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Phase diagrams near the Lifshitz point. I. Uniaxial magnetization
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A paramagnetic (I)-ferromagnetic (II)-sinusoidal (III) phase diagram near a Lifshitz point is studied for the
case of uniaxial magnetization. The shape of the phase diagram in the vicinity of this point is determined. It is
found that the II ~ III phase transition line is tangent to the order-disorder (I ~ II and I ~+ III) transition line
at the Lifshitz point, The II ~ III phase transition is shown to be first order, with latent heat and metastability
regions. The behavior of magnetic susceptibility is determined. Binary alloy systems are suggested in which the
considered type of phase diagram may be expected.

I, INTRODUCTION

Hornreich et al. ' recently considered a new mul-
ticritical point, which they have termed the Lif-
shitz point. To introduce this point, they con-
sidered the expansion of the free-energy functional
E(M) in terms of the order parameter M(r) and its
spatial derivatives, concentrating their attention
on the term Z,.», o.„»V,. M~V&M, in this expansion.
In the case of second-order phase transitions from
a paramagnetic to a ferromagnetic phase, this
term must be positive definite. However, the ma-
trix of coefficients n, ,» in general depends on
temperature T and some parameter P. (As pointed
out in Ref. 1, the parameter P need not necessarily
be identified with pressure; it may be, for in-
stance, material composition. ) Hence it is, in

principle, possible that, moving along the line of
paramagnetic to ferromagnetic phase transitions
on the P-T diagram, one may reach a point (P~, T~)
where one of the eigenvalues of the matrix a„.»
vanishes. In the region where this eigenvalue is
negative, second-order phase, transitions from the
paramagnetic state lead not to a ferromagnetic
but to a modulated (sinusoidal or helicoidal) state
characterized by a certain wave vector k, . The
point (P~, T~) called in Ref. 1 the Lifshitz point is
thus a triple point between the paramagnetic,
ferromagnetic, and modulated phases. As em-
phasized by Hornreich et al. ,

' a characteristic
feature of this point is that k, increases continu-
ously from ko =0 at (P~, T~).

In Ref. 1 the critical exponents and the scaling
relations for a Lifshitz point were obtained, using
renormalization-group techniques. There are,
however, many other aspects of the theory of
Lifshitz points that have not yet been studied, e.g. ,
the geometrical and analytical details of the P-T
diagram in the vicinity of a Lifshitz point, ' the
thermodynamics of the phase transitions between
the ordered phases, the detailed description of the
modulated phase, the dependence of the thermody-

namical properties on the number of components
of the order parameter and on the symmetry of
the system, etc. These and related topics are the
subject of the present series of papers. In this
paper we consider the case of uniaxial (one-com-
ponent) magnetization. In the following paper
(paper II) the case of two-component magnetization
will be studied for systems with cylindrical, hexa-
gonal, and rhombohedral symmetry having an
easy plane.

The main results of our work concern the shape
of the phase diagram in the vicinity of the Lifshitz
point. In the present paper we show that the two
parts of the order-disorder transition line, name-
ly, the paramagnetic-ferromagnetic (I= II) and
paramagnetic-modulated (I= III) phase transition
lines, have a common tangent at (P~, T~) (see
Sec. II), and the ferromagnetic-modulated (II= III)
phase transition line is also tangent to both of
them (see Sec. III). The latter result is chara, c-
teristic of the uniaxial case: in the cases dis-
cussed in paper II, -the II= III phase transition line
is not tangent to the order-disorder transition
line. Another important result concerns the order
of the II= III phase transition. In the uniaxial case
it is found to be first order (see Sec. III). As will
be shown in paper II, in the case of an easy plane
of magnetization, this transition may be either
first or second order, depending on the symmetry
of the system. In Sec. IV of the present paper we
discuss the behavior of magnetic susceptibility.
The susceptibility is shown to be continuous on
the I= III phase transition line and to have a finite
discontinuity on the II- III phase transition line.
In Sec. V binary alloy systems are suggested in
which the considered type of phase diagram may
be expected.

The results of our work are obtained on the basis
of the minimization of the expansion of E(M), as
in the Landau theory of second-order phase transi-
tions. As is known, this is equivalent to a mean-
field approach; hence all the general remarks con-
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cerning mean-field results4 apply also to the re-
sults of the present paper. Therefore we expect
that the quantitative results of our work are valid
up to the critical region around the I.ifshitz point,
while the qualitative results are applicable also
inside this region.

II. ORDER-DISORDER TRANSITION LINE

series,

M(s) = QM,e'",

na, mely,

F =- A, /M, f'+—1 8
k+k' +k "+k "'=P

(2.5)

Mk Mk PMk @AM kgb

(2.6)
As mentioned in Sec. I, we consider the case

where there is a single axis of spontaneous mag-
netization. For definiteness one may think of the
c axis (z axis) in tetragonal, rhombohedral, or
hexagonal crystals, or of any of the three axes
a, b, c in orthorombic crystals. In this case the
order parameter M has a single component M =M,
{in terms of group representations, M transforms
according to a one-dimensional representation of
the paramagnetic point group) The .expansion of
F(M) has the form

F = —,A, M'+ 4BM4+ — n,. V,.M '+ ~ d'~
S=Xy eely Z

(2.1)

(we have taken into account that M, =M,* and have
put the volume V=1), where

A =A, + Q.k'+ —pk (2.V)

A second-order phase transition from the para-
magnetic (disordered) to a, magnetically ordered
state occurs3 ' when A,.„, the minimum of Ak as
a function of k, changes its sign from positive to
negative with the change of P, T. The line T,(P)
of such transition is defined by the equation

A.,„(P, T) = 0. (2.8)

In the region of Q &0, A,.„=AD and T~(P) coincides
with T,(P). In the region of Q&0, A,.„=A„, where

0

The line u, = (-Q/P)'", (2.9)

Ao(P, T) = 0 (2.2)

is the line of second-order phase transitions be-
tween para- and ferromagnetic states, if on this
line B&0 and Q, &0. In the paramagnetic phase
A, &0, and in the ferromagnetic phase Ap&0.
Suppose now that n, vanishes on a certain line

Q,(P, T) =0, (2.3)

changing sign as this line is crossed. If this line
intersects with the line T,(P) defined by Eq. (2.2),
we obtain the Lifshitz point (P~, T~). To ensure
the thermodynamic stability in the region of n, &0
against infinitely rapid variation of M in the z di-
rection, the expansion (2.1) must contain a positive
term p(V', M)'. On the other hand, the terms
Q, (V„M)' and Q, (V, M)' —which are assumed to re-
main positive in the neighborhood of (Pz, T~)
we are going to consider —render the system stable
against the appearance of spatial inhomogeneities
in the x and y directions. We may therefore treat
M as depending only on z, and a,ccordingly rewrite
the expansion of F(M) in the form

and T,(P) is defined by the equation

A„=AD —Q'/2p = 0 .
p

(2.10)

PHASE I

(P,T )

% e see that in this region T, (P) & T,(P) (it is im-
plied that BA /BT &0).

Let us show that the two parts of the line T~(P)
have a common tangent at (Pz, Tz) (see Fig. 1).
Assuming for definiteness that BQ/BP &0, so that
Q &0 and T~(P) =T,(P) in the region P &P~, we

have

F(M) = [.'A, M'+ .'IIM'+ ,'Q-(M')'-—
+ —P(M")'+ ' ' ']d'x (2.4)

where we have put n =- n„M'=—T,M. In what fol-
lows we shall assume B and P to be independent of
P, T. The expansion of F(M) can be presented in
an alternative form by expanding M(z) in Fourier

FIG. 1. Phase diagram near the Lifshitz point (Pz, Tz).
The dashed line is To(P), the extrapolation of the I-II
phase transition line into phase III.
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dP ~ ~ o dP ~ p BA() B T

(2.11)

d T)t »),/»lim
. dP ~ ~ ~o &g& II g &I, BAy BT

8A 0/BP —n P
' 9n/»

aA, /BT —np-'sn/BT p r ~

M (z) = 2M, cos(kp + Q)

with arbitrary P and

=(-A /3B)'"
ko &0

In the vicinity of the Lifshitz point

BANCO BAD Q B Q BAp

BT BT P BT BT

and therefore

(s.4)

(3.6)

(2.12)

In the vicinity of (P~, T~)

(2.is)

where C is the Curie-gneiss constant for the sus-
ceptibility in the paramagnetic phase near (P~, Tz);
similarly

(2.i4)

= (SBC)-2~2[T,(p) T]»~ (s.6)
0

Equation (3.3) describes a static longitudinal wave
of magnetization with the wave vector ko =k, z,
which is characteristic of a sinusoidal phase. The
presence of an arbitrary constant (t) in (3.3) re-
flects the independence of F on the choice of the
origin.

Thus, the magnetically ordered phase consists
of two subphases, ferromagnetic and sinusoidal,
which we shall denote as phases II and III, respec-
tively (phase I is paramagnetic). It might seem at
first sight that these two phases are separated by
the line (2.3). However, it is not so. The sub-
stitution of the expressions (3.1) and (3.3) [with
M from (3.4)] for M(z) in (2.4) yields the follow-

0
ing values of F in phases II and III, respectively:

T, (P) —T,(P) =Cn'/2p =-,'q(P P,)',
where

(2.i5)

Substituting (2.13) and (2.14) into (2.10), and taking
into account (2.11) and (2.12), one obtains for P
)P

F„= A', /4B, -
F„z— A'„ /6B = -(A, n'/2p)'/6B

The comparison of F„and F„, (in the region
where A, & 0 and n & 0) shows that if

A &(MO 2)-'n'/P=2. 2n'/P

(3.7)

(3.8)

(s.9)

P lc
then Fzi Furr' conver e y

-A, & (v 6 —2)-'n'/P, (3.10)

(2.16)

0 &T,(P) —T «10'y(P P)', P &P, —(3.2)

M is quite accurately described by the equation

III. FERROMAGNETIC-SINUSOIDAL PHASE
TRANSITION LINE

Let us investigate the magnetically ordered
phases. The magnetization at thermodynamic
equilibrium M„(z) corresponds to the minimum of
F(M). In the region where n &0, M„ is obviously
constant throughout the crystal and equal to

M =M = (-A /B)"'= (CB) ' '[T (P) —T)' '

(3.1)

which corresponds to the ferromagnetic phase.
For n & 0 the minimization of F(M) is mathemati-
cally more complicated. However, one can show
(see Appendix A) that in the region

= To(P) —2.2C n'/p

= T,(P) —2.2y(P P,)'. - (3.11)

[The last line in (3.11) has been obtained with the
aid of Eq. (2.15).] This result means that phase
II extends into the region where n &0 and is sepa-
rated from phase III by the line T„(P). This line
starts at the point (P~, T~) and has a, common tan-
gent with the line T = T,(P) at this point (see Fig.
i).

The result (3.11) is characteristic of the uniaxi-
al case. As will be shown in the next paper, dif-
ferent results obtain for systems with cylindrical,

then Fz»&F„. The inequalities (3.9) and (3.10) are
satisfied when T &T„(P) and T &T„(P), respec-
tively, where

T (2')=T (P) —2.2( )
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hexagonal, and rhombohedral symmetry having an
easy plane of magnetization. In these systems the
line TH(P) is not tangent to the line T,(P). Fur-
thermore, in the case of cylindrical symmetry the
line T„(P) coincides with the line (2.3), and the
svkole region of n &0 is occupied by phase III.

The comparison of (2.15) and (3.11) yields (for
P &P,)

T,(P) —T„(P)
T,(P) —T,(P)

(3.12)

BI „BI"„,A, BA A BA,
III II gy ()y 3B g Z

(s.is)

This relation can, in principle, be tested experi-
mentally [the function T,(P) at P &Pz can, for this
purpose, be obtained by the parabolic extrapola-
tion of the curve T~(P) = T,(P) found experimentally
at P &P,].

The line T„(P) lies within the region satisfying
condition (3.2). Hence the "single-harmonic ap-
proximation" given by Eqs. (3.3) and (3.4) is ap-
plicable throughout phase III. In particular, the
derivation of Eq. (3.11) for T„(P) with the aid of
Eqs. (3.3) and (3.4) is consistent. '

The fact that the line T„(P) is a line of phase
equilibrium indicates that the transition between
phases II and III is first order. Indeed, as follows
from (3.7) and (3.8),

AQ = 0.156c[T~(P) —T„(P)], (s.i6)

where Ac = T~B 'C ' is, according to Landau's
theory, ' the jump in the specific heat at constant
P occurring in the I= II phase transition (near the
Lifshitz point). As should be expected, 4Q tends
to zero as one approaches the Lifshitz point.

The wave number k0 experiences a finite jump
in the II= III phase transition, from zero in phase
II to the value of ( n/p)'/' -at T =T„(P). However,
k0 increases contiriuously from zero as one moves
from (Pz, T ) along the lines T„(P) or T~(P) (or
between these lines) in the direction of larger P.
Neglecting terms of the order of (P -P~)', one
can write for points (P, T) in phase III [T„(P)& T
& T~(P)] that are sufficiently close to the Lifshitz
point

Hence there is a jump in the entropy on the line
T„(P):

+S = (SIII —S
X I) r= r (J )

= ~ (2~6 p+C)

= 0.20o.'(pBC) '=0.20(BC) 'y(P Pi—)
(3.15)

characteristic of a first-order phase transition.
With the aid of (2.15) and (3.11) the latent heat
b,Q = T„(P)~S = T+AS of this tra.nsition can be pre-
sented in the form

or according to (3.5) and (2.10),

S„,-S„=(aC)-

=(ac)- (]~, ]
n /p). (3.14) whence

(s.i7)

—Z/2
P- /2(P P )1 2 (y/+C)l 4(P P )1 2

(3.18)

Thus' k, ~ (P P)'/'—
Since the II= III phase transition is first order,

there must be a region at T& T„(P) in which the
ferromagnetic state is metastable, and a region
at T &T„(P) in which the sinusoidal state is meta-
stable. Appendix B contains the determination of
the upper boundary T/(P) of the first region and
also an estimation of the lower boundary T,(P) of
the second one [see Eqs. (B6) and (B17)]. A char-
acteristic feature of these boundaries is that they,
like the I= III and II= III phase transition lines,
are tangent to the line T,(P) at (Pz, T~), with the
differences T/(P) —T,(P) and To(P) —T,(P) being
proportional to (P P~)'-

IV. MAGNETIC SUSCEPTIBILITY

The expressions (B2) and (B7) for 6 2'E ob
tained in Appendix B make it possible to deter-

mine the susceptibility with respect to a homo-
geneous magnetic field parallel to the z axis. The
reciprocal susceptibility is given by the formula

«"P(M, 5M)
X

0
( )

M=M eq

where one has to put the Fourier components 6M„
with k c 0 equal to zero. In phase II one obtains,
with the aid of (B2), the familiar Curie-Weiss ex-
pression for the ferromagnetic phase:

4.1

y„'= -2A, =2C '[T,(P) —Tj.
In phase III, according to (B7) and (4.1),

(4.2)

q-, '=a, =C-'[T T,(P)I . (4.4)

X„',=A, —2A&, = C '[2T,(P) —T,(P) —T], (4.3)

i.e., also a linear dependence on T. Finally, in
the paramagnetic phase
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Note that at P &P~, X 'does not vanish at any T.
Indeed, the line T = T,(P), on which yz'=y, ', =0,
lies within phase III, where X =Xirr corre pon
ingly, the line

T = 2T,(P) T,(-P), (4.5)

on which X,»=0, lies in phase I. As follows from
(4.3) and (4.4), X is continuous on the phase tran-
sition line T~(P) at P &Pz..

X,[T,(P)] = X„,[T,(P)1 = C[T,(P) —T,(P)] '

of uniaxial (one-component) magnetization has the
following features:

The I= II, I= III, and II= III phase transition
lines are tangent to each otIzex at the Lifshitz
point. The extrapolation T,(P) of the I= II phase
transition line into the region of P &P~ lies zvitIzin

phase III, i.e. , below the I= III phase transition
line T,(P) and above the II= III phase transition line
TH(P). The three lines satisfy near the Lifshitz
point the relation

=2Cy-'(P -P,)-'. (4.6) T (P) —T„(P)=4.4[T (P) —T (P)] (P -P )'.

=0.23C~ '(P —P ) ',
X [T (P)] =C[2T (P) —T.(P) —T (P)] '

=0.31Cy '(P P) ', -
i.e., there is a discontinuity in X,

(4.7)

(4.8)

(hx) r r (~)= 0.08Cy '(P P~) ', -
along with the divergence like (P P~) ' w-hen

P -P~+0. The dependence of X
' on T along a

line P = const&P~ is plotted in Fig. 2.

(4.9)

V. CONCLUSION

Let us now summarize the results obtained in
this paper. We have found that the paramagnetic
(I)-ferromagnetic (II)-modulated (III) phase dia-
gram near the Lifshitz point (P~, T~) in the case

x'

P HASE II

V
To Tg (2' To)

FIG. 2. Reciprocal susceptibility y" ~ vs temperature
T along a line P =const &Pl„y is given in units
C 'y(P —PI))'.

At the same time X diverges with a critical index
2 as one approaches the Lifshitz point along T,(P).
On the line T„(P)

)(„[T„(P)]= —.'C[T,(P) —T„(P)]-'

Phase II extends partially into the region where
n &0.

The magnetic ordering throughout phase III is
satisfactorily described by a single sinusoidal har-
monic [see Eq. (3.3)]: the third and higher har-
monics can be neglected. The II= III phase transi-
tion is first order, with a jump in the modulation
wave vector from zero in phase II to the value

k, =( n/P-)' 'o=(P P~)'~' in—phase III. The latent
heat AQ absorbed in this transition at given P is
related by Eq. (3.16) to the corresponding tempera-
tures T,(P) and T„(P) and to the jump 6c in speci-
fic heat occurring in the I= II phase transition;
b,Q tends to zero like (P P~)' when —P -P~ +0.
The metastability regions for the ferromagnetic
and sinusoidal states have been estimated. The
boundaries of these regions, Tz(P) and T,(P), are
tangent to the phase transition lines at the Lifshitz
point and satisfy the relations

Tf(P ) —T (P) (P —P )',
T,(P) —T, (P) ~(P -P~)'

The susceptibility & with respect to a uniform
magnetic field is continuous on the I= III phase
transition line and experiences a finite jump when

the II= III phase transition line is crossed. The
values of X at T = T~(P) and T =T„(P)+0 diverge
like (P P~) ' when P-—P~+0.

Phase diagrams of the type discussed in this
paper may be expected in Qd-Tm and Gd-Er bi-
nary alloys. Pure Qd is ferromagnetic at T
& 289 K and 53&T &80'K, respectively. Identifying
the concentration of Tm (Er) in a Gd-Tm (Gd-Er)
alloy with the above parameter P, one may expect
that the P-T phase diagram of each of these binary
systems exhibits a triple point at which the para-
magnetic, ferromagnetic, and sinusoidal phases
meet. It is therefore desirable to investigate ex-
perimentally the P-T diagrams of these systems
in order to detect such triple points. Further, it
is necessary to perform neutron diffraction mea-
surements in the vicinity of these points, in order
to find out whether the wave vector k, of the sin-
usoidal phase goes contirsuously to zero as these
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points are approached; otherwise the triple points
in question are not Lifshitz points.
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APPENDIX A: MAGNETIC ORDERING IN PHASE III

ln order to determine M„(z) in the region where
n (0, one has to solve the differential equation

2 pM'" —o'.M" +ApS+BM =0 (Al)

obtained from the variation of F(M) [Eq. (2.4)] with
respect to M, and to select that solution of Eq.
(Al) which yields the smallest value of F(M). This
problem cannot be solved exactly. However, one
can find the a,symptotic form of M„(z) at T-T~(P)
—0. For this purpose, it is convenient to consider
the expression (2.6) for F(M) rather than Eq. (Al).
When T~(P) —T «T, (P) —T,(P), the coefficients
A„ in (2.6) are negative only for the values of k

lying in small intervals Ik+k, I&a, where s «k,
(see Fig. 2). The large positive A~ in (2.6) (large
in comparison with IA~ I) are expected to "sup-
press" the corresponding Mk, i.e., to make these
M, vanish in order to decrease E(M). Therefore,
in order to find the asymptotic form of M,„(z), one
can make a suitable cutoff in the k space. Namely,
one can seek M„(z) in the class (M„j of functions
of the type

FIG. 3. Ak vs k for e( 0 and T),(P) —T ((T&(P) —To(P).

M„(z) = M. ..e "~o""+c.c. ,0
(A2)

with I(; «A, 0; equivalently one can write

M„(z) = p, „(z)e'"o'+ p, „*(z)e "0',
where

(As)

p, „(z)-=P M~ „e'I'.
-g&q(Z

(A4)

It goes without saying that the final asymptotic
expression for M„(z) should not depend on the
arbitrary cutoff parameter x.

In view oi' (A2), (A4), and (2.6), the expansion of
E(M„(z)) consists of the following terms:

(A6)

3
MkMk IMkII Mk III B

2
k+kI +k"+k'" =0 q II q III

q+q I
q II +q III

3
Mk +q k + I k qII k q I B (A6)

hence

As should be expected, this result does not con-
tain y. Thus, for T~(P) —T «T~(P) —T,(P),

M„(z) =2M, cos(k,z+(t)),

with arbitrary P and

(A9)

The minimum of the expression (A7) corresponds
to

(AS)

M, =(-A, /SB)"". (Al0)

As one moves away from the line T~(P) {remain-
ing in the region where o! &0) so that T~(P) —T
increases, one has to take into account higher odd
harmonics of k0 which are contained in the exact
solution of Eq. (Al) corresponding to M„(z): first
the third harmonic, then the fifth, etc. Let us de-
termine the region on the P-T plane in which the
higher harmonics can still be neglected as com-
pared to the first harmonic (A9). For this purpose
it is sufficient to consider only the third hr, rmonic.
Designating the amplitude and the phase of the
third harmonic as M» and ((), respectively, we
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can pr(. sent M„(z) in the form

2M» cos(k~+p)+(M» e'"»o"«'+c.c.) . (All)
0

Substituting (All) for M in Eq. (Al) and assuming
that M k «Mk we find

0 p

l~kplMkp

APPENDIX B: DETERMINATION OF METASTABILITY
REGiONS

In order to find the region in which the ferro-
magnetic state is metastable, let us calculate,
with the aid of (2.4), the second variation'of the
free energy, 6(2&F(M, 5M), for M given by Eq.
(3.1) and

The result (A12) is consistent with the assumption
M, «Mk if

0 0

IA. I«3A-, +6IA., I
(Al 3)

According to (2.7) and (2.9), condition (Als) is
equivalent to

I A, f
«S IA„ f+ 96n'/p, (A14)

which can be written more simply as

IA, I«10'n'/p. (A15)

In the vicinity of the Lifshitz point, according to
(2.13) a,nd (2.15), condition (A15) is equivalent to
the condition

5M(z) = g 5M e'"' 5M —5M*
k

(Bl)

Dropping from F(M+5M) F(M)-the terms of the
third and higher orders in &M, we obtain

5(&F=5(&F,=-Q (A„-3A,)lm»l'.
k

(B2)

&min - 3&0 &o . (Bs)

Applied to the region of n (0 and A.k &0, the in-
0

equality (B3) can be written as

The Hermitian form (B2) is positive definite when

T (P) —T «10 y(P P)— (A16)

Thus, in the region satisfying condition (A16) the
third harmonic inM~ (2) is negligible compared with
the first harmonic given by (A9).

Calculating in this region the amplitude M5k of
0

the fifth harmonic, one obtains

sflM»OM»0 I A„ IM3»,

+5k +6&Mk +5k +2 i+k5kp 0 0 0

It follows that

or

-3A0 &-A@&0,

T,(P) = T,(P) —Cn'/4P

= To(P) —0 25y(P —Pz. )« ~

-A, & n'/4P .

The condition (B5) is satisfied when T & T&(P),
where

(B4)

(B5)

(B6)
M,k

1
M,» A,» +2 IA, I IA, I+288n'/P

Hence the neglect of the fifth and higher harmonics
is all the more justified.

Thus the ferromagnetic state is metastable in the
region T„(P)& T & Tz(P) .

The calculation of 6'«'F(M, 5M), for M given by
(3.3), (3.4) yields

5('&F = 5(«&F, = Q I(-.'A»-Aq)
I
5M»l' - «Aq(e'"mu»mw» 2~+ c.c.)] . (B7)

The quadratic form (B7), as distinct from (B2), is nondiagonal; therefore we cannot determine exactly the
region of metastability of the sinusoidal state. %e can, however, make a rough estimate of this region by
cutting off the Fourier components 5M» with

I
k

I
&2ko. Then 5'2'F, decomposes into a sum of independent

Hermitian forms 5"'Fk, each of them containing two of the variables 5Mk:

5('&F, = g 5('&F, ,
0» k~imp

where

5( 'F =(A —2A@) I 5M»l +(A«~ «-2A~) I5M, ~ »I'-A@(e '«5M „KM, +c.c.) for 0&k&k;

5"'Fo = »(Ao —2A„)
I
5Mo I'+ (A,„—2A.„)I

5M, » I' —A„(e" 5M 5M, + c.c.) .

(B8)

(B9)

(BI0)

(Bll)
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Applying the Silvester criterion to the Hermitian
forms (B9), we find that in the region where n &0
and AI, &0 all of them are positive definite. The
expression (B10) is positive unless 5M»

0=a
~
5M, ~ie'' [with P from (3.3)]; in the latter case

0"'F„=0, which reflects the physically insignifi-
cant invariance of E under an arbitrary change of
Q in (3.3). Finally, the Hermitian form (B11) is
positive definite when

A, 2A, &0 (B12)

A» +5(n'/P)A» ——,'(n'/P)'&0,

which results in

5+(34)1/2 ~3 ~2
-A

P
'

P
—= 5.4—

(B14)

(B15)

(A —2A» )(Aa» —2A» ) —2A'» &0. (B13)

The inequality (B12) is obviously satisfied at least
in the region where n &0 and A.~ &0. The inequality

0
(B13) can be written, according to (2.7) and (2.9),
in the form

-A, & 4.9ns/P . (B16)

From (B16) one obtains the line

T,(P) = To(P) —4.9y(P —Pi)s (B17)

as the lower boundary for the metastability region
of the sinusoidal state. As previously mentioned,
this result is only a rough estimate. However, we
expect that for the actual line T,(P) the difference
T,(P) —T,(P) is proportional to (P P~)a,—as for
the rest of the characteristic lines in this phase
diagram, and the quantity y '[T,(P) —T,(P)](P
—P') ' is of the same order of ma. gnitude as in
Eq. (B17). Incidentally, the term in the sum (B8)
that ceases to be positive definite below the line
(B17) is 5"'F„which involves the infinite-wave-
length component EMo of 5M(s). This may be in-
terpreted as an indication of the fact that the in-
stability of the sinusoidal phase in this region is
associated with the emergence of the ferromag-
netic component of magnetization.
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6It can be shown that the relative error in the value of
E~&q on the line Tz(P) caused by the neglect of the third
harmonic equals A»o/(3A3»0+6~A»0~) =2x 10 2.

The fact that ko is small in the vi:cinity of (PI, , TI.)
justifies the neglect of the term (M') M in the expan-
sion (2.4) as being small compared with the term M .

(M ) M /0M cc (P Pg)M .


