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We have performed a first-principles calculation of the electronic energies for amorphous Si using the
method of orthogonalized linear combinations of atomic orbitals. The basis functions are the 3s, 3p Bloch
sums for each atom in the large quasi-unit-cell orthogonalized to all 1s, 2s, 2p Bloch sums. All the

multicenter integrals and Hamiltonian matrix elements are computed exactly by the Gaussian technique with

no empirical parametrization. Applied to a recently constructed periodic random-network structural model, .

the method yields a band gap of 0.67 eV. An alternative scheme is to employ as basis functions
orthogonalized 3s, 3p orbitals centered at sites within a cluster to obtain energy levels and to
configurationally average the results over several clusters. This scheme is applied to make similar analyses
for the nonperiodic networks of Polk and Boudreaux (as refined by Steinhardt, Alben, and Weaire) and of
Connell and Temkin; the calculated band gaps are 2. 19 and 1.24 eV, respectively. The general profiles of
the density of states for different nets show relatively little variation, but the band gap depends quite
sensitively on the details of the structural disorder.

I. INTRODUCTION

The theoretical study of the electronic density of
states of amorphous group-IV semiconductors has
advanced quite rapidly in the past few years. ' '
The use of continuous random tetrahedral networks
(CRTN)' ' to represent the amorphous material en-
ables us to specify the positions of the atoms in the
solid and makes it possible to perform theoretical
studies at a microscopic level. " In the pioneer
work of Weaire, Thorpe, and Alben, " the tetrahed-
rally coordinated structure is described by a sim-
ple model Hamiltonian where four basis functions
(corresponding to the four tetrahedral bonds) are
associated with each atom, and the only nonvanish-
ing matrix elements of the Hamiltonian consist of
(i) a constant matrix element between two different
basis functions on the same atom, and (ii) another
constant element between two basis functions of the
same bond. Since the atomic positions do not enter
explicitly and because interactions between orbitals
on unbonded pairs of atoms are neglected, the
spectrum of this Hamiltonian is dictated by the
bond pattern, i.e., by the topological disorder.
Positional disorder or structural disorder Per se
is important only indirectly through the topological
disorder that produced it. As a result, a CRTN is
primarily characterized by its ring statistics,
whereas less attention is directed to the effects of
bond-length and bond-angle distortion. ' However,

to acquire a more quantitative understanding of the
electronic properties, calculations based on more
realistic Hamiltonians are necessary.

Recent advances in computational technique for
band structure of solids now allow the calculation
of the electronic energies of a CRTN of atoms
from first principles (instead of from empirical
model Hamiltonians), once the positions of the at-
oms are given. Such a calculation has been per-
formed' "for the electronic structure of amor-
phous silicon (u-Si), based on Henderson s periodic
CRTN (H-61).' For a periodic CRTN, the proce-
dure is the same as that for the energy bands of a
crystal. Using the method of orthogonalized linear
combinations of atomic orbitals (OLCAO) recently
developed for band-structure calculation it was
possible" to take into account the detailed position-
al disorder, and thus to characterize the electronic
properties of an amorphous solid realistically. Of
course, structural disorder and topological disor-
der are not independent of each other. Neverthe-
less, we regard the structural disorder as the
more fundamental way of charaterizing the CRTN:
Given a set of atomic positions that are consistent
with the known static structure, the electronic
structure must be such as to correspond to a top-
ologieally disordered scheme of covalent bonds
joining each atom to its four nearest neighbors.

The OLCAO calculation for a-Si using the H -61
structure led to a theoretical density of states
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(DOS) for the valence band in fair agreement with
the experimental result, but it predicted no intrin-
sic band gap although the DOS near the Fermi level
was low. Since the size of the band gap undoubtedly
is related to details of the structural disorder, the
absence of a band gap in theII-61 CRTN could have
been peculiar to that network. Additional calcula-
tions based on other CRTN were needed to clarify
this point. Very recently one of us (LG) has con-
structed a periodic CRTN containing 54 atoms in
a unit cell (G-54) which has somewhat smaller dis-
tortions than H -61." A comparison of the elec-
tronic energy structures derived from these two
periodic CRTN would be very instructive. In ad-
dition it would also be desirable to study the elec-
tronic energies for some of the nonperiodic CRTN
structural models. .This indeed can be do'ne as
techniques for applying the OI CAO method to non-
periodic solids have been described in the litera-
ture. ' Accordingly we have performed first-
principles calculations of the electronic energies
of a-Si using the Q-54 and two nonperiodic CRTN.
Comparison of the results for the various CRTN
enables us to analyze quantitatively how the elec-
tronic states are affected by different degrees of
structural disorder.

II. DESCRIPTION OF THE CRTN STRUCTURAL MODELS

There exist two classes of CRTN structural mod-
els of a-Si. Finite networks, containing typically
200-500 atoms, have been built by hand, some-
times with computer assistance. Examples are
those of Connell and Temkin' (CT) and of Polk and
Boudreaux. ' The coordinates of the latter were
subsequently refined by Steinhardt, Alben, and
Weaire" to give the minimum energy under the
Keating potential. We refer to this refined version
of the model of Polk and Boudreaux as RPB. In
the existing models, construction has stopped at
a point where a, large fraction of the atoms is still
close to the surface, with effects on. the proper-
ties that may be large and are difficult to estimate.

In the other class of CRTN, designed to eliminate
surface effects, a certain number of atoms is dis-
posed within a unit that satisfies periodic boundary
conditions, i.e., repeats indefinitely in three (usu-
ally orthogonal) directions. The first of these to be
made is due to Henderson and Herman, ' later mod-
ified by Henderson. ' This iS the H-61 structural
model referred to i'n Sec. I. More recently a pre-
scription has been given for systematic construc-
tion of such periodic CRTN by computer simula-

TABLE I. Atomic coordinates of the G-54 CRTN. All distances are expressed in units of
Ra, the nearest-neighbor distance in the silicon lattice. Cell size is 4.3197R0.

Atoms Atoms

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

1.5993
2.8552
0.6000
2.3054
0.8947
1.9306
1.3976
2.1379
1.6450
1.8471
0.7744
2.3273
1.5981
3.2189
2.4220
2.3420
1.4341
1.2288
3.3387
5.0561
3.7704
3.8094
2.4057
4.3153
2.7866
3.1287
3.6298

1.9516
2.4957
1.1139
2.9208
2.3160
2.6392
2.7086
3.0076
2.8133
3.4011
4.1126
4.1956
4.6786
5.2288
3.9699
5.2870
5.2644
5.3809
1.6870
3.1919
2.9969
1.3216
1.9116
1.8858
2.2520
4.1723
2.3049

0.2758
1.3041
2.0043
3.7796
3.9904
5.2053
1.6906
2.2638
3.0608
4.5413
5.1433
4.8827
0.9955
1.6073
2.1242
3.6712
3.2987
4.8000
1.0638
2.9152
3.6059
3.0455
4.0232
5.3062
2.2542

, 2.7786
2.8555

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

3.0155
3.6866
3.7541
2.8937
4.2391
2.5173
4.0124
2.8295
3.2182
4.7732
5.2166
5.5788
5.3020
2.9593
4.3743
4.4525
5.0715
4.7411
5.1906
3.5969
3.9742
3.6250
6.2348
4.9268
5.4607
4.3175
4.4380

3.6403
2.4962
3.9404
4.3085
4.6158
5.5780
5.1599
4.5094
5.9581
1.0681
2.0131
1.9274
3.8740
0.8416
2.7479
2.5732
3.4285
3.1816
4.8726
3.0384
4.1695
5.0255
4.8090
3.9532
4.7817
5.3605
6.2228

3.6018
4.4207
5.6255
1.3405
0.7854
2.1852
2.2183
4.1125
4.4713
1.0753
2.2433
3.1535
4.2398
2.9583
5.7607
2.3927
1.5184
3.8097

- 3.9980
5.2768
6 ~ 5798
0.0993
1.9364
2.3656
2.4885
3.8508
4.3497
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TABLE II. Comparison of the root-mean-square bond-length and bond-angle distortion (6R/
R andre), number of n-fold rings per atom, and density relative to the density of the perfect
crystal (p/pp) for several CRTN. The ring statistics figures for the CT and ST-12 CRTN are
given in Ref. 32 and the paper by M. F. Thorpe and D. Weaire in Ref. 2, respectively.

n-fold rings/atom

CRTN Type
No. of
atoms n=5 n=6 P/P p

G-54
H-61
RPB
CT
ST-12

per lodlc
periodic
finite
finite
periodic '

54/cell
61/cell
519
238
12/cell

0.025
0.038
0.011
0.012
0.014

13.0'
12.3'
7.1

11.5'
15.7'

0.57
0.44
0.38
0
0.556

0.630
0.803
0.93
2.432
0.333

0.35 1.03
0.61 1.03
1.04 0.995
0 0.99
0 1.11

tion. " Briefly, the method is to start from a finite
region of a crystal, to join each atom randomly to
four others so as to satisfy periodic boundary con-
ditions, and then to modify the bond pattern pro-
gressively in order to lower the strain energy as
much as possible. An example has been produced
in this way (the G-54 CRTN referred to in Sec. I),
starting from a cubical region containing 2'l unit
cells of the body-centered-cubic lattice (54 atoms}.
Its radial distribution, after relaxation under the
Keating potential with P/a =0.2, is in good agree-
ment with the experimental function for amorphous
Ge. The coordinates of this CRTN are given in Ta-
ble I.

gn addition to the two kinds of CRTN referred to
in the preceding paragraphs, the crystalline struc-
tures of polymorphs of Si and Ge have been sug-
gested as possible structural models for a-Si.""
These polymorphs are stable at high pressures. "
Silicon III has a body-centered-cubic structure
with 8 atoms per unit cell (BC-8), whereas Ge III
has a simple tetragonal structure with 12 atoms
per unit cell (ST-12}. The electronic structures of
silicon in the BC-8 and ST-12 structure have been

ST-12 Si shows a fair degree of resemblance to the
experimental data for a-Si, but a much larger dif-
ference is found for BC-8. Moreover, the poly-
morphic forms have too high a density and their
computed radial distribution functions (RDF), es-
pecially that of BC-8, show considerable departure
from the observed results for the amorphous
phase. " For these reasons the BC-8 and ST-12
structures do not make very realistic models for
a-Si. Nevertheless they are useful as intermedi-
ates between the crystalline and the amorphous
state.

The RPB model (519 atoms) has the smallest dis-
tortion of bond length and bond angle and contains
five-fold rings. The CT model is unique in having
only evenfold rings. In Table II some parameters

describing the structural and topological disorder
for several CRTN and ST-12 are given.

III. COMPUTATIONAL METHOD

A. Periodic networks

The general procedure for calculat'ing the elec-
tronic energy levels of a periodic CRTN of an
amorphous system by means of the firs t-princ iples
LCAQ method is just that for the band-structure
calculation of a complex crystal, "and extension of
this method to a periodic network is conceptually
straightforward. The only difficulty is a practical
one of having to handle extraordinarily large ener-
gy matrices. Even with a minimal basis set of nine
orbitals (ls, 2s, 2p, 3s, 3p) per Si atom, one would

have to use 9N Bloch-sum basis functions for a
periodic lattice with N atoms in a unit cell. Since
we are mainly interested in the valence-type
states, a large reduction of the basis functions can
be effected if the core states can be deleted with
no loss in accuracy. This indeed can be accomp-
lished by the recently developed QLCAO
scheme' "in which the Ss, 3p Bloch sures are or-
thogonalized to the 1s, 2s, 2P core Bloch sums.
Specifically let us denote by b; (k, r) the Bloch sum
which is associated with the k point in the quasi-
Brillouin-zone and is formed by the atomiclike or-
bital P; centered at the point p, the site of the ath
atom in the vth unit cell, i.e.,

b; (k, r) =Pe' ' "P,(r —p„—R, ) .

The orthogonalized Bloch sum b;'is related to the
unorthogonalized ones as

where

z y=1 2 3 . . . N i=3@,3P'x, sPy 3Pz

l = 1s, 2s, 2/x, 2Py, 2P z .
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The coefficient a;,„can be determined from the
condition that b,'~ be orthogonal to b&y The new or-
thogonalized basis set b,' covers 4N functions.
The energy levels are obtained by calculating the
Hamiltonian and overlap matrix elements in the
orthogonalized basis and diagonalizing a 4Nx4N
matrix for each k point.

In the one-electron Hamiltonian, the potential
function is taken as a superposition of atomic po-
tentials V, centered at each site. Each V, is cal-
culated from the Hartree-Fock wave function of a
free Si atom using a Slater-type local exchange
with o. =-,'. (This overlapping-atomic-potential ap-
proximation for constructing the crystal potential
has been widely used for energy-band calculation
of crystals. For example, when applied to crystal-
line Si, it gives energy bands in good agreement
with the self-consistent-field results of Stukel and
Euwema. ") To facilitate the evaluation of multi-
center integrals, the atomic potential is fitted to a
Gaussian form

V,(r ) = ——e "' +P $ e (4)

B. Finite networks

Even in the absence of any periodicity of the
CRTN, - one can apply the LCAO method to calculate
the electronic energy. Here the basis functions are
simply the atomic (or optimized) orbitals .ocated
at each site, instead of being in the Bloch-sum

The parameters of 'the Gaussian fit are given in
Ref. 18. Although the P, in Eq. (1) are often iden-
tified with the free-atom wave functions, we find
it more advantageous to take the P; as some local-
ized functions which are qualitatively similar to the
true atomic orbitals, but are somewhat distorted in
the crystal. A set of such optimized orbitals de-
termined by the technique of contracted Gaussians"
has been given in Ref. 18. With both p& and V, ex-
pressed in Gaussian form, a typical Hamiltonian
matrix element can be decomposed into a multiple
series, summed over the CRTN lattice, of multi-
center integrals that can be either evaluated ana-
lytically or expressed in terms of the error func-
tion. More details of the computational procedure
have been described previously. '

Once the Hamiltonian and overlap matrix ele-
ments are computed, the energy levels are obtain-
ed by solving the secular equations. For a crystal
with a large unit cell like the G-54 CRTN, the
quasi-Brillouin-zone is very small. Thus we can
get a good sampling of the energy states from eight
non-equivalent points of the zone, i.e., v(0, 0, 0)/a,
w(1, 0, 0), w(0, 1, 0)/a, v(0, 0, 1)/a, v(1, 1, 0)/a,
w(1, 0, 1)/a, v(0, 1, 1)/a, and w(1, 1, 1)/a.

form. The technique of orthogonalization can also
be applied, viz. , the 3s, 3p orbitals at one site are
orthogonalized to the 1s, 2s, 2P core orbitals at all
other sites. The major consideration is how many
atoms can be included in the calculation. With four
orthogonalized orbitals per atom, it becomes dif-
ficult to go much beyond, -say, 100 atoms. One
practical procedure is to calculate the energy lev-
els for a cluster of 100 atoms from the CRTN and
to repeat the calculation for several different 100-
atom clusters so as to get a statistical average.
The drawback of this procedure is that even for a
100-atom cluster a good fraction of the atoms are
on the surface, and hence the energy levels would
contain a number of surface states. Menzel et al."
have introduced a method to eliminate the surface
states. They take the Hamiltonian of an infinite
solid but use as the basis functions atomiclike or-
bitals centered at sites within a cluster. Although
their LCAO basis set covers only a limited number
of atoms, there is no physical surface present in
the Hamiltonian which includes the potential terms
of all atoms in the infinite solid. Indeed Menzel et
al. found no surface states in their cluster-basis
calculation of crystalline Si and X,iF. However,
one important point must be kept in mind in using
a finite cluster-type basis set in conjunction with
the Hamiltonian of an infinite solid. The Hamilto-
ian is capable of yielding an infinite number of
core-state eigenvalues, but with a finite basis set,
one expects the eigenvalues to include the core
states of only the atoms inside the cluster. If the
3s and 3P orbitals inside the cluster penetrate ap-
preciably into the sites outside, the minimum-
seeking nature of the linear variational method
would attempt to reproduce the core states of the
exterior atoms and therefore produce some spuri-
ous roots. This complication can be avoided if the
cluster-type basis functions are supplemented by
the 1s, 2s, 2P core orbitals around the-sites of the
next few exterior shells. Such a core-state cushion
has been used successfully. "

The method of Menzel et a L. can be adapted to the
case of a finite CRTN provided there are many
more atoms in the CRTN than in the cluster. For
our application we start with a cluster C' for the
basis functions (both core and valence) as illustrat-
ed in Fig. 1. Enclosing C is a region designated
as A. which usually contains several hundred atoms.
The potential-energy function in the Hamiltonian
includes the contribution from all the atoms inside
A. Thus A must cover at least several shells of
atoms outside of C' and its size must be such that
an enlargement of A would not affect the Hamilto-
ian matrix elements between two basis functions
inside C'. Surrounding C' and inside A we choose
a core-cushion region B as shown in Fig. 1. The
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FIG. 1. Schematic diagram for regions A and 8 and
the various clusters C', C", etc.

region B serves as the core-state cushion, but in-
stead of adding the core orbitals of the cushion at-
oms to the basis set we orthogonalize the 3s and

3P orbitals within C' to all the core orbitals in B.
The latter serves the same purpose as the core
cushion but does not result in an enlargement of the
basis set. The valence orbitals inside C' are also
orthogonalized to the core functions of all atoms
inside C . The orthogonalized 3s, 3P functions in-
side C' constitute the basis set. To compute the
necessary ma, trix elements, we again express the
potential function as a superposition of atomic po-
tentials at each gi site and evaluate the relevant-
three-center integrals using Eq. (4). After obtain-
ing the energy levels we repeat the calculations us-
ing different clusters C",C"', . . . f or configuration
averaging in order to get a better sampling in cal-

culating density of states (DOS). Ching et al. ap-
plied this procedure to perform a cluster-type cal-
culation with H -61 and the DOS so obtained is in
good agreement with the result derived from the
quasicr ystal calculation. "

Other methods for removing the surface states in
cluster-type calculations have been used. One way
is to introduce hydrogen atoms to saturate the
dangling bonds of the surface Si atoms. " The cal-
culated energy states, however, may include some
which are largely associated with the Si-H bonds.
More recently, a new cluster approach has been
proposed. "" It consists of attaching a Bethe lat-
tice to the surface of a finite cluster to simulate an
infinite solid. Solution of the Bethe-lattice prob-
lem can be obtained by parametrizing the matrix
elements. Since the Bethe lattice does not corre-
spond to a real system, it is more suitable for
model study than first-principles calculations.

IV. RESULTS FOR AMORPHOUS SILICON

A. G-54 network

In Fig. 2 is shown the theoretical DOS of a-Si us-
ing the 6-54 lattice based on the energy levels of
eight points in the quasi-Br'illouin-zone. To facili-
tate comparison of the general shape of curves for
different CRTN we have applied a Gaussian broad-
ening of full width 0.1 eV to smooth out the very
sharp spikes. For comparison, the DOS derived
from the 0-61 CRTN (with the same broadening) is
reproduced in, Fig. 3. The general shape is similar
to the G-54 result except that the H-61 lattice gives

N ~
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FIG. 2. Density of states
of the valence and conduction
bands of a-Si. calculated by
using the G-54 CRTN. A
0.1-eV Gaussian broadening
has been applied.
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FIG. 3. Density of states
of the valence and conduc-
tion bands of a-Si calculated
by using the H-61 CRTN.
A O.l-eV Gaussian broaden-
ing has been applied.
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no band gap.
It is interesting to see how well the band gap and

the energy-level pattern near the gap can be re-
produced by cluster-type calculations based on the
same CRTN. Accordingly, we select a large
spherical aggregate of some 600 atoms from the
G-54 lattice as regions of Fig. 1. Energy levels
are calculated using orthogonalized 3s, 3P basis or-

bitals within a cluster of 75 atoms, and the proce-
dure is repeated for seven other 75-atom clusters.
The resulting DOS [Fig. 4(d)] agrees well with the
quasicrystal result of Fig. 2, not only in its gen-
eral shape, but also in the band gap (0.7 eV in Fig.
4(d) vs 0.67 eV in Fig. 2), and in the detailed
structure near it. In a cluster calculation, one in-
variably gets more valence-band states than con-

(aj (c)

M ~
p U
~ CO

V) ~
LL QO~

~ I-
O~Z gl

- (b)

0 10
I a ~ s ~ I ~ a ~ ~

-10 4 0 $0

FIG. 4. Calculated den-
sity of states of the valence
and conduction bands of c-
Si based on the G-54 CRTN
using the average of (a)
36 17-atom clusters, (b)
18 35-atom clusters, (c)
13 47-atom clusters, and
(d) 8 75-atom clusters.
A 0.1-eV Gaussian broaden-
ing has been applied.
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duction-band states because of the dangling orbitals
of the boundary atoms. " Consequently we find a
smaller area under the conduction-band DOS as
compared to the valence band. Furthermore, the
higher conduction states obtained here are not as
accurate as the valence states because to repro-
duce the former properly by a, cluster-type calcul-
ation, single-Gaussian basis functions would have
to be added. " To examine the effect of the cluster
size, we have also tried clusters of 60, 47, 35,
25, 20, 17, and 13 atoms. The numbers of config-
urations averaged for these clusters were 10, 13,
18, 24, 30, 36, and 47, respectively, so as to
maintain about the same degree of statistical sam-
pling. The calculated DOS for some of these clus-
ters are included in Fig. 4. Comparison with Fig.
3 shows that as far as the valence band is concern-
ed, the 47-atom clusters are practically as good
as the 75-atom ones, but that to reproduce the con-
duction-band-edge behavior and the band gap, clus-
ters with more than 47 atoms are needed.

The Ss and 3p orbitals used in this work are
"optimized" in the sense that the band structure
(including the band gap) for the normal Si crystal
obtained by using only the orthogonalized 3s, Sp

Bloeh sums as basis functions is nearly the same
as that derived from an extended basis set contain-
ing eleven s-type and nine p-type single-Gaussian
Bloeh sums. When applied to a-Si and the poly-
morph forms of Si, this Ss-3p basis set is not ex-
pected to reproduce so closely the results of an
extended-basis calculation. For instance, augmen-
tation of the 3s-3p basis set by adding single-Gaus-

sian Bloeh sums changes the band gap of the BC-8
Si by 0.07 eV." While we have not performed ex-
tended-basis calculations for a-Si because of the
size of the secular equation, it is reasonable to
take the number cited above for BC-8 as an indica-
tion of the effect of augmenting the basis set on the
band gap of a-Si.

B. Finite networks

Cluster-type calculations of the energy levels
have been made for the RPB and CT networks. The
DOS obtained from the averages of eight different
75-atom clusters are presented in Figs. 5 and 6.
The CT network contains 238 atoms, which is suf-
ficient to provide eight different clusters but not

enough to cover region A. In other words, some
of the 75-atom clusters are too close to the bound-

ary of the network. Therefore to the peripheral
atoms we connect tetrahedrally some 130 atoms to
extend the CRTN. No special effort was made to
minimize the energy in the enlargement process.
The added atoms do not appear in any of the eight
clusters but are included in the Hamiltonian in or-
der to eliminate the surface effects. Thus the fact
that the addition of the extra atoms was not done

to the same degree of refinement as the construc-
tion of the original CRTN is not believed to have
much effect on the calculated DOS ~

Both models give a,n intrinsic band gap, 2.19 eV
for RPB and 1.24 eV for CT. The gap of the RPB
model is much larger than the experimental value
for crystalline Si (1.13 eV). In view of the rlose
agreement between the band-gap values of &'-54
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FIG. ,). CalI.'ulated dg n-
slt&' Ot states ot the valence
Rnd eonduet Loll bAll(48 Ot (l-
Si based on the 14PD CBTN.
A 0.1-eh Gaussian broaden-
ing has been applied.
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FIG. 6. Calculated den-
sity of states of the valence
and conduction bands of a-
Si based on the CT CRTN.
A 0.1-eV Gaussian broaden-
ing has been applied.

aNaaGv (»)
10

derived from the 75-atom cluster and from the
quasicrystal calculation, we expect the two gap
values cited above to be quite close to, though
somewhat larger than, the infinite-cluster limit.
Although further increases in the cluster size are
expected to decrease the gap only a little, larger
effects would result from supplementing the 3s, 3P
basis orbitals by some single-Gaussian orbitals"
(withinthe cluster) to increase the variationalf ree-
dom. However, it is not likely that this change
would be more than several tenths of an eV. Along
this line, we may mention that the calculated band
gap for ST-12 Si (with single-Gaussian supplement
to the basis set) is 1.31 eV which is larger than the
band gap of crystalline Si. The valence-band DOS
of the RPB network has the usual two-peak struc-
ture, whereas in the case of CT the lower half of
the valence band shows some well-developed struc-
tures. The RPB lattice has the smallest distortion

and the CT lattice is intermediate between RPB and
G-54. The results of calculations with four differ-
ent CRT' are summarized in Table III.

C. Comparison with experiment

Experimental measurement of the DOS of the
valence band of a-Si has been reported by Ley et
al." In order to compare with the experimental
DOS, a Gaussian broadening of 0.5 eV (full width)
has been applied to all the theoretical curves.
Since only relative values of the measured DOS are
given in Ref. 31, we normalize all the theoretical
curves to the same area as the experimental one.
The results are shown in Fig. 7. In all four theo-
retical curves, the energy of the upper peak is
quite close to the observed value but their lower
peaks are shifted to lower energies and show more
structure than is observed. Furthermore, the ex-
perimental maxima are more nearly equal in height
than any of those calculated.

TABLE III. Calculated band gap and valence-band
width for four CRTN.

CRTN Band gap (eV) VB width (eV)

H-61
G -54
RPB
CT

None
0.67 (0.70)
2.19
1.26

15.1
14.2 (14.6)
12.5
13.8

~The values in parentheses are obtained by using
cluster-type basis functions and the values outside by
Bloch-sum basi. s functions.

V. DISCUSSION

We have obtained the DOS of a-Si based on four
different CRTN, theH-61, G-54, CT, and RPB
structural models. All four reproduce quite well
the experimental RDF but have different amounts
of distortion. To a less extent reference can be
made of the ST-12 and BC-8 models. Their DOS
curves are reproduced in Fig. 8. The BC-8 struc-
ture gives a RDF markedly different from the ex-
perimental data of a-Si and therefore is not a re-
alistic structural model. " The ST-12 is somewhat
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less, we choose the two root-mean-square values
as the zeroth-order parameters for describing the
structural disorder. The results for the four
CRTN studied here do reveal some correlation be-
tween the band gap and the mean distortion, but at
this stage we do not know quantitatively to what ex-
tent the band gap and other electronic-energy
properties are governed by these two parameters.
The importance of details of the distortion can be
discerned only by a more extensive study involving
many different CRTN.

(v) In the early theoretical works on a-Si, be-
cause of the nature of the empirical approach
adopted, the only way that the disorder enters into
the Hamiltonian is through the connectivity of the
lattice (see Sec. I). Thus it has been a common
practice to regard the statistics of five- and six-
fold rings, etc. as the measure of the disorder of
the structure and to emphasize the roles they play
in the electronic properties of amorphous Si. Kith
the OLCAO scheme it is now possible to calculate,
in an ab initio manner, the electronic energies of
a-Si using a realistic CRTN to represent the atom-
ic positions. This allows us to probe into the ef-
fects of structural disorder such as bond-length
and bond-angle distortion. For instance, the CT
network is intermediate between G-54 and RPB as
far as bond-length and bond-angle distortion are
concerned, but differs from both G-54 and RPB in
having no fivefold rings. Since the band gap and
valence-band width of the CT network do fall be-
tween the G-54 and RPB counterparts, we see the
fivefold rings pew se are not a key factor in con-
trolling these two properties. In Fig. V we note
that the CT network shows the clearest double-
maxima feature in the secondary peak of the DQS.
%hether this is directly related to the absence of
fivefold rings, we are not able to comment at this
time.

VI. CONCLUDING REMARKS

The use of CRTN to describe the structure of
a-Si and other amorphous group-IV semiconductors
in terms of the position coordinates of the individ-
ual atoms has proved to be very successful in re-
cent years. Based on a CRTN description it is now

possible to perform first-principles calculations of
the electronic energy states of a-Si by means of the
OLCAQ method. Since the Hamiltonian includes the
contribution from all atoms in the entire CRTN,
the complete detailed structural disorder is incor-
porated into the problem and treated in an ab initio
fashion without empirical parametrization. A dis-
ordered system has a great many degrees of free-
dom as far as structural distortion is concerned,
and it is not clear whether the effect of disorder on

the electronic properties can all be absorbed into
a few parameters. A first-principles approach
that takes into account the full positional disorder
gives a more basic view and reliable results. The
first ab initio calculation of the electronic energies
for a-Si was done by using the H-61 structure. ' "
In this paper we extend the study to three other
CRTN.

Comparison of the DQS derived from the various
CRTN indicated that while the general shape of the
valence-band DOS shows little variation in going
from one CRTN to another, the band gap does de-
crease markedly with increasing bond-length dis-
tortion. Likewise, the valence-band width is found
to increase with higher distortion. Although it has
been customary to correlate the electronic struc-
ture of a-Si with statistical distribution of fivefold
rings in the CRTN, we find that the relative abun-
dance of fivefold rings Per se does not have much
direct influence on the band gap. The structural
disorder as a whole must be considered in studying
the electronic properties.

A theoretical calculation of the electronic energy
states of a-Si, in the spirit of this work, requires
(i) construction of a suitable CRTN, and (ii) calcul-
ation of the energy levels based on a given CRTN.
Although there is room for improvement for the
second task, such as augmenting the basis-function
sets by single-Gaussian orbitals and proceeding to
self-consistency as discussed in Ref. 10, the meth-
od for calculating energy states of a given CRTN
as employed in this paper is sufficiently refined
that the accuracy of our results for a-Si is mainly
limited by the uncertainty of the positions of the
atoms in the amorphous solid. Thus we feel that
more efforts should be devoted to obtaining bet-
ter CRTN structural models. In this connection one
wonders what is the "correct" amount of distortion.
There are suggestions that the RPB model does not
have enough distortion. ' " Qn the other hand the
distortion in the H -61 model is probably too large.
In many ways periodic CRTN structures are ap-
pealing because there is no inherent limit in the
size of the network. It would be desirable to have
periodic structural models of about 64-100 atoms
per unit cell with distortion smaller than that of
G-54. The requirement of periodic boundary con-
dition does make the construction of periodic net-
works more difficult than the finite nonperiodic
ones. Since one can apply the OLCAQ method to
nonperiodic systems as well, additional nonperi-
odic CRTN containing 600 or so atoms with varying
degrees of distortion would be valuable. Further-
more, one can also study point defects in amor-
phous semiconductors such as vacancies and im-
purities provided suitable CRTN for the defect sol-
id are available.
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