculations to accurately simulate the electronic structure at the
surface of bulk d-band metals. A central feature of our method is the introduction of a new basis consisting
of (a) muffin-tin orbitals plus (b) additional functions we call “plane-wave orbitals,” which are constructed
from the exact solutions of Schrodinger’s equation in the regions exterior to the film. This method has the
virtue of being able to treat non-muffin-tin potentials, yet reproduces, in the limit of a muffin-tin potential,
exactly the same results as the more conventional film Green’s-function method of Kar and Soven and of
Kohn. This parallels the relationship of the bulk LCMTO method to the Korringa-Kohn-Rostoker method,
and we conclude, therefore, that our method is the proper generalization (for films) of the bulk LCMTO
technique. We also outline a linearization scheme, based on one successfully used in recent bulk LCMTO
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calculations, to achieve the computational speed necessary for self-consistent film calculations.

I. INTRODUCTION

The surface electronic behavior of noble and
transition metals plays a dominant role in deter-
mining a number of the most important observable
properties of these metals. With this in mind, we
have developed a practical technique for rapid and
accurate calculations of the electronic energies and
wave functions and the related charge-density dis-
tribution at the surface. In this paper we present
the formal development of this method. We adopt
the basic philosophy proposed in our own earlier
work,'™* and in that of other authors,’"!? of using
film calculations to accurately simulate the elec-
tronic structure at the surfaces of bulk d-band me-
tals. Since the “healing length” for surface per-
turbations on d-band behavior is only a few layer
thicknesses, self-consistent calculations for mod-
erately thick films, say about 15 or 20 layers
thick, should accurately yield the surface charge
density for the metals of interest.

There are several features of film calculations
which tend to increase the difficulties beyond those
encountered in physically realistic bulk-metal cal-
culations. Substantial changes are expected in the
charge-density distribution on approaching the sur-
face as compared to that prevailing within the bulk
of the metal. The results of non-self-consistent
calculations (especially Refs. 1,2,4,7,9) enforce
our expectation that the correct nature of this sur-
face charge distribution, and the related potential,
can only be found through performing self-consis-
tent calculations. Such self-consistent calculations
can be carried out in a physically realistic way
provided one has an accurate and practical tech-
nique for treating non-muffin-tin contributions to
the potential, since such non-muffin-tin effects are
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expected to become quite important on approaching
the surface. The lack of translational symmetry
(i.e., periodic behavior) in the direction of the film
normal is another difficulty. This, of course, is
associated with the physical requirement that the
electronic wave functions must vanish on going to
infinity in a direction normal to the film. Thus
from the technical point of view there are three re-
quirements for any calculational technique to be
used in performing practical, physically realistic
computations of film electronic structure for d-
band metals: (i) It must be capable of treating non-
muffin-tin contributions to the potential. (ii) The
technique must properly take into account the pe-
riodic symmetry within the plane of the film and
the lack of periodic symmetry in the normal direc-
tion. This means that the wave functions must ex-
hibit oscillatory propagating behavior in the plane
of the film while decaying normal to the film, so as
to vanish at large distances from the film. (iii) It
must be possible to achieve the computational
speed necessary, in practice, to iterate to self-
consistency.

We have developed a technique satisfying these
requirements that is based upon the linear combin-
ation of muffin-tin-orbitals (LCMTO) tech-
nique.'®"'* Previous methods suggested for the film
problem have either been limited in their capability
to treat point (i) the non-muffin-tin contribu-
tions,”® or have relied on awkward devices (such
as treating a hypothetical solid consisting of thin
metal films separated by appreciable regions of
vacuum) to treat point (ii) the differing character
of the electronic motion parallel and perpendicular
to the film.'? A central feature of our technique is
the introduction of a new basis consisting of (a) the
usual muffin-tin-orbitals’® (MTO’s) plus (b) addi-
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tional functions we call “plane-wave-orbitals”
(PWO’s) which are constructed from the exact so-
lutions of Schrodinger’s equation in the regions ex-
terior to the film. This basis has allowed us to de-
velop a variational technique that satisfies the
physical requirements, under (ii), for describing
the electronic behavior both inside and outside the
film. This is in distinction to another LCMTO
technique for films that has been developed recent-
ly by Kasowski,'? and that, as discussed in Sec. II,
appears to have significant practical difficulties in
satisfying requirement (ii). Furthermore, our
technique shares the virtue, common to LCMTO-
type techniques in general,'®!* of being particularly
suitable for treating non-muffin-tin potentials, thus
satisfying requirement (i). On the other hand, in
the limit of a film muffin-tin potential, our tech-
nique reproduces exactly the same results as the
more conventional film Green’s-function treat-
ment.”® This parallels the relationship of the bulk
LCMTO method!> ! to the Korringa-Kohn-Rostoker
(KKR)'® method, and further strengthens our con-
fidence in the computational scheme presented
here. With regard to point (iii), we plan to achieve
the desired computational speed through the use of
a linearized version of our method. The lineariza-
tion scheme is based!” on one used very success-
fully in recent'® bulk LCMTO calculations. In the
remainder of this paper we present the formal de-
velopment of our method, and discuss the features
of interest and primary advantages of this tech-
nique over earlier ones. The formal development
is presented for the case of the monolayer. The
extension to more than one layer is straightforward
and is given in the Appendix. The outline of the pa-
per is as follows:

In Sec. II, we introduce the mixed basis of muf-
fin-tin orbitals (MTO’s) and plane-wave orbitals
(PWO’s), the use of which is central to our calcu-
lations. This mixed MTO-PWO basis represents
the fundamental difference between the theory we
have developed and Kasowski’s!'? MTO formalism
for films. In the limit of a muffin-tin potential in-
side specified boundary “surfaces” and a z-varying
(z is the film normal direction) potential outside,
there are three “tail cancellation”'® conditions to
be satisfied in order for a linear combination of
MTO’s and PWO’s to be a solution of the Schri-
dinger equation. One cancellation condition is for
correct behavior inside the muffin-tin spheres and
two for the exterior regions, one on either side of
the film. In Kasowski’s!'? work, the wave function
is a linear combination of MTO’s only; and there is
just a single cancellation condition within the muf-
fin-tin spheres. This creates great practical dif-
ficulties in obtaining a physically reasonable de-
scription of the difference in behavior of the wave

function in a direction parallel to the film as com-
pared to a direction normal to the film.

In Sec. III we discuss the relationship of our me-
thod to the Green’s-function method for films and
surfaces of Kar and Soven’ and of Kohn.? In par-
ticular we show that the relationship of our method
to that of Kar and Soven and of Kohn is analogous
to the relationship of Andersen and Kasowski’s!'®!*
bulk LCMTO method to the KKR'® method for bulk
band calculations. For a muffin-tin potential with-
in the film and a potential varying only in the nor-
mal direction outside the film (a “film muffin-tin
potential”), our method yields the same results as
that of Refs. 7 and 8, in the limit of an exact solu-
tion. Our method, however, has the same advan-
tage with regard to rapidity of convergence that the
bulk LCMTO method!* has with respect to the
KKR'® method. This is because, for a given size
secular determinant, our method, like the bulk
LCMTO method, includes higher-order angular
momentum components in an approximate manner
(this is discussed further in Sec. IV). Even more
important with regard to our objectives, our me-
thod has the advantage, with respect to that of
Refs. 7 and 8, of being able to treat non-muffin-tin
contributions to the potential. This is also the
case'? for the bulk LCMTO method'* 4 with respect
to the KKR'® method. This shared advantage fol-
lows from the fact that both our LC(MTO-PWO)
method and the bulk LCMTO method can treat non-
muffin-tin effects through the use of a variational
principle.

In Sec. IV we present our approach, using a vari-
ational method, for treating deviations in the po-
tential from muffin-tin form. That is, the
LC(MTO-PWO) wave functions, while exact only
for a film muffin-tin potential, are used to approx-
imate the wave functions of a more general Hamil-
tonian through application of the Rayleigh-Ritz
variational method. As already stated, this is
analogous to the way such effects are treated in
bulk LCMTO calculations. We also discuss, for a
film muffin-tin-potential, the relative rates of con-
vergence (mentioned above) of our LC(MTO-PWO)
method as compared to the film Green’s-function
method”®; and we remark on the implications of
this with regard to treating non-muffin-tin poten-
tials. We expect* important physical effects to be
associated with the variation of the charge density
and the associated potential in the direction paral-
lel to the plane of the surface, in the region im-
mediately outside the nominal surface layer. The
treatment of Sec. IV involves having a strictly z-
dependent (film normal direction) potential outside
two boundary “surfaces.” However, these “sur-
faces” canbe chosen atany desired distance from the
surface layers of the film. Thus we can use the
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full power of our method for treating non-muffin-

tin effects (associated with the variation of the po-
tential parallel to the plane) in the region between
the surface layers and the boundary “surfaces.”

In Sec. V we discuss some points of practical
consequence related to the implementation of our
method. To deal with the orthogonality require-
ment'® between the LC(MTO-PWO) wave functions
and the core states of a single muffin-tin potential,
we follow a device introduced by Andersen and
Wooley? in their LCMTO method for molecular
calculations. This has the advantage of eliminating
the necessity of calculating core states. This de-
vice is particularly convenient when linearizing the
computational scheme. The linearization scheme
we outline enables us to obtain the electronic ei-
genvalues and eigenstates for our LC(MTO-PWO)
variational method by solving an ordinary secular
determinant,

det|H,,.- EO,..|=0, (v

where H is the Hamiltonian matrix and O is the
overlap matrix. The computational speed gained
by this linearization is of great value in self-con-
sistent calculations involving iterations or in cal-
culations for thicker films, requiring larger basis
sets and correspondingly larger determinants.

The generalization of the formalism to thicker
films is given in the Appendix.

II. DEFINITION OF THE BASIS

Within the context of the independent-particle ap-
proximation, the only assumption we have made
regarding the film potential is that it is periodic in
the plane of the film (the x-y plane) and nonperiodic
in a direction normal to the film (the z direction).
For the purpose of defining our basis functions,
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FIG. 1. Schematic representation of a monolayer film
with one atom per unit cell. The unit cell, indicated by
the dashed lines, extends from z=-, to +w, and there

are two boundary “surfaces,” one at z=z, and one at z
=2,

however, we specialize to the case of a muffin-tin
potential inside boundary “surfaces” at z= z, and z,,
and a z-varying potential outside these “surfaces.”
Throughout this paper we refer to this special case
as a film muffin-tin potential.>* Subsequently, we
shall use these basis functions to treat more gen-
eral film potentials (Sec. IV).

In view of its two-dimensional periodicity, the
film can always be divided into unit cells which ex-
tend to + in the z direction. To simplify the fol-
lowing discussion, however, we restrict ourselves
to a monolayer film with one atom per unit cell.
(The generalization to thicker films is straightfor-
ward and is given in the Appendix.) For the special
case of a film muffin-tin potential, this is schema-
tically depicted in Fig. 1. Referring to this figure,
the potential V(¥) is defined as follows. V(¥) is
spherically symmetric within spheres (region I) of
radius S centered at each atomic site ﬁ, and, in
the interstitial region (region II), V(¥) is constant.
Thus V(¥) has the usual muffin-tin form in regions
I and II (i.e., between the boundary “surfaces” at z
=z, and 2z,). In the exterior regions III and IV, z
>z, and z<z,, respectively, the potential depends
only on the z coordinate. The film muffin-tin po-
tential is then specified by the following equation:

Vir([F-R[), [F-R|=s

Vi), z>z,

V(F) = (2)

V,(2),- z2<z,

Vurz, T E interstitial

where the constant V., is usually chosen as the
zero of energy [the “muffin-tin zero” (MTZ)].

The periodic nature of the film potential implies
that the wave functions depend on a two-dimension-
al crystal momentum vector E, which can be re-
stricted to lie within the first Brillouin zone of the
two-dimensional reciprocal lattice. We therefore
let ¥;( E, ) denote a solution of Schrddinger’s
equation for the potential given by Eq. (2). We then
express the wave function ¥;(E, T) as a linear com-
bination of suitably chosen basis functions. In ana-
logy with the LCMTO method!*!* for bulk solids,
these basis functions are constructed from the ex-
act solutions in regions I, III, and IV. We now
proceed to define this basis.

A. Muffin-tin orbitals (MTO)
The partial wave
u,(E,¥), |F|<S
-s;[=k"tn, (k)] 3)

—c, [k, k7)), S<|F|

¢ (B, &, F)=3'Y (F)x

is a solution at energy E of the Schrédinger equa-
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tion for a single muffin-tin potential V() embed-
ded in the flat potential, Vy5,=(E -«?), where «
=(E = Vypg)"'? or i(Vyypy — E)/? for E>Vyp, OT E
<Vyrz, respectively. We use the notation Y, (¥) for
the spherical harmonic, where L denotes the angu-
lar momentum quantum numbers ! and m. wu,(E,T)
is a solution of the radial Schrédinger equation,

and j, and n, are the spherical Bessel and Neumann
functions. The coefficients s, and ¢, are chosen so
that ¢, and its first derivative are continuous at »
=S. For «k*>0 ¢ is 6 function normalizable, but for
k%<0 ¢ diverges. Only if ¢,/k*"*'s,;=cotd, =i
(where 8, ; is the phase shift) is ¢ a bound state.

It is possible, however, to construct a basis func-
tion which is normalizable at all energies. This is
done by adding onto ¢, a solution of the homogene-
ous Schrodinger equation which is regular at the
origin. In this way, we obtain the muffin-tin-orbi-
tal'® basis function (MTO), which is defined as

u, (¥) + (c, - is, k1)
xJ,kr), |F|=S (4a)

-s,K,(k7), S<|F|

X (E, k, F)=i'Y (F)

where the functions
(k) =k, (k7) (4b)
K, (kr) =ik h{P(k7),
iK™ [ 5, (k) +in, (k7)) (4c)

are regular at k=0.
B. Plane-wave orbitals (PWO)

For a potential that is given by V,(z) in the semi-
infinite region z, <z (region III of Fig. 1), and by
Vurz=E - k? in the remainder of space, a solution
at energy E of Schrédinger’s equation is

¢1,M(E’ K, -f‘)=ei(k+g"‘).r

(e8]

{u,'m(E ,2),
X

e~i%m?

f=E (5)

s iomz, 2<z

1,m m _cl,me

1

where g, is a two-dimensional rec1procal lattice
vector and @, =[x*- (K+E, )"’]‘/2 or i[(k+§,)?
—k2]H2 for k2> (k+§,)? or k2<(k +§,)?, respec-
tively. u,[,,,I is a solution of the one-dimensional
Schrddinger equation.™?

82 )
((k + 8P = 32" 14 (z)) uz, m—Euk, (6)

The coefficients s, , and ¢, ,, are chosen so that
¢,,m and its first derivative are continuous at z =z,.
Similarly, for a potential that is given by V,(z)
when z <z, (region IV of Fig. 1), and by Vy, in the
remainder of space, a solution of Schrédinger’s
equation is

@
up o(E,2), 2=z,

¢2,m(E9K’F)=e'(k‘SM)'r{ e"'sz, 22<Z
o (7)
where uk = 1S a solution of a one-dimensional equa-
tion similar to (6). For «*>(k+&,)?, ¢, mand ¢, .
are 6 function normalizable, but for K"’<(k+gm)2
they diverge unless ¢, ,, and ¢, , are both zero.
Again, basis functions which are normalizable at
all energies can be obtained by adding onto the ¢
functions appropriate solutions of the homogeneous
Schrodinger equation, thus defining the plane-wave
orbitals (PWO)

iQ
sz,me me =Com

ug’,,li-clme“’"", z,<z (82)
le-r
X,m(E,k,T)=¢e

-iQm2
Sy,m€ "™, 2<%

iR et (8b)

u) rc, e, z=z,
-
Xz,m(E7 K’ r) =e

Sa, metomz y 2y<Z
where K , =k +§,,.
C. Expansion of the wave function

The wave function ¥3( E, T) is now expressed as a
linear combination of MTO’s [Eq. (4)] and PWO’s
[Eqs. (8a) and (8b)]

Y(E, D=L A, DL TRy (B, F-B)
R

+ DA X B, K, T, ©)

iym

where R is a two-dimensional direct lattice vector
and the index ¢ takes on the values 1 or 2. Two
features of the expansion (9) should be noted.
First, ¥; is always a solution of Schrédinger’s
equation in the interstitial region (region II of Fig.
1) regardless of the values of the coefficients A
and A; . This follows from the definitions of
and ¥; ,,- Second, for ¥; to be a solution inside the
muffin-tin spheres (region I of Fig. 1) and in the
exterior regions (regions III and IV of Fig. 1), all
the terms proportional to solutions of the homo-
geneous Schrédinger equation should destructively
interfere in these three regions (this is the three
region “tail cancellation” condition referred to in
Sec. I). This is because the u; and u;(:,),l functions
are the exact solutions there.

The mixed MTO-PWO basis leading to Eq. (9)
represents the fundamental difference between the
theory presented here and Kasowski’s'? MTO for-
malism for films. In Kasowski’s work, the wave
function is a linear combination of MTO’s only, and
there is just a single interference condition — in-
side the muffin-tin spheres. As a consequence, the
k* parameter in Kasowski’s MTO’s must be re-
stricted to being negative in order to satisfy the
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physical requirement that the electronic wave func-
tion vanish on going to infinity in a direction nor-
mal to the film. One is thus forced to use localized
basis functions. This restriction in his theory can
only be overcome by treating a hypothetical solid
consisting of thin films each separated by several
vacuum layers from a neighboring film. In this
way, periodicity in the normal direction is re-
stored, and an associated bulk problem must be
solved. In practice, however, this method has
great practical difficulties associated with the re-
quirement that the long-range oscillating tails of
the (k*>0) MTO’s must cancel in the vacuum. In
the particular case of calculating surface states,
for example, Kasowski concludes that, in compari-
son to using localized basis functions, “a thicker
film is required so that the long-range oscillating
tails can cancel in vacuum.”'? Many layers may be
required with the number of basis functions increa-
sing with the number of layers. The vacuum can-
cellation condition is, however, an intrinsic fea-
ture of our method for any film thickness. Kasow-
ski’s approach, therefore, seems questionable to
us. On the other hand, Kasowski'? claims that the
alternative of choosing k*<0 leads to good? results
for close-packed metals such as Ni and Cu. This
choice, however, leads to exponentially decaying
basis functions. While the wave function does de-
cay exponentially in a direction normal to the film,
we expect oscillatory propogating behavior for the
valence-band electrons in directions which are in
the plane of the film. This raises the question of
the accuracy of the resulting wave functions when
the localized basis is used. By contrast, the theo-
ry presented here correctly describes the variation
of the wave function in all space without the neces-
sity of introducing a hypothetical solid with all the
attendant difficulties. In addition, we will show in
the next two sections that, for a film muffin-tin po-
tential, our method gives the same results as a

L R#0

more conventional Green’s-function theory.””® For
all these reasons we feel that our method is pre-
ferable to that developed by Kasowski.

III. RELATIONSHIP TO THE GREEN’S-FUNCTION METHOD
FOR FILMS AND SURFACES

In this section we consider the relationship be-
tween our theory, which uses the mixed MTO-PWO
basis described in Sec. II, and the Kar and Soven’
and Kohn® generalizations of the KKR formalism.
In particular, we show that, for a film muffin-tin
potential [Eq. (2)], the three region tail-cancella-
tion condition, discussed above, leads to the secu-
lar equations obtained by the method of Kar and So-
ven’ and Kohn.® We conclude, therefore, that our
three region tail-cancellation condition is the prop-
er generalization (for films) of Andersen’s!® single
tail-cancellation condition which, he shows, leads
to the familiar KKR'® equation for a bulk muffin-tin
potential.

The proof of equivalence proceeds as follows.
Corresponding to each of the three tail-cancellation
conditions, we extract from Eq. (9) an equation
containing only those terms which are proportional
to a solution of the homogeneous Schridinger equa-
tion. From these three equations, we obtain a sys-
tem of linear equations for the Ay and A; , coeffi-
cients of Eq. (9). This system of equations, in
turn, is equivalent to those obtained by Kar and So-
ven” and Kohn.® A simplification of these equations
is achieved by eliminating the A; , coefficients in
favor of the A; coefficients. The result is a much
smaller system of equations (identical to those ob-
tained by Kar and Soven’) which are structurally
very similar to the usual KKR equations.

To begin, we consider the interference condition
in the muffin-tin spheres (for simplicity, the one at
R=0). For ¥;(E,¥) [Eq. (9)] to be a solution in the
muffin-tin spheres, we require [from Eqs. (4), (8),
and (9)] that

ZAL(E) ((cz — 18, K2 I (K, T) -5, Z '3XP(iE . ﬁ)KL(Ks F—§)>

+ > {A, nsimexp[i,,- T-Q.2)]+A4, s, . exp[i(K, - F+Q,2)]}=0, (10)

where J (k, T)=4' Y ,(F)J,(k7) and K (kT)=i'Y ,(F)K,(k»). The summation over the direct lattice in Eq. (10)
can be expressed in terms of the film structure functions B ., (k, k)

-s, Z exp(ik - R)K , (k, T - R) =
R#0

2Tk, P)[s, B, (k,K)], k<0
<

(11a)

is KT (6, ) = DT 1k, B s, By (6, K) = 5, Dy (k, K)], O<k?
=
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where
By (k,K)=4m Z exp(ik - R)
R0
X 3C i KK A (0, R
Yo
(11b)

the auxilliary quantity D,,; is defined as

D, (k,K) = —4mik2*! Z exp(ik - R)
R

X Y Cppopek T Tk, R)
s
(11c)
and C;.;» is the Gaunt coefficient
Crpgn= f Y, DY LAY .0 d; . (11d)
Here K {(k, ) is defined as in Ref. 14

ihPkr), k2<0
K4, F):i’YL(F)x'“{ ' ’ (11e)
—n,(kr), 0<k?

and the lattice summation in Eq. (11¢) includes the
site at the origin. Equations (11) were obtained
with the aid of the addition theorems'* !4

A, =_ B Lelt= 1
K{(k,T-R)=4n Z Crppnk™

r
XdJ .k, K 45k, R), |F|<|R|
(12a)
and
Tk, F=R)=dr D, Cppopmr
LYy L”
XJ (K, F)J Xk, R) . (12b)

It is worth noting that, for a three-dimensional lat-
tice, D;,, would vanish except on the free-electron
parabola, E=(Kk+g,)%. This is not true for the
two-dimensional lattice sum in Eq. (11¢). The last
two terms in Eq. (10) can be rewritten by expand-
ing?® the exponentials

exp[i(K, +Q,) * ¥]
=4 ik, k) Y (DY (K, £Q,),  (13)
L

where we have defined 6,,, = Q,,,E. Substituting (11a)
and (13) into (10) we obtain the system of equations

2 A (B [(c,—is; k28 ,,.~5,B,., ]
L

+ 2[S9k, K) +S2(k, K)]6,,.=0, «2<0
L

(14a)

BERNARD R. COOPER 16
EL:AL(E)[CIGLL'_SIBL'L +$; D]

+ D[Sk, K) +SP(k,K)]6,,,=0, 0<k® (14b)
L

where the quantities S{!” and S{?’ are defined in
terms of the A, , and A, , as

SOk, K) =41k I A, s n YK, -Q,), (l4c)

SE(e,K) = dnkt T A, 050w ¥ Koty (140)
m

Note that, for an infinite three-dimensional crystal
D, =0, the quantities S{ and S{?’ are dropped,
and Eqs. (14a) and (14b) are just the usual KKR
equations. The new feature in these equations are
the terms (proportional to the coefficients A, ,, and
A, ) which contain information about scattering
from the film boundary surfaces at z=z, and z,.

We now turn to the interference condition in the
exterior regions (regions III and IV of Fig. 1). For
¥;(E,T) [Eq. (9)] to be a solution in regions III and
IV, we require [from Egs. (4), (8), and (9)] that for
z,<z

> ALK [—s, Zexp(iﬁ- RK, (k, T - ﬁ)]
L R
+ Z[Al,mcl.m"'Az.msz,m]

X exp[i(K, * T+Qm2)]=0  (15a)

and for z<z,

AR5, T explif - B, ¥ - B
L R
+ Z[Al,msl,m+ Az.mcz,m]

Xexp[i(}?m-f-sz)]=0, (15b)

where the lattice summations include the site at the
origin. It is straightforward but tedious to show
thatzs(a)

Z exp(ik - ﬁ)KL(K, F-R)
R

_2m f - .
'y ; k' exp(iK,, - T)/Q,,
x{ Y,K,+Q,) exp(iQ, z), z,<z
YL(K,,, - ém) exp(-iQ,, z), z<z,
(16)
where A is the cross-sectional area of the unit cell.

Substituting from Eq. (16) into Eqs. (15a) and (15b),
we obtain the following system of equations:
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—ZT;T‘Z-ZALS,KIYL(EM*'QM)/QM
L

+Al.mcl.m+A2,msz.m=0’

(17a)

2mi - -
__212 ZALSIKI YL(Km—Qm)/Qm
L

+A S, m*+AsmCa,m=0.

(17p)

The secular equations (14) and (17) are essen-
tially equivalent to Egs. (11a) and (11b) of Kar and
Soven,” and Egs. (23), (28), and (29) of Kohn.?
Thus the zeros of the determinant of the coeffi-
cients Ay, A, ., and 4, , in these equations deter-
mine the eigenvalues Ej of the film.

Following Ref. 8 we further simplify this system
of equations by eliminating the coefficients A; , in
favor of the A, coefficients. This is done by first
solving Eqgs. (17a) and (17b) for the A, ,, in terms
of the A;, and then substituting into Eqs. (14a) and
(14b). The result is the much smaller system of
equations

ESIALAL'L=0a (18a)
3

where we have defined the quantity

AL'L = Khl'u(i)t’-t

{(coté,'E)éLL.+SL,L+TL,L , 0<k?

X

(cotd, g =)0, +Spp + Ty, K2<O
(18b)

and S;,; =-k"""""Y(3)""*!'B,,,. The functions T,
are given by Eqgs. (A6) of the Appendix (after set-
ting T, =75=0). The secular equations (18a) are
essentially identical®* to those obtained by Kar and
Soven [Eq. (13) of Ref. T].

We close this section with a few remarks regard-
ing Eq. (18b). The matrix (18b) is formally similar
to the KKR matrix for bulk materials. As in the
bulk case, the structure functions S;., depend only
on the film crystal structure, i.e., they are inde-
pendent of the film potential. By contrast, the T,.,
functions contain information about the scattering
from the boundary “surfaces,” and they depend on the
exterior potentials [V,(z) and V,(2z)] through the
logarithmic derivatives at the boundary “surfaces”
(Appendix). Kar and Soven’ have discussed some
technical details regarding the evaluation of both
S;.p and T;.;, and they have successfully applied
Egs. (18a) and (18b) to calculating the band struc-
ture of a copper monolayer.

IV. LC(MTO-PWO) METHOD FOR NON-MUFFIN-TIN
POTENTIALS

An important advantage of the formalism pres-
ented here is its ability to treat deviations in the
potential from the muffin-tin form. Such non-muf-
fin-tin Hamiltonians have been successfully treated
in bulk solids'*'*2° using the LCMTO method, and
the approach developed in this section is basically
similar. The MTO-PWO expansion (9) is used to
approximate the wave functions of a more general
Hamiltonian through application of the Rayleigh-
Ritz variational method?®®

(6% |H-E|¥)=0, (19)

where the potential in Eq. (19) is not restricted to
the special form (2). The trial wave functions ¥
are chosen to have the LC(MTO-PWO) form (9) for
the obvious reason that, in the special case of a
film muffin-tin potential, they are the exact wave
functions.

A difficulty arises, however, if k2>0 in Eq. (9).
In this case the basis functions do not decrease
fast enough at infinity to make integrals [in Eq.
(19)] over the potential in the exterior regions con-
verge. This problem can be overcome if we ne-
glect deviations in the exterior potential from the
special form (2). Thus, if we continue to demand
that the exterior potential depends only on the z co-
ordinate, we can impose the exterior interference
conditions [Eqs. (17a) and (17b)] as a set of linear
variational constraints.?® In this case, the inte-
grals in the exterior regions vanish identically,
since the u{}) functions [Eqgs. (5) and (7)] are the
exact solutions there. This restriction is not a se-
rious limitation of our methods, since the boundary
“surfaces” can be chosen at any desired distance
(Fig. 1) from the surface layers of the film. We
can then use the full power of the variational me-
thod to treat non-muffin-tin effects associated with
the variation of the potential parallel to the plane.

In view of the preceding discussion, the trial
wave functions have the following simple form
within the unit cell®” [from Egs. (9), (12a), (12b),
(17a), and (17b)]

W;(r):ZL:AchL(?)

+ ;JL,(K, F)[ES,ALAL,L] , 2,<z<z,
: 2

(20a)

(1)
Al,muk,ma z2,<z

wp(® =Y exp(iK, * T) (20b)

(2)
2,mui,m ?

A z2<z

2
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where ¢, (%) is given by Eq. (3) and A, is given by
Eq. (18b). In obtaining this representation of the
wave function, we have taken advantage of the
equations of constraint [Eqs. (17a) and (17b)] dis-
cussed above. This is particularly evident in Eq.
(20b), i.e., Eq. (9) reduces to Eq. (20b) in the ex-
terior regions, when the exterior interference con-
ditions (17a) and (17b) are applied. It is also worth
noting that the secular equation (18a) is nothing
more than the requirement that the quantity in
square brackets in Eq. (20a) vanishes, i.e., itis
just the interference condition within the muffin-
tin spheres. In the variational treatment of the
problem, however, we do not impose this condition
on the trial wave functions. Instead, for a film
muffin-tin potential, this interference condition is
a result of the variational calculation (as shown be-
low). Finally, we point out that we need only Eq.
(20a) in evaluating the integrals in Eq. (19), since
all of the integrals in the exterior regions are con-
strained to vanish identically. Once a solution of
Eq. (19) is found, however, and the A, coefficients
are determined, the A;  coefficients can then be
obtained from Eqs. (17a) and (17b). In this way,
the wave function ¥3(¥) is specified throughout the
unit cell.

Substituting from Eqs. (20a) and (20b) into Eq.
(19) we obtain, in the usual way,? the secular
equations

0= ;AL <; Opoput Appput WA pug S8,
+<¢L'IAVl¢L>

+2(5 K¢ 1| AV | T p)A Luy +hic.)
2

+ L;Z spsKJg 'AV‘JL">ATL'ZAL”L> )

(21a)
where

ty=(J (K, T) | =V2 4+ Vyr @) = E| T (K, Dper (21b)

and h.c. means complex conjugation plus inter-
change of the L and L’ indices. We have defined
the cellular potential as

Vur @) +AV(T), |F|<S
V({E) = (22)
(E-«?)+AV(¥), Tcinterstitial

where k¥ may be treated as an additional variational
parameter (otherwise E - k*=Vy.,). In Eq. (22),
AV(T) is the non-muffin-tin part of the cellular po-
tential.

For a film muffin-tin potential AV(¥)=0, E — k2
=Vurz, and the secular equations (21a) have a so-
lution if

det[(6 . pw+ALput A, ]=0. (23)

Since A;.; is a factor, the LC(MTO-PWO) secular
determinant (23) yields the same energies as (18a)
provided that A;.; is square rather than rectangu-
lar. In this case, Eq. (23) implies that detA =0,
which, in turn, is just the interference condition
in the muffin-tin spheres [i.e., the requirement
that the quantity in square brackets in Eq. (20a)
vanishes]. We have thus shown that, in the limit
of a film muffin-tin potential, the variational me-
thod employing the energy dependent MTO-PWO
basis yields the same results as the film Green’s-
function method™® [Eqs. (18a) and (18b)]. On the
other hand, the full LC(MTO-PWO) matrix in Egs.
(21a) provides a variational estimate of the ener-
gies for non-muffin-tin Hamiltonians.

We end this section with a brief discussion of the
relative rates of convergence (for a film muffin-tin
potential) of the LC(MTO-PWO) method and the
film Green’s-function method. This is based on the
above remarks regarding Eq. (23) and the equiva-
lence of the two methods when A;,; is square. In
an approximate calculation using the Green’s-func-
tion method, only a finite number of partial waves
¢,(E,T) [Eq. (3)] are included, and higher angular
momentum components are neglected. This is also
true for the LC(MTO-PWO) method if A;.; in Eq.
(23) is square rather than rectangular. When A,
is rectangular, however, the LC(MTO-PWO) me-
thod includes higher angular momentum compo-
nents in an approximate manner. Thus, for a giv-
en size secular determinant, we expect the ener-
gies and wave functions determined by the
LC(MTO-PWO) method (23) to be better converged
than those given by the Green’s-function method
(18a) and (18b). A direct treatment of these higher
partial waves by the Green’s-function method would
require a secular determinant of greater size. In
this connection, Williams, Janak, and Moruzzi®®
have shown that the LCMTO method'* (for a bulk
muffin-tin potential) is, essentially, just an appli-
cation of Lowdin’s*® perturbation theory to the
usual KKR equation, and it is in this sense that
higher partial waves are approximately treated.
To illustrate these considerations, we take, for
example, a case where the summation over L in
the trial wave function (20a) includes terms up to !
=2 only. The summation over L’, however, is
usually extended to include higher angular momen-
ta, I} ..>2. In this way, the wave function (20a)
contains, in an approximate way, the contributions
of higher partial waves. A direct treatment of
these by the Green’s-function method would require
a secular determinant of greater size (I >2).

In view of similar considerations in the bulk
case, Andersen and Kasowski'? have argued that



16 METHOD FOR CALCULATING SURFACE ELECTRONIC... 613

the LCMTO wave functions show better conver-
gence than the KKR wave functions, especially in
the outer parts of the unit cell where non-muffin-
tin effects are expected to be large. They have, in
fact, demonstrated the consequent advantage of the
LCMTO technique in silicon'® where the structure
is open and non-muffin-tin effects are important.
Similarly, we believe that, for treating general
film potentials with substantial non-muffin-tin con-
tributions, the LC(MTO-PWO) method is prefer-
able to the Green’s-function method, since the
wave functions are expected to be more accurate
just where the non-muffin-tin effects are apt to be
strongest.

V. DISCUSSION OF CORE ORTHOGONALIZATION
AND THE LINEARIZATION OF THE METHOD

There are a number of points of practical conse-
quence related to the implementation of Eqs. (21).
The first is related to the required orthogonality
between the wave functions (20a) and the core
states of a single muffin-tin potential. The reso-

J

AT 7 Copgek™ T (k, F - ROK *u(-R),

> > Lz
K (k,T)=

K, (k,T), otherwise

where we have gsed the addition theorems (12a) and
(12b)~t0 define K;. From its definition, we note
that K; matches onto K, with continuous first de-
rivative at the surface of all other muffin-tin
spheres. Finally, we redefine the PWO [Eqs. (8a)
and (8b)] within the muffin-tin spheres. Instead of

Xi,m=S1,m €xp[i(K, - Q,) * (F- R)]
=sl'm<47r Zi'K’J,(K|F—§[)
L

X YL(F— ﬁ)YL(Em 'ém)> ’

|F-R|<S
we define X, ,, as

Xi,m=S1,m <4" Zit"l'}x("'f-ﬁl)yz,(?“ R)
2

x¥,R,-8,)), [F-Rl<s
(25)

and similarly for X,,,,. Again we note that ¥, ,, (i
=1, 2) matches onto Xi,m With continuous first de-
rivative at the surface of the muffin-tin spheres.
The net effect of all these changes is to replace J,
by J, in Eq. (20a) and in the muffin-tin inte-
grals of Eqs. (21). For the special case of a

lution of this question is related to the linearization
of the variational approach, which is necessary in
order to gain computational speed for self-consis-
tent calculations and calculations for thicker films.

Since we are no longer imposing the interference
condition in the muffin-tin-spheres.

D s AL AL =0 (18a)
L

there is no guarantee that the wave functions (20a)
will be orthogonal to the core states of the muffin-
tin potential Vy. (7). As noted by Andersen and Ka-
sowski,'*'® this can introduce “false zeros” in the
secular determinant. The inconvenience of having
to identify these false zeros can be avoided by a
redefinition of the MTO’s and PWO’s inside the
muffin-tin spheres. Following Ref. 20, we replace
J, in Eq. (4a) by J,, which is orthogonal to the
core states, matches onto J, with continuous first
derivative, but is otherwise unspecified so far. In
addition, we replace K in all the other muffin-tin
spheres by K,

-R|=S and R+#0

=1}

|

(24)

r

film muffin-tin potential, the only change in Eq.
(23) occurs in ¢,. In view of the discussion after
Eq. (23), the eigenvalues in this case are therefore
still equal to the Green’s-function eigenvalues
[Egs. (18a) and (18b)], regardless of the choice of
the J, functions. In Refs. 12 and 15, J; is obtained
by orthogonalizing J, to the core states. We prefer
an alternative choice proposed in Ref. 20. In that
work, J, is proportional to the energy derivative of
the partial wave (8/8E)u,(E,r), which satisfies all
the requirements on J , but eliminates the necessity
of calculating core states. This choice is particu-
larly convenient when going over to a linearized
version of Eq. (21).3!

The linearization of the MTO method has been
extensively discussed by Andersen for bulk solids’
and molecules.?® The procedure is basically simi-
lar for the film problem and will now be briefly
outlined. The basic idea is to neglect, over a cer-
tain energy range, the energy dependence of the
MTO’s and PWO’s. The resulting secular matrix
thus becomes linear in energy

det|H(k) .. - EO (k) ,.|=0, (26)

where H is the Hamiltonian matrix and O is an
overlap matrix. The parameter « is treated as an
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energy-independent variational parameter, and
Andersen® has found that relatively few values of
k are needed to accurately determine the minima
of E,;(x), where i denotes the roots of the secular
determinant. The eigenvalues and eigenvectors of
(26) can then be simultaneously found by a simple
diagonalization procedure.

APPENDIX: GENERALIZATION TO THICKER FILMS

In general, the unit cell contains more than one
atom, and we denote by 7, the spatial coordinate
of the ath atom within each cell. We associate
MTO basis functions x,, ;(E, k, T) [defined as in Eq.
(4a)] with each of these, and the LC(MTO-PWO)
wave function (9) then becomes

Y;(E,T)= Z Aa'L(E)Z exp(ik « R)
oy L R
XXG.L<E: K, F-ﬁ— 7?&)
+ ZAi,rnXI,m(EsK’.f)~ (Al)

tym

As in Sec. III, the three region tail-cancellation
condition leads to a system of linear equations for
the A, ; and A; , coefficients in Eq. (Al). Thus the
cancellation condition inside the muffin-tin spheres
(14a) and (14b) becomes

J

B%, =4 Z:exp(ii R) D C g kBT KA R Ty = (1= 6, 4053,
R ja

Ba _ -2112 o e laltan K =
D7y = —4mik®*! 2 exp(ik * R) ;CLL'L"K T K, R+ T o = Tg),
R

- -

S&, =4mk’ ZA wmSumY 1 (K,.-Q,) exp(iK, - 7,) exp(—iQ, T,.),

Sc(xz.)L = 47”(1 Z A2, m sz,m YL(ﬁm +6m) exp(zl_zm * -;a) exP(iQm Taz) ’
m

Z Aa,L(E) [(coz,L —-1Sq,; sz)ér,. 94,8 = Sq, IB‘},?L]
o, L

+ 2 IS, K) +S2,(k, K)]6,, 1180, =0, k<O
a,L
(A2a)

z; Aa,L(k) [Ca, 101, 10,5~ Saq, IBBL?L +Sq, IDBL?L]
a,

+ O[Sk, &) + 82, (6,816, 1.8, 5=0, 0<k?
a, L

(A2Db)

and the exterior cancellation conditions (17a) and
(1) become

2mi

- Z A, 1Se, k! YL(K,,, +(_§m) exp(—iﬁ,,, ‘Ty)
A oy, L
Xexp(_'iQmTaz)Qr-rxl+Al,mcl,m+A2ym82.m=O’
(A3a)
271 - - -
A E Aqg 154,10k Y (K, - Q,) exp(~iK,, 7o)
a, L
X exp(iQ,TadQm + AL, mS1,m+ Ao, mCam=0,
(A3b)
where
R,0 (Ada)
(A4b)
(Adc)
(A44)

and T,, is the z component of ?a, Eliminating the A; , coefficients in favor of the A, , coefficients in Egs.
(A2a) and (A2b) we obtain the smaller system of equations

Ba _
Z Snr, LAa.LAL'L =0 ’

o, L
where

A% = k@) exp[ik - (T, - T,)] {
The quantity

Sy = =k @) exp ik - (T, - Tp)] B,
and the functions T%2; are defined as

a ; Ba 8 2
(cotdf = 1)8,, 1.6, 5+5%%, + T5%, , k2<0

(A5a)

L'L>

(cotdf p)0y 04,5 +5% L +T5, 0<k?

(A5Db)

872 - ; - - = . - -
TBL?L =T Z[Qm(sl.m sz.m - cl,m Cz,m)] ! YL(Km +Qm)YL‘(Km +Qm) exp [l gm * (TB - Ta)]

X ( _sl,mcz.m(_l)y exp[—iQm(‘r“+ TBz)] —SZQMCIIM(—I)L eXp[iQm(Taz+ TBz)]

+{exp [iQm( TB: - Tax ] + (‘1)L+L' exp [sz( Taz - Tﬂg)} } W(m)) )

(A6a)
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where the quantity W(m) is defined as

W(m)={%(c""'czv'"*sl.msz.m)’ Ko <« (A6b)

2 2
sl,msz,m y K <Km

and the coefficients s, ,, and ¢, , [Eqs. (8a) and
(8b)] are given by

S;, m=[exp(xiQ, 2,)] (Q,, Fv;,,)/(2iQ,), j=1,2

(A6c)
¢;,m=[exp(*iQ, 2))](~iQ, *v, ,)/(2iQ,),

and the upper (lower) sign is taken for j=1 (2).
The v;,,, are the logarithmic derivatives at the
boundary surfaces

(i)
Yim=(8/02)ui .| 2z (A6d)

and we have set u; ), (2;)=1. T, thus depends on
the exterior potential through the logarithmic de-
rivatives at the boundary surfaces.

Equation (A6a) can also be written

ta .
0= ZL Aa,L<BZL: (60!',56L',L"+AL"!LB”tHI")ABL('!‘,Lsa',lsu,l+<¢a',L'|AVu
o, , L

211
sa _—8T°1

T, = —Ar
x3 Y, (K, +Q,)7 (K, +Q,)

Xexp[i g, (To~ 7,)] M5 (m)/A,Q, (AT)
which has the same form as Eq. (A20) of Kar and
Soven.” The quantity A, is identical to that given
by Eq. (A21) of Ref. 7, and the quantity M58¢; is
identical to that given by Eqs. (A22) and (A23) of
Ref. 7. There appear to be some minor errors of
transcription in Ref. 7. Thus

MA83, (m)=iM4%, (m), K2<k? L+L’ odd
M52 (m) =i exp(~Q, D)M5%, (m), k*<K?Z
where M is given by Eqs. (A22) and (A23) of Ref. 7
and D=2z, - z,.
Finally, we display the generalization of Eqgs.

(21a) and (21b), the secular equation used to treat
general potentials including non-muffin-tin effects:

¢a,L>5a'.a

+ 260, 1 (e, | AV | TpIATE +he) + 2: Sa, v Sa, (I | AV?] JL~>A';"§A"L""L>, (A8a)
" s L" L

where
tE=(J (K, T) | =V24+ Ve () = E|J,(k, yr (A8D)

and h.c. means complex conjugation plus inter-
change of the @, L indices with the a’,L’ indices.
We have defined a cellular potential

V(H=2 VEF-R-Tp),
By R

where V* is nonzero only within the atomic Wig-
ner-Seitz (AWS) cell centered at 7, In analogy

—
with Eq. (22) V2 is defined as
Vi) + AVE(E), |F|<S,

VE(F) = - -
(E-«k?)+AVE®T), SB<|r|.

Thus the angular brackets (X |AV®|Y) in Eq. (A8a)
denote one center cellular integrals

fX*(F)AV“(F)Y(F)dSr, AWS cell at 7,

and the integral in Eq. (A8b) extends only over the
muffin-tin sphere in the ath AWS cell.
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