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Decay patterns of trapped electrons in aqueous glasses have been analyzed over the time span of more than
eight decades in terms of a time-dependent “rate constant” of the form %!, 0 < a < 1, which can be
derived from the long-tail hopping-time distribution of Scher and Montroll. The curve fitting of experiments
in our model is quite satisfactory with a ~ 0.1 and with another adjustable parameter which depends on the
trapping species and varies within one order of magnitude from one system to another. The time-dependent
spectral shift for the absorption spectrum of trapped electrons can also be fitted by a ~ 0.1, providing fairly
direct evidence that non-Gaussian diffusion of electrons from shallow to deep traps underlies the ¢!

dependence.

INTRODUCTION

When excess charges are introduced in a solid
with a constant external field, it is well known that
a transient current flows for a certain period until
a steady state is established. For disordered ma-
terials of low mobilities, this transient period can
be quite extensive. Scher and Montroll' made the
first quantitative analysis of transient photocur-
rents in terms of the continuous-time-random-
walk (CTRW) model of Montroll and Weiss.? The
crux of the Scher-Montroll formalism is the spec-
ific nonexponential form of the hopping-time dis-
tribution® §(¢) which characterizes the electron dy-
namics in amorphous media.

The purpose of this paper is to apply the CTRW
model for the decay dynamics of trapped electrons
in the presence of electron-accepting impurities in
amorphous media. Specifically we are interested
in testing the applicability of the Scher-Montroll
form of §(¢) for our problem.

Excess electrons trapped in rigid glassy ma-
trices have often been observed to react slowly
with electron-accepting impurities.*”® Typically,
no simple conventional rate law is obeyed, suc-
cessive half-lives increasing greatly. Related
phenomena include spontaneous recombination®”’
and marked changes in optical-absorption spectra
of trapped electrons.® The rates may be indepen-
dent of temperature over a wide range.”®

The peculiar modes of electron decay and the ap-
parent absence of temperature dependence have
been described by a tunneling mechanism® *° which
invokes direct electron-transfer processes between
acceptors and the initial solvent traps over a typi-
cal distance of ~50 A. Although the barrier-pene-
tration model for electron tunneling gives the same
exponential dependence of the transfer rate on the
two-site separation distance as more rigorous
theories'''!? of electron-transfer processes, the
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applicability of the tunneling theory and its impli-
cation, such as the absence of temperature depen-
dence of the transfer rate even for highly nonreso-
nant transfers, are questionable. Moreover, the
absence of electron transport in the tunneling
mechanism is an assumption which is difficult to
justify and is not consistent with experiments.®

We will show that a certain class of decay pat-
terns for trapped electrons in aqueous glasses can
be described by the time-dependent scavenging
“rate constant” of the form t*~!, with 0<a@<1.
Furthermore, this particular time-dependent form
is shown to be consistent with the long-tail jump
time distribution function for a random walk in
disordered materials.

KINETIC SCHEME

The system under consideration consists of
trapped electrons in the matrix and impurity mo-
lecules (acceptors) whose concentration is far in
excess of that of the electrons. In this section we
are interested in the survival fraction of the elec-
trons as a function of time. Our model is based
upon the following assumptions: (i) The electron
concentration is so low that the electron-electron
interaction and correlation are negligible; (ii) the
reactions of electrons with acceptors are “diffu-
sion-controlled,” although the electron diffusion it-
self can not be described by a simple classical
scheme with a constant diffusion coefficient
throughout the system; (iii) in comparison with ex-
periments, the optical absorbance for the trapped
electrons is assumed to be proportional to the
number of electrons which have survived the sca-
venging reactions.

Under these assumptions, the number of elec-
trons at time £, N(f), obeys the equation

dN(t) _
= _csk(t)N(t) , (1)
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where C; is the acceptor concentration and k() is
the number of electrons reacting with acceptors of
unit concentration at time ¢ (i.e., the rate con-
stant). Integration of (1) gives

NW‘? = exp [—cs fo ) dt] y 2)

where N, is the initial number of electrons, which
is not directly observable. Similarly the initial
time is also not well defined in many experiments.
As we shall explain later, the very short-time be-
havior of k(t) is not sensitive to the long-time re-
sult for N(t)/N, and N, takes the role of an adjust-
able parameter. We also note that by experimen-
tal as well as theoretical reasons; k(t) is a more
desirable observable, as recombination lumines-
cence’ intensity, for example, than the survival
fraction, although we shall be concerned mainly
with the latter in this paper.

The usual diffusion treatment®®

gives
k(t)=4rDR([1+R/(mDt)"?] , (3)

where D is the diffusion coefficient and R is the
reaction radius. For long-time behavior the
Smoluchowski transient becomes negligible so that
Egs. (2) and (3) predict essentially an exponential
decay of trapped electrons. As long as the jump
time is constant or has an exponential distribu-
tion, the random-walk treatment of this problem
gives basically the same result for a long time de-
cay pattern.

For the time being let us assume that the rate
constant k(¢) behaves as

k(t)=Bi""*, (4)

where B and o are time-independent constants.
Substitution of (4) into (2) gives

log,,1og,,[N,/N(t)] = log,,(B’'C,/2.3)
+alog,t; B'=B/a. (5)

\

Using assumption (iii), the ratio Ny/N(t) can be
equated to the ratio of optical absorbances A%/A,
leading to

log,,log,o(A°/A) =10g,,(B’C,/2.3) + a log,,t . (6)

We shall call the parameter B’ as the efficiency
factor

EXPERIMENTAL EVIDENCE

Measurements by Miller® in the range 107°-10°
sec for 6M aqueous NaOH at =77 K are most valu-
able for considering the effects of time, tempera-
ture, acceptor efficiency, and concentration. The
outstanding facts requiring explanation are (1) the
approximately linear decrease in the optical ab-
sorbance of trapped electrons e;, with the loga-
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FIG. 1. Decay of the normalized optical absorbance at
550 nm of the trapped electron in aqueous 6 NaOH at
77 K. The data points are taken from Fig. 5 of Ref. 6.
Values of A are 0.86, 0.70, and 0.46 for 0.025 M,
0.05M, and 0.1M BrOj”.

rithm of time, (2) the lifetime of e; decreasing
10°-fold for a tenfold increase in acceptor concen-
tration and (3) diffusion® of e; in rigid glassy
solids, even at low temperature.

In terms of the tunneling model, BrO,~ was con-
sidered to be abnormal and an arbitrary “ineffi-
ciency factor” of 10™*' was assigned. The data ap-
pear in Fig. 1 (as points) plotted'according to Eq.
(6). The slopes are nearly equal, 0.087. The large
change in lifetime with acceptor concentration
arises from the very small slope.

Values of A in Fig. 1 are the same as A/A° re-
ported by Miller,® i.e., the absorbance at 550 nm
in the doped glass relative to that for the undoped
glass at the same time. Equation (6) requires fur-
ther normalization to A°, the absorbance at time
zero, which is not directly measurable. The pa-
rameter A° must be established by trial, in part
because e; decays rapidly at <107 sec, and in
part because of spectral change.
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FIG. 2. Similar to Fig. 1. Values of A are 1.00 and
0.80 in 0.005M and 0.025M Co(ethylenediamine)*.
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FIG. 3. Similar to Fig. 1. Values of A’ are 1.00 for
0.025M Co(CN)¢*" and 0.76 for 7.7x10"3M Np™*

In terms of tunneling Co(ethylenediamine),** was
normal with an efficiency factor of unity. The
slopes of the lines in Fig. 2 are 0.100 and 0.080.
The efficiency factor for Co(CN),*~ was also taken
as unity, but that for Np”* was 10*.° The data in
Fig. 3 give slopes 0.096 and 0.103, respectively.

The relative efficiencies (i.e., B’) of these elec-
tron acceptors in terms of Eq. (6), from Figs. 1-3
and in the order of presentation, are 0.1, 0.5, 0.4,
and 1.

The ordinates for 0.05 and 0.1M BrO,~ should be
shifted by log 2 and log 4 relative to the data for
0.025M BrO,”~. The actual shifts are 0.22 and 0.58.
From Fig. 2 the shift is 0.60 rather than log 5.

The decay of absorbance at 875 nm in undoped
6M NaOH at 77 K is also fitted by Eq. (6). The
slope is 0.100, providing evidence that spectral
relaxation of e; involves diffusion of the electron.

In 1-propanol at 108 K the decay of ¢; absor-
bance at 1300 nm and growth at 550 nm (Ref. 8) are
both fitted by Eq. (6). The slopes are ~0.5 and
~0.6, respectively. Again, diffusion of e; is indi-
cated and also supported by the effect of scavenger
to suppress the increase of absorbance at 550 nm.?

RANDOM WALK MODEL

We now turn to the theoretical basis for Eq. (4).
In order to calculate 2(t) by the theory of random
walk, we need to calculate the flux of walkers ar-
riving at the sink, which is chosen to be the origin
of the lattice, as a function of time. Each lattice
site is initially occupied by the walker with equal
probability.

The flux at the origin, I(¢) is then given by

0= F(s,1), (7)

$#0
where F(s,t) is the probability density of reaching
the origin for the first time at time ¢ starting from
site s. Following Montroll and Weiss,? the Laplace
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transform of (7) is given by
Ia)=7 3" Fos)[¢*@)]", (8)
§#0 n=0

where F,(s) is the probability that a random walker
reaches the origin for the first time at step n
starting from s, and ¢ *(u) is the Laplace trans-
form of the hopping-time distribution function y(¢):

V)= f” v(t)e™tat . (9)

Equation (8) can be written
Iw)=Y F(s,y*w), (10)
s#0

where F(s,z) is the generating function for F,(s):
F(s,z)=z F,(s)z". (11)
n=1

Using the random-walk generating function, which
is defined by '

P(s,2)= ) Py(s)2", (12)

where P,(s) is the probability that the random
walker is at the origin after n steps starting from
s, and the equalities®

F(s,z)=[P(s,2) =05,,]/P(0,2), (13)

and
Z P(s,z)=(1-2)"", (14)

Eq. (10) becomes
1 1
[1-y*@)]PO,y*w))
Scher and Montroll* and Shlesinger® have shown
that certain transient photocurrents in amor_phous

materials can be described by the hopping time dis-
tribution of the following asymptotic form:

¥(t) ~ [At Tl -a)]™Y, O0<a<l, (16)

I(u) = (15)

where A is a constant and T is the gamma func-
tion. The Laplace transform of (16) is given by®

Y *w) = exp(-u®/A) ~1-u®/A, u=0. an

The asymptotic form of P(0,z) is also known for a
simple cubic lattice®

P(0,z) ~ 1.516 386 — (3/7)(3)/3(1 = 2)/2++ -+ .
(18)

Using (17) and (18), the asymptotic form (x~ 0) of
(15) can be written

I(w) ~BAu™%, u-0 (19)
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where 5=0.65946. The Laplace inverse of (19)
gives the long-time asymptotic form for I(¢):
BAt ™' _BA'@wit)*~*
'(a)  T(a)

I(t) ~ ) (20)
where w is the characteristic rate constant of the
system. Equation (20) is valid when the dimension-
less wt is much greater than unity. Since I(t) and
k(t) are related only by a scaling factor, Eq. (20)
provides a qualitative justification for the empiri-
cal expression (4).

Use of the asymptotic expression (4) in (2),
which involves integration from time zero tof, re-
quires an explanation. The situation is quite anal-
ogous to the usual practice of using a time-inde-
pendent rate constant 2, which is only the asymp-
totic value, 47DR, of (3) in the Smoluchowski
treatment, and of integrating from time zero to ¢,
to obtain an exponential decay of the survival frac-
tion. Such an approximation, however, turns out
to be quite accurate for a long-time survival frac-
tion, N(t)/No, compared to those which can be ob-
tained using an accurate k(t) by the continuous-
time-random-walk model'* or even using (3) itself.
A special case of the hopping-time distribution
function, which prescribes the entire region of
time scale and gives the asymptotic form (16) with
a=0.5 (i.e., the second repeated integral of the
error function),! has also been considered* in de-
tail, in which ln(N/N(,) is shown to be a linear
function of #Y/2 except for a very small dimension-
less time w¢. This result could have been ob-
tained directly by substituting the asymptotic form
(20) with @ =0.5 into (2).

DISCUSSION

The key point of this paper is to demonstrate
that the concept of transient electron transport is
consistent with the logarithmic decay of trapped
electrons, and the absence of diffusion assumed in
the tunneling scheme is not necessary. The transi-
ent transport arises from the highly dispersive
hopping-time distribution of the disordered mate-
rial in the Scher-Montroll' model. A recent work
by Noolandi’® showed that the multiple-trapping
theory is basically equivalent to the theory of

Scher and Montroll. In addition to the mathemati-
cal simplicity, Noolandi’s work shows that at high-
er temperature the electron transport becomes
nondispersive. This is in agreement with experi-
ment for electron reactions in glasses.’

The choice between the random-walk model and
the multiple-trapping theory may depend upon the
details of electronic structure of the system.

Our scheme of arranging the experimental points
in loglog(A°/A) versus log! plots has the advantage
of a much smaller efficiency factor (~*x10) than
those required in the curve-fitting process for tun-
neling (~10%). The effect of varying the acceptor
concentration is to shift the curve without changing
the slope and, for a given observation time, N(t)
is an exponential function of the acceptor concen-
tration.

According to our scheme, temperature depen-
dence of the decay pattern is contained in those of
w and «a in (20), which is related to the structure
of the amorphous material and to the detail of the
electron-phonon interaction.

For the hopping transport in amorphous materi-
als, Mott!® has shown that the activation energy is
independent of temperature in the high-temperature
range, while the jump frequency takes the form of
vexp(-B/T"%) in the low-temperature range; the
temperature dependence is effectively reduced be-
cause of the increased participation of distant
neighboring sites for the hopping motion.

It should also be noted that most of the electron
traps in low-temperature glasses are not in a fully
relaxed state. Increase in temperature for an elec-
tron in such metastable traps may result in two op-
posite effects as far as the rate of release of this
electron is concerned. The first is simply to in-
crease the jump rate because of the increased
phonon population in the vibrationally excited
states. The other is to increase the trap depth due
to an enhanced relaxation rate at the higher tem-
perature, resulting in a net decrease in the jump
rate. For a certain range of temperature, these
two effects may cancel each other to make the de-
cay pattern apparently temperature independent.

A more detailed explanation of the temperature ef-
fect is certainly desirable.

*The research described herein was supported by the
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