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The zero-temperature phase diagram for the linear compressible chain of classical Heisenberg spins is

obtained. In the space of appropriate coupling constants, the spin-flop phase is separated from the aligned

phase by a surface along which runs a line of tricritical points. Also, the molecular-field approximation for

coupled spin-lattice systems is examined. With classical variables, there are two ways of proceeding, and both

have been used previously. The procedures are discussed on a variational basis, and it is pointed out that one

gives a lower upper bound on the free energy than the other.

I. INTRODUCTION

The compressible chain of classical I-Ieisenberg
spins was studied by Lee' and the present author. "
The coupling of the spins to phonons through ex-
change striction gave rise to effective biquadratic
interactions between spins, and thermodynamic
functions at finite temperature and zero field were
studied. " Further, in Ref. 2 it was shown that
antiferromagnetically coupled spins in an external
field H at T =0 K underwent a first-order phase
transition of the type studied by Kittel4 who used a
mean-field theory for a system characterized by
just one elastic coordinate —the volume. The free
energy derived by Bean and Rodbell' would pre-
sumably also yield the transition.

Two points are discussed in this paper. First,
the T =O'K phase diagram is discussed for the
chain, allowing for the application of a force & on
its ends. In &y-H-y' space (y is the spin-phonon
coupling), the spin-flop phase is separated from
the aligned phase by a surface along Which runs a
line of tricritical points (Fig. 1). Second, mean-
field theories for coupled spin-lattice systems are
discussed for classical spin and lattice variables.
There are two distinct ways (methods 1 and 2 in
Sec. III) of proceeding, and both have been used in
the literature. 4 ' Whereas method 2 has been deri-
ved' on the basis of a variational principle for the
free energy F, it seems that method 1 has not. A
variational derivation is given here, and it is
pointed out that, in general, method 1 does not give
as low an upper bound on F as method 2.

II. T= 0'K: PHASE DIAGRAM FOR COMPRESSIBLE

CLASSICAL HEISENBERG CHAIN

If a force ~ is applied inwards at either end of the
chain, the Hamiltonian is

S,. S,.„-II S;

A A 1—yQ(x( „—x))S) ~ S;„+ Q Pg'

Except for the last term, this is the Hamiltonian
studied in Ref. 2. Application of the unitary trans-
formation (2.2) [i.e., Eq. (2) of Ref. 2] yields

U3CU ' =R, +R,„, (2)

where

X, =—+J(&)QS;'S)„—HQS( —AQ(S S;„).

Here A is y'/2k, J(X) =J+y&/k, and 3C „is defined
in (2.6).

At T = O'K and B=0 there is a first-order trans-
ition when 8(&} changes sign on varying &. This is
an example of exchange inversion discussed by Kit-
tel.' Depending on the relative signs of J and y,
one needs to pull or squeeze the chain to reach
J'(&}=0. The analogous transition in the Ising chain
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has been studied by Salinas. '
Now consider H o0 and assume J&0 (antiferro-

magnetic). From Eg. (2.21), the energy per spin
is, except for an additive constant,

E(8) =A sin'28 —J(A)(1+ cos28) +H(1 —sin8). (4)

Defining M, to be cos8, the component of the sub-
lattice magnetization normal to H, and expanding
E to order M,', we find

E(M, ) = aM', + bM,'+ cM,',

with a=4A —2J(&)+ ,'H, b =——4A+ ', H, c=—,eH. Equa-
tion (5) is of the Landau form, and since b can be
negative, the transition can be first order. There
is a tricritical point' at A= —,'oJ(&) and k =—5J(&).
Since J(X) depends linearly on Xy/k there is a line
of tricritical points in &y/k H Asp-ace-(Fig. 1).
Below the surface shown, the spins are in the
flopped phase. Above it, they are aligned along H.
The transition is second order to the left of the
line of TCP's and first order on its right. As
A -~, the surface of first-order transitions ap-
proaches the plane H/2J —&y/kJ =1.

The phase transitions discussed here occur only
at T =O'K. They are ruled out in the chain at
T WO'K by a generalization of the Perron-Froebin-
ius theorem" as the kernel of the transfer-matrix
integral equation" has only positive elements.

On a general harmonic three-dimensional lattice,
separation into phonon and spin Hamiltonians H,„
and H, goes through, but H, contains longer-range
four-spin interactions. "" An exception is the
Baker-Essam lattice. "'" This is composed of in-
terpenetrating chains, with no spring communica-
tion between chains indifferent directions, and no

Line of tricritical
points

A

J

transverse restoring forces in a given chain. This
leads to nearest-neighbor bilinear and biquadratic
terms [Eq. (3)] on every chain. Thus Fig. 1 is also
the phase diagram for this system at T =0 K pro-
vided we replace H by 2H/z, where z is the number
of nearest neighbors. Since we have a three-dimen-
sional lattice of interacting spins on the Baker-Es-
sam lattice we expect the phase transitions to occur
at finite T.

III. VARIATIONAL APPROXIMATIONS FOR COUPLED
SPIN-LATTICE SYSTEMS

Consider a system described by the Hamiltonian

K=K,('u, 6')+R, (w, S) +R,(S), (6)

where 'lL, 6', and 8 stand for the set of all the dev-
iations from equilibrium, momenta, and spin vari-
ables, respectively, all taken to be classical. K,
describes a harmonic lattice, and R, includes field-
spin and spin-spin couplings. R, is the spin-lattice
interaction, assumed to be linear in the lattice
variables.

In method 1, one performs the mean-field ap-
proximation directly on 3C. I et us proceed varia-
tionally":

g Tr e K 'lL(PTr egR 'Q 8 g 3 3
w, (p g 2

(7)

where Tr~ ~ and Tr~ denote lattice and spin traces,
respectively, and

C(u, P) = (1/p) Tr~ P lnp+ (+(u, s))+ (K,(S)). (8)

( ~ ) stands for Tr~(p. ) and p is a trial density
matrix of the form II;p;. The mean-field approxi-
mation is obtained on maximizing exp[-PC (~, p)]
by varying p. Such a maximization is impossi-
bly complicated for arbitrary 'h, but one may pro-
ceed by noting that

[e"8&&Ale& )( max &-Bo(%&P))]
%L~ (P P

=max (Tr e 8~~'~'~' ao'"'") (9)

The lattice trace on the right-hand side can now
be done. The only&dependence in 4 is in (R,).
Since K, was assumed to be harmonic and R, linear
in /, we can write

K,(e,6 ) =QE,(P', +u', ) (10)

-hy

Jk

FIG. 1. T=0'K phase diagram is shown for positive
A and 4 Below the surface, the spins are flopped, and
above it they are in the aligned phase. The transition is
second order across the surface marked with solid lines
and first order across the dashed surface.

and

Ã~(%, ,S)=+ u P (S).

Here u, and P, are the (dimensionless) coordinate
and momentum of normal mode q, E,(~0) is the
corresponding energy, and P, is some function of



l6 COMMENT ON COMPRESSIBLE SPIN SYSTEMS

Sy Sp S„. Performing a displaced os cillator
transformation for each q and doing the lattice
trace, we find

Z~ Z„«max, e ~~i"',

where Z.« is Tr~ (exp[- PX,('u, (P)]] and

@&(P)=
~
»g P»P + &Ie3&

—g &8,(g)&'

q q

(12)

(13)

-8C (a)- Z„«max, e

where

C, (p) =—Tr plnp+ Tr~ p (K (I) —PIP($) )
1

2
P q 4g

(14)

From Eqs. (13) and (15) we have

4'.(p)- ~, (p) = P4E [-&0'.(3)&- A,(g)&']-0
q q

Thus

min, O, (p) ~ mid@, (p),

and so method 2 gives a better bound on the free
energy than method 1. If R, and K contain terms
bilinear in the spins, method 1 yields only a vector
order parameter &S&. Method 2 allows for the ex-
istence of an independent quadrupolar order param-
eter, which may be nonzero even when &S&

= 0."

Method 2 proceeds by separating 3C [Eq. (6)] into
lattice and spin parts by means of a displaced os-
cillator transformation, and performing mean-field
theory on the resulting spin Hamiltonian. Ne have,
thus,

Z=Z„„Tr, exp —P K,(S)-Q 'P(s)
q q J

Method 1 is applicable without difficulty to a
quantum spin system, whereas 2 is predicated on
the separability of BC into X~ and X.„«by means of
a unitary transformation. In general, such a sep-
aration is not possible for quantum spin systems,
though there are exceptions.

Both methods 1 and 2 have been used in the past.
For instance, Lee and Bolton' have used the pro-
cedure 2 to discuss Ising systems. The results of
method 1 were used (though without the variational
derivation) by Kittel, Bean and Hodbell, ' and Hod-
bell and Owen. ' (Moreover these treatments did
not allow for fluctuations of individual ions from
their mean position. ) Hodbell and Owen state"
that it is strictly correct that exchange striction
leads to contributions like &S~&' in the free energy
within the molecular-field approximation. As our
discussion above shows, this is true (with bilinear
spin terms in K, and R,) only if method 1 is used.
If method 2 is used, contributions of the form
&(S )'&'(not &S &') appear in C„which for classical
spin systems is a better approximation to the free
energy than C, .

To summarize, method 2 is, for classical spin
systems, a better approximation than method 1.
For quantum spin systems, however, method 2 is
not always applicable, whereas method 1 still is.
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