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Phase diagrams near the Lifshiftz point. II. Systems with cylindrical, hexagonal,
and rhombohedral symmetry having an easy plane of magnetization

A. Michelson
Department of Physics, Technion-Israel Institute of Technology, Haifa, Israel

(Received 16 March 1976)

Paramagnetic (I)-ferromagnetic (II)-helical (III) phase diagrams near a Lifshitz point are studied for systems
with cylindrical, hexagonal, and rhombohedral symmetry having an easy plane of magnetization. We show
that the II ~+ III phase-transition line in these systems is not tangent to the order-disorder transition line at the
Lifshitz point. We also show that the II ~III phase transition is second order (but with some peculiar
features) in the case of cylindrical symmetry and first order in the case of hexagonal or rhombohedral
symmetry, These results differ from those obtained in the uniaxial case and also manifest a dependence on the
symmetry of the system. The results for hexagonal systems are compared with experimental data for Gd-Dy,
Gd-Sc, and Gd-Y alloys.

I. INTRODUCTION

In our previous paper, ' hereafter referred to as
I, we studied the phase diagram near a Lifshitz
point' for a system having a single easy axis of
magnetization. In particular, we have shown that
the lines of the I=.II, I=III, and II=III phase tran-
sitions (the notations I, II, III have been used to
designate the paramagnetic, ferromagnetic, and
sinusoidal phases, respectively) are tangent to
each other at the Lifshitz point (see Fig. 1 in I)
and that the II=III phase transition is first order.
Since there exists a variety of systems having an
easy plane, rather than easy axis, of magnetiza-
tion, it is of interest to develop the thermodynam-
ics of the Lifshitz point for such systems and to
compare the results with those obtained in the un-
iaxial case.

An easy plane is generally normal to a rotational
axis of order v &2, which can be taken as the z
axis. The magnetization involved represents a two-
component order parameter M =. M„x+M,y. One
of the ordered phases (phase II) is i'erromagnetic,
with spontaneous magnetization parallel to a cer-
tain direction in the xy plane, the other (phase III)
is helical, with M rotating in the xy plane as one
moves along the z direction. Since in the helical
state M is a (periodic) function of z, it is essential
to take into account M' and M" (the prime is used
in our work to denote the differentiation of M and
its components with respect to z) in the expansion
of the free energy E(M), when dealing with the vi-
cinity of the Lifshitz point (see Refs. 1 and 2).

We demonstrate in this paper that the thermo-
dynamical properties in this vicinity depend on the
symmetry of the paramagnetic phase (phase I),
namely, on the order of the rotational z axis. In
Sec. II we consider the case of cylindrical sym-
metry, which is characteristic of a system iso-

II. CYLINDRICAL SYMMETRY

In dealing with cylindrical symmetry it is con-
venient to use the complex components

M( =M„+iM (2.1)

which in their turn are related to the cylindrical
components M, g by the formulas

(2.2)M =Me'~ M =Me '

The:free energy E(M) must be invariant under ro-
tation about the z axis by an arbitrary angle (t(

(M, -M, e'~). Therefore, retaining in the expansion
of E(M) the terms pertinent to the Lifshitz-point
problem, we have

E(M( =f (-, Apl, M„+ BM '(I', —',

+-,nM', M'„+-,'PM", M'„')d'y .
Here B&0,p&0, and the lines

A, (E, r) =0

and

(2.3)

(2..4)

tropic in the xy plane. In Sec. III the case of hexa-
gonal and rhombohedral symmetry is considered.
We show that in the case of cylindrical symmetry
the II=III phase transition is second order (though
with some peculiar features), while in the case of
hexagonal or rhombohedral symmetry it is first
order. As regards the shape of the phase transi-
tion lines, we show that in all the above cases the
I = II and I = III phase transition lines have a com-
mon tangent at the Lifshitz point, as in the uni-
axial case, whereas the II=III phase transition
line is not tangent to these two lines, as distinct
from the uniaxial case. In Sec. IV we compare the
results of Sec. III with experimental data for hexa-
gonal binary systems Gd-Dy, Gd-Sc, and Gd- Y.
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n(P, T) =0 (2.5) M =M =(—A /B)' '=(CB) ' [T (P) —T]' '

intersect at the Lifshitz point (P~, T~). As in I,
we ignore the dependence of B,P on P, T in the
vicinity of (P~, T~). The order-disorder transition
line T»(P) is given by the same equations as in the
uniaxial case (see I, Sec. II): The part of this line
lying in the region of n &0 coincides with the line
T,(P) defined by Eq. (2.4), and the part lying in the
region of n & 0 is described by the equation

(2.6)

0
pM"" —nM" +A M +BM M =0 (2.7)

(and a complex-conjugate equation for M„). This
equation has the exponential solutions

M (z) —M e & &»z+0 &

with

M„= (-A„/B)'"
where A, are defined by the equation

Au —Ap+ +k + 2 Pk

(2.8)

(2.9)

(2.10)

[see I, Eq. (2.7)]. Note that these solutions are
meaningful only for A, &0. The values of E(M)
corresponding to these solutions are

F,=-A'„/4B (2.11)

(we have put the volume V=1 for short). In the
state of thermodynamic equilibrium the value of
E(M) is equal to the smallest of F„ i.e. ,

A„=AO —n'/2P=O.

The two parts of T,(P) have a common tangent at
(P~, T~).

The equilibrium magnetization in the magnetical-
ly ordered state is determined by the minimiza-
tion of the expression (2.3) at T& T,(P). This leads
to the variational equation

=M e" &~"'»~
g &eq &III kp

with the magnitude

(2.17)

M =M =(—A /B)'~=( —A, +n'/2P)' 'B ' '

(2.18)

The fact that &t& in (2.17) is arbitrary reflects the
invariance of F(M) under arbitrary rotations of
M in the xy plane and arbitrary displacements
along the z axis.

The result expressed by Eqs. (2.17), (2.18) was
obtained by comparing the values of E(M) corre-
sponding to the solutions (2.8) of Eq. (2.7). Gen-
erally speaking, Eq. (2.7) may also have other
solutions, which cannot be expressed in a simple
analytical form. Let us show that the allowance for
the possibility of such solutions does not affect
the result (2.17), (2.18). According to the argu;—
ment in I, Sec. III, the asymptotic form of M«„(z)
at T-T,(P) —0 must be

[M„„(z)]„„=Me"""'&+M e '&»."»& -(2.19)
0 0

where M„,M ~ must be determined by the mini-"0 0
mization of the expression E(M, , M, ) obtained

0 p
by substituting (2.19) for M, in (2.3). We have

+ z B (M @
+ M» + 4M» M» ) .

0 0 0

(2.20)

(2.16)

[compare with Eq. (3.1) in IJ, where C is the
Curie-Weiss constant for the paramagnetic sus-
ceptibility. In phase III the equilibrium magnetiza-
tion is given by

F, =E „= A,„/4B;-
A,„ is given by

(2.12) The minimum of E(M„,M, ) corresponds to
0 p

M —
( A»/B) t M -() (2.21R)

A, for ~&0
mjn

A, for a&0,
0

(2.13)
or

M» =(-A» /B)' ' M =0 (2.21b)

where

(2.14)

It follows that in the region where»0 and A, &0
the stable state of the system is ferromagnetic
(phase II), and in the region where n &0 and A, &0
the stable state is helical (phase III). In phase II
the equilibrium (spontaneous) magnetization is
given by Eqs. (2.8), (2.9) with @=0

(2.1 5)

It has an arbitrary direction in the xy plane [ar-
bitrary &t& in (2.15)] and the magnitude

Thus the asymptotic form of M«»(z) coincides with
the exact solution (2.17), (2.18) of Eq. (2.7). Hence
the latter does indeed minimize F(M).

As follows from the above, the II = III phase
transition line Te(P) is described by Eq. (2.5).
This result differs substantially from that obtained
in the uniaxial case (see I, Sec. III). The line
T„(P) in the present ease meets the line T,(P) at
an angle (see Fig. 1) rather than being tangent to
it at (P~, T~).

The wave number k, = (-n/p)'t' increases con-
tinuously from zero as the point (P, T) on the phase
diagram moves from the line T„(P) into phase
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lim M(„,(z P T) =M(»(P TH(P))T~ Tp(P)
(2.24)

(on the assumption that the arbitrary phase g is the
same in M«, and M«»). One might infer at first
sight that this is a typical continuous phase transi-
tion. However, as pointed out by Shtrikman, ' this
continuity is not uniform throughout the system.
Indeed, for a point (P, T) in phase III arbitrarily
close to a point (P', T') on the line T„(P)—so that
0, is made arbitrarily small —one can find z so
large that k,z-l, and the difference M„»(z;P, T)
—M, »(P', T') for such z is finite. The fact that the
system is actually finite ( z

~

~ f, ) does not remove
this difficulty, because the values of allowed 0 are
actually "quantized, " and the smallest nonzero k,
is of the order of L ', so that again for z -L one
has 4,z -1. In this respect the II=III phase tran-
sitions differ from typical continuous transitions,
such as, e.g. , the I=II and I~III phase transitions.
[In the latter, as follows from Eqs. (2.15)-(2.18),
M„and M„,(z) tend to M, =O uniformly throughout
the system when T- T,(P) —0.] In our opinion, it
would be appropriate to term the II=III phase

III. In the neighborhood of an arbitrary point
(P', T') on the line T„(P)

(2.22)

at T=T', and

(2.23)

at P=P'. As seen from Eqs. (2.15)-(2.18), not
only k, but also the order parameter itself changes
continuously in the II =III phase transition at any
fixed point in space:

transitions "quasicontinuous. "
Let us now find the changes of thermodynamic

quantities taking place in the II= III phase transi-
tions. According to (2.12), (2.13), we can write
for I'„ in phases II and III, respectively,

Fii=-Ao /4B, (2.25)Fiick=-A„

/4B = —(Ao —n /2p)2/4B .
The corresponding entropies are

~+rz Ao ~AD
rr ~T 2B 8T

BF&sr Ao —o' '/2p BAo o.'Bo.
err BT 2B BT P 8T

(2.26)

(2.2V)

(2.28)

It follows that the entropy changes continuously as
the line T„(P) is crossed (n = 0 on this line).

Neglecting the second derivatives O'A, /BT',
B'n/BT', we obtain for the specific heat (at con-
stant P)

, (BA,)' (2.29)

tran 2B gT P 8T 2BP gT . 2P

For paints (P, T) on this line that are sufficiently
close to (P~, T~),

(2.30)

It follows that the specific heat experiences a jump
on the line T„(P):

6 c = (c,» —c„),= —T(2BP) ' —A, . (2.31)
BQ

AC O:ADO(: T —TI cf-P —PI ~ (2.32)

PHASE I

SE E

FlG. 1. Form of the phase diagram near a Lifshitz
point (P~, Tz) in the case of an easy plane of magnetiza-
tion in systems with cylindrical, hexagonal, or rhombo-
hedral. symmetry.

Observe that the change in the specific heat is
positive for the II-III phase transition, where the
symmetry de creases. This coincides with Lan-
dau's result4 for continuous phase transitions. In
a similar manner one can show that OF/BP (which
represents the volume of the system if P denotes
pressure) is continuous on the line T„(P), whereas
B F/BP' and O' F/BPBT (which represent, respec-
tively, the isothermal compressibility and the co-
efficient of thermal expansion if P is pressure)
are discontinous. In this respect the II=III phase
transitions are typical second-order transitions
according to Ehrenfest's classification.

Further, let us find the second variation of
F(M) for the ferromagnetic state,

(2.33)

Expanding 6M, = OM„+i 6M, in Fourier series
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5M( = 5M„~+i 5M e s~g

k

where

(2.34)

5M„q = 5M„*q, 5M q= 5M*q, (2.35)

5~ ~E(~) = —Q (A„- 3Ao)
~

5M„~
~

+2 Q (Aa- Ao)15M,s ~'. (2.36)

I et us now consider 5"'Ez& at some point (P, T)
where o. (0. Putting in (2.36) 5M„„=0 for all k
and 5M,~=0 for krak„we ha,ve

and for convenience putting /=0 in (2.15), we ob-
tain with the aid of (2.3), (2.10), (2.15), and (2.16)

tuations but (
~
5M,, ~'} remain finite on the line

Tz(P). In this respect the II III phase transitions
are "noncritical" second-order transitions. The
"noncritical" character of these transitions is
probably associated with their "quasicontinuity"
mentioned above.

In concluding this section let us find the magnetic
susceptibility in phase III with respect to a homo-
geneous magnetic field parallel to the xy plane.
For definiteness we shall take the field to be
parallel to the x axis. In order to find the recipro-
cal susceptibility X,'„, one has to evaluate the sec-
ond variation 5"'F(M, 5M) for M=M», and
(5M= DMx, where ~M is independent of coordinates.
A simple calculation with the help of Eqs. (2.3),
(2.17), (2.18) yields in this case.

5"'E, ,
= —'(A~-A, )

~
5M,~ ~'&0. (2.37)

5' ~E=~(AO —2A~)5M

whence

(2.40)

This means that the ferromagnetic state described
by Eqs. (2.15), (2.16) does not correspond even to
a local minimum of E(M) at those (P, T) where
n (0 i.e. , this state is not metastable in the region
where phase III is stable. As for the helical state,
it is altogether meaningless to speak of its meta-
stability in the region where & &0, since its wave
number k, is not defined in this region. The ob-
served property of absence of metastability is also
characteristic of second-order phase transitions.

One can use the expression (2.36) for the evalu-
ation of the thermodynamic fluctuations of Fourier
components of M(z) in the phase II. According to
standard formulas of statistical mechanics, 4 we
obtain for the mean-square fluctuations of M„~,M,~:

kgT kgT
A —3A - 2A + (+ + —

PQ

(2.38)

where k~ is the Boltzmann constant. We see that
formally the fluctuation ( ~

5M„~') = ~, as should be
expected, since the variation 5M = 5M~y is equiv-
alent to infinitesimal rotation of M» =M~ in the
xy plane and E(M) is invariant under such rotation.
This singularity exists throughout phase II and is
not a "critical phenomenon, " in the sense that it is
unrelated to the existence of phase transitions in
the system. On the other hand, the divergence of
(~ 5M~ ~'}=-@AT/2A, at T -T,(P) is the well-
known critical singularity" associated with the
existence of a continuous I =II phase transition at
T =T,(P). As can be observed from Eqs. (2.38),
(2.39), there is no specific singularity associated
with the II = IQ phase transition: A, tends to a
finite negative value as T -T~(P), and all the fluc-

-1&irx=&0- ~q
This result is exactly the same as in the uniaxial
case [see I, Eg. (4.3)]. In particular, on the line
T,(P) (at S»P, )

(2.41)

X,'„=X,
' = A, = C[T,(P) —T,(P)]

= 2Cy-'(P - P, )-', (2.42)

Hence on the line T„(P), where A&=A, ,

Xr~i =2&i~» =-&o (2.44)

III. HEXAGONAL AND RHOMBOHEDRAL SYMMETRY

The form of the expansion of F(M) for a rhom-
bohedral crystal is virtually the same as for a,

hexagonal one. Indeed, this form is determined by
the symmetry of the paramagnetic phase, which
eontair.:s time inversion. The latter changes the
sign of M and thereby doubles the number of
equivalent positions of M in the xy plane from three
to six. In this respect the combination of a, three-
fold axis with time inversion is equivalent to the
presence of a sixfold axis. We shall therefore
speak only of hexa, gonal symmetry.

The free energy must be invariant under the ro-
tation by —

3m about the z axis, which transforms
M& into Mp" '. The onlyfourth-order term invari-
ant under this transformation is M ~M„'. . Hence
to the fourth order in M the expansion of E(M) for
a hexagonal crystal has the same form (2.3) as the
free energy of a two-dimensionally isotropic sys-
tem considered in Sec. II. The anisotropy (depend-

with y defined in I, Eq. (2.16).
In phase II the longitudinal magnetic susceptibility

is given by

(2.43)
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M', +M „'=2M' cos66) (3.la)

ence on 8) appears only in the sixth order in M:
besides the isotropic invariant M', M'„=M' there
are two additional hexagonal invariants:

-B+[B'-4Ap(C, —
I C. I)]'" '"

II 2(C, —
I C, I)

Sufficiently close to the line T,(P), so that

A C /B «1, A iC ~/B «1,
one obtains from (3.6)

(3.7)

f(M'„-M;) =2M'sm68. (3.1b)

In order to find the effect of hexagonal ann. sotropy
upon the phase diagram near (P~, T~), one must
therefore expand E(M) to the sixth order in M. For
simplicity we shall consider only those hexagonal
point groups that contain the transformation
M&-M„. The latter can be represented by the ro-
tation by the angle m about the x axis or by the re-
flection in the yz plane. In this case the invariant
(3.1b) does not exist, and the expansion of F(M) to
the sixth order in M has the form

E(M& =E' '(M&+ —f [C,M,'M',

+ ,'C, (M', +M-„')]d'~, (3.2)

where E' '(M) is given by the expression (2.3). (In
order to distinguish in this section the quantities
referring to the case of cylindrical symmetry from
analogous quantities referring to the case of hexa-
gonal symmetry, we shall add the superscript "'

"to the notations of the former. )

Equations (2.4) and (2.6) describing the two parts
of the order-disorder transition line T»(P) obvious-
ly remain valid in the present case. In phase II,
where M' =0, the expansion (3.2) takes the form

F(M) =E(M, 8)

=-,A+I '+ ,'BM '+ —,(C, +—C,cos68)M ' .

(3.3)

The minimization of F(M, 8) with respect to 8 at
fixed M yields the following values of 8:

(p &
Ao(C& —

I C2 I ) (3.10)

where E",, ' is given by Eq. (2.25). Observe that the
main correction to E,",' in (3.10) is obtained by the
substitution of M,",' for M in the sixth-order term
in (3.5), or more generally, by the substitution of

M,",' for M in the sixth-order term in the expan-
siori (3.2) of E(M).

I et us now consider phase III. The variational
equation for the determination of the components

M&III III ™~&IIo III
'

2PM'" —@MAL('+ApM(+8M M(= C„M M( —C2-M„'.

(3.11)

Sufficiently close to the I=III phase transition line

M„=M,",&+ ~, (3.8)

where M', P' is given by Eq. (2.16). As should be
expected, the sixth-order terms in E(M) may be
considered as a small perturbation at T sufficiently
close to Tp(P).

Substituting the expression (3.6) for M in (3.5),
one finds

B' —6BA p(C& —
I C2 I ) —[B'—4Ap(C&, —

I C2 I )]' '
II 24(C1 —

I C2 I )'

(3.9)

Under the conditions (3.7) one can write

0= 3nm, n=0, 1, . . . if C2&0

0 = —,m+ —,
'

nm, n = 0, 1, . . . if C, &0.

(3.4a)

(3.4b)

where M', p«', and M,'p«' are given by Eqs. (2.17) and
(2.18). Substituting (3.12) into (3.2), one obtains

V

E =E"'+ 6'2&E'P&(M" & AM)+ -A' C /6B'III III III ~ k0

Equation (3.4a) describes six possible directions
of M» that are crystallographically equivalent to
the x direction. Correspondingly, Eq. (3.4b) de-
scribes six directions equivalent to the y direction.
Substituting any one of the values of 8 from (3.4)
into (3.3), one obtains

E=E(M) =-'A, M'+ 'BM'+ —', (C, —~C, ~-)M'.

(3.5)

(C, —
~
C,

~

must be positive to ensure the thermo-
dynamic stability of the system against infinite in-
crease of M. ) The minimization of the expression
(3.5) yields

(3.13)

where EfP~~, is given by Eq. (2.26), and
6~' F '

(M~'~z, &M) is the second variation of F~p&(M)

corresponding to the variation hM of M for M
=M [6"~F"&(M+& AM) =0 since M=M'. '

III III» III
corresponds to the minimum of F'p'(M). ] The last
term in (3.13) represents the contribution to E»,
arising from the sixth-order term in (3.2), which
is evaluated with neglect of. 4M in comparison with

M,"„'. By analogy with (3.10), one may expect that

i

6"'E' '(M,"„',AM)
i
«-A» C,/B', (3.14)

0

so that
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P„,=F'I'II -A. '2 C,/6B'.

Let us prove the relation (3.14). According to Eqs. (2.3), (2.17) and (2.18),

(3.15)

6(2)F(0)(M(0) ~M) P~ ~ ~ + 1B[(M(0) )2(~ )2+ (M(0) )2(~M )2

+4(MI(;,)'r M(r M„)+ ,' r M-' ~'+ 'P~-'~M„")d'r. (3.16)

On the other hand, substituting M«„ from (3.12) for M, in Eq. (3.11), we get the following equation for
4M:

2PAMI" —(26M(I'+ [A0+ 2B(MI(II) ]AM(+B(M(II)I) r)M„=-CI(MI(II) M((III —C2(M(III)' . (3.17)

In deriving Eq. (3.17) from Eq. (3.11) we have neglected the terms of the second and higher orders in hM
appearing on the left-hand side of the equation, as well as the terms of the first and higher orders in 4M
on the right-hand side of the equation. Let us now multiply Eq. (3.17) by —,&M„and add to the result its
complex conjugate. Integrating the resulting equation over the volume of the crystal and comparing with
Eq. (3.16), we find

&(2)P(0)(M"), aM) =--'C (M'")'III' 4 1 III (M(IIIDM„+ c. c) d't ——,'C, [(M(II)I)'4M„+c.c.Jd'r. (3.18)

+rz =+err ~ (3.19)

does not coincide with the line TH0'(P) given by Eq.
(2.5). In the vicinity of (Pi, Ti) where the condi-
tions (3.7) are fulfilled, the equation of the line
T„(P) is obtained by substituting (3.10) and (3.15)
into Eq. (3.19), whence

2Ajj(CI —
I C2 I), 2A2, C,

3B ~0 3B (3.20)

Assuming that the line T„(P) is only slightly dis-
placed with respect to the line T'„"(P), so that

& /P«40=A~
on the line T„(P), we get from (3.20)

=~,(2Pic, i/3B )

(3.21)

(3.22)

In view of (3.7), the result (3.22) is consistent with
the assumption (3.21). From (3.22) one readily
obtains

Since i4 M
i
«M,"„', it follows from (3.18) that

i6'P '
(M,;,, ~M)i «-,'(c, + ic, i)(MI")'(c,(M" )'

which, in view of (2.18), proves the relation (3.14).
Comparing (3.10) with (3.15), we see that the

II =III phase transition line T„(P), on which neces-
sarily

I

Equations (3.23), (3.24) show that on neglecting the
anisotropy (i.e. , on putting C, =0) the line T„(P),
coincides with the line Tz(0)(P), as should be ex-
pected. The presence of hexagonal anisotropy
displaces the II =III phase transition line into the
region of n (0. Accordingly, phase II partially
extends into this region. Equation (3.23) also shows
that the line T„(P) meets the line TI(P) at an angle
(see Fig. 1), as in the case of cylindrical sym-
metry, rather than being tangent to it at (Pz, Ti),
as in the uniaxial case [see I, Eq. (3.11) and Fig.
1].

The line T„(P) is determined from the condition
of II-III phase equilibrium; hence the II=III phase
transitions must be first o2de2. Indeed, using the
expressions (3.10) for E„and (3.15) for E„„we
find that the jump in the entropy on the line T„(P)
1s

III II) Ts(P)

(6pic i)-
3B &T &T B

(3.25)

where the terms of the third and higher orders in

A, and & have been neglected. It follows from
(3.25) that at a point (P, T) on the line T„(P)

where

2 k:2]

(dT„"'/dP)P P —I)(dT0/dP)P P

3 —v

(3.23)

(3.24)

&Q = T&S 00 (T —Ti) 0c (P —Pi) (3.26)

where 4Q is the latent heat of the II =III phase
transition. We see that the decrease of the sym-
metry of the paramagnetic phase from cylindrical
to hexagonal effects in the change of the order of
the II =III phase transition from second to first.

The helical wave number ko changes abruptly on
the line T„(P) from zero in phase II to the value
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—( ~/P)1/2- ( A )1/ (2.
I
C I/3' )1/4 ~ (T T )1/2

(3.27)

in phase III when the line T„(P) is crossed. At the
same time ko increases continuously along this line
[as well as along the line T~(P)] from the zero value

I

at(P, T ).
As in the uniaxial case (see I, Appendix B), we

can find the metastability region for the ferro.-
. magnetic state. Putting for definiteness C, &0 and
choosing the g axis along the vector M„, we find
the corresponding second variation of E(M):

8&'&P -=«'&P(M, &M)(5) ' II P

1 ~
1

=
2 g [A„+3BM'„+5(c, —

I C. 1)~li] I
~~..I'+

2 g (w. +BM', i+ 8
I C. I~li) I

8M, ~ I'

=—g [x,-3x, +o(xo)]I ~M..I'+- P [& -&.+8&olc, I/a'+0(AO)] I8M,~I'. (3.28)

~ =&.(12' IC. I/&')'".
By analogy with (3.23), one gets

(3.31)

(dT„"'/dP)z. ~ —3vYv(dT, /dP) ~,~
1 —3~v

(3.32)

The problem of finding the metastability region
for the helical state is very complicated: the cor-
responding second variation ~"'F,»
=—&~'F (M»„&M) is nondiagonal in the variables
5M„~, 5M, » [see, e.g. , Eq. (B7) in I], and further-
more, a cutoff similar to that made in I is unjusti-
fied here because in the region between the lines
T„(P) and T„''(P), A~&0 for k»k, . We shall there-
fore not treat this problem here.

Finally, the formulas (2.41)-(2.43) for X
' ob-

tain also in the present case, because the contri-
butions to g, ~ and X,'„due to the sixth-order terms
in the expansion of E(M) are negligible if the con-
ditions (3.7) are fulfilled. Then, in view of (3.21),
one again arrives at Eq. (2.44) on the line T„(P).

IV. COMPARISON WITH EXPERIMENT

It is interesting to compare the results of Sec.
DI with experimental data for the Gd-Dy,
Gd Sc xo, xi and Gd- Y zx, ia binary alloy systems. All
of these alloys possess the hcp structure, and their
x- T diagrams (x is the concentration of one of the

The quadratic form (3.28) is positive definite in the
region of «0, Ap &0, if

~, -A, +8A, IC, I/a &0. (3.29)

Hence the ferromagnetic state is metastable in the
region between the line T„(P) and the line T/(P)
determined by the equation

Ao-A~ =6AO IC2 I/B', (3.30)

or

I

components) exhibit a triple point where the para-
magnetic, ferromagnetic, and helical phases meet.
%e use the term "triple point" rather than "Lif-
shitz point" in this connection, because the latter
is associated with a particular theoretical model
which may or may not be applicable to the phen-,

omena. in question. In pa, rticular, the theory de-
veloped in our work seems to be inapplicable to the
Gd-Sc binary system, in view of the neutron dif-
fra, ction data concerning this system. " According
to these data, the spin alignment in the ferromag-
netic phase near the triple point in this system is
parallel to hexagonal g axis. This means, in terms
of our work, that the helical to ferromagnetic phase
transitions in the Gd-Sc alloys are accompanied by
the transition from an easy plane to an easy axis
of magnetization, whereas the theory in this paper
is developed for the cases where the vector of
magnetization lies in the easy plane in both of the
ordered phases. On the other hand, the neutron
diffraction data for the Gd- Y binary system" show
that the spins are aligned at an angle of 70' with the
g axis in the ferromangetic phase near the triple
point. This fact is suggestive of the possible rele-
vance of our theory to the experimental situation
in the Gd-Y system, if one regards the small devi-
ation of the spin direction from the hexagonal ab
plane as a secondary effect. No precise data on
the magnetic structure of the Gd-Dy binary alloys
are, to our knowledge, as yet available. However,
the fact that the spin arrangement in pure ferro-
magnetic Dy is parallel to the hexagonal ab plane"
suggests that this arrangement exists also in the
vicinity of the triple point of the Gd-Dy system.

For comparison of the experimental phase dia-
grams obtained for the Gd-Dy (see Fig. 3 in Ref.
8, or Fig. 1 in Ref. 9) and Gd- Y (see Fig. 7 in
Ref. 12) systems with Fig. 1 of our work, the con-
centration of Dy in the Gd-Dy alloys and of Y in
the Gd- Y alloys must be identified with the para-
meter P figuring in our work. This comparison
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shows that there is a certain qualitative agreement
between our theory and the experiments: For in-
stance, the extrapolations of the experimental
ferromagnetic to paramagnetic phase transition
curves beyond the triple points lie below the para-
magnetic to helical phase transition curves and
above the helical to ferromagnetic phase transi-
tion curves, in agreement with the results of this
paper. [Incidentally the phase diagram for the
Gd-Sc alloys (see Fig. 4 in Ref. 10) exhibits the
same property. ] Also, all the ferromagnetic-
helical phase transitions in question were found to
be first order. However, the density of experi-
mental points on the phase transition curves in the
immediate vicinity of the triple points in question
is insufficient for testing our results concerning

the geometry of this vicinity (intersection or tan
gency of different transition lines). To facilitate a
dependable delineation of experimental phase
transition curves in this region, precise measure-
ments of phase transition temperatures for a larg-
er variety of concentrations in the ranges of in-
terest (between 30:at. /0 and 70 at. % of Dy in the
Gd-Dy system, and between 60 at. /0 and 70 at. /0

of Y in the Gd- Y system) are desirable. It'is also
of interest to test the relations (2.44) and (3.26)
experimentally.
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