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Using a Si surface model involving interference between two rippled-surface double layers, a kinematic

analysis of low-energy-electron-diffraction (LEED) intensities of all fractional-order spots has been completed
and compared with recent experimental LEED 7 )& 7 intensity data. Since the ripple is a small perturbation,
the surface is almost ideally terminated; no vacancies or adatoms are required in the model. The intricate

7)& 7 LEED patterns and their considerable intensity variation with 5-V energy increments are shown to
agree with the computed patterns. Threefold rotational symmetry reversals are observed in the LEED
patterns at about 20-V intervals and are also computed from the rippled-surface model.

I. INTRODUCTION

It is well known that at 'a clean, annealed Si(111)
surface, the atoms are located in a superlattice
whose lateral periodicity is seven times that of
the bulk. The low- energy- electron diff raction
(LEED) pattern characterizing this surface is
called the Si(ill) 7 x 7 pattern; it is perhaps the
most repeatable and often discussed LEED pat-
tern in the semiconductor literature. ' "

Atomistic models have been proposed to account
for the observed 7 x 7 LEED patterns based on
lattice defects (vacancies' ~ and adatoms') in the
terminating lattice plane and on static deforma-
tions of the lattice near the surface derived from
dynamic instabilities of periodic surface excita-
tions (phonons"" and charge-density waves'~).
No attempts were made in these models to calcu-
late the intensities of the primary and seventh-
order LEED beams as a function of primary elec-
tron energy. At the present time, experimental
Si(111)7 x 7 LEED patterns in the literature are
given only at selected primary energies and the
diffracted beam intensities have not been system-
atically measured. To document the intensity
data in some depth, we have recorded LEED pat-
terns of the Si(111)7 x 7 structure at 5-V inter-
vals for primary beam energies in the range 20-
340 V. These data and crystal-surface prepara-
tions will be described in detail in Sec. IV.

A major finding, evident from examining these
newly observed data, is that the fractional-order
LEED patterns for E &70 V usually have a pro-
nounced 3-fold rotational symmetry. At nearly
each 5-V interval, the intensity distribution of
the fractional-order LEED pattern changes sig-
nificantly. At about 20-V intervals, the fractional-

order LEED pattern rotational symmetry reverses
from+3 fold to -3 fold. In between these +3-fold
symmetries, there is a primary energy where
the patterns are nearly 6-fold rotationally sym-
metric.

The published surface-defect models'~ are in-
capable of yielding fractional order LEED patterns
with rotational symmetries that depend on primary
electron energy in the single-scattering approxi-
mation used here because the surface defects
are confined to the terminating lattice plane. This
is in direct contradiction to experimental obser-
vation. "' ' To account for the observed rotational-
symmetry reversals at 20-V intervals and the
significant fractional order LEED pattern inten-
sity variations at 5-V intervals in the single-scat-
tering approximation, a surface deformation such
as that developed in Fig. 1 is required. Figure
1(a) depicts four layers (two double layers) of the
(111)crystal plane with the surface layer No. 1
being ideally terminated. The lateral direction
is [112], which accurately depicts the stacking
of Si atoms in the crystal. The nearest-neighbor
spacing in the surface region is a&. Each double
layer has a thickness of 50=0.78 A, and the double
layers repeat every 4 x0.78 or 3.12 A. The
diagram shows "dangling bonds" into vacuum
caused by the sp' hybridization characteristic of
the bulk Si crystal. However, it is generally
agreed that these dangling bonds of the ideally
terminated lattice are unstable, and that the sur-
face atoms relax their positions by contracting
inward toward the lattice so as to form a more
planar sp' type of bond. In Fig. 1(b), these sur-
face atoms are shown relaxed inward by approx-
imately 26,. From chemical-bonding arguments,
Applebaum and Hamann' infer that the surface-
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FIG. 1. Schematic of atoms in the Si(111) surface
region, and an illustration of how the 7 x 7 ripple de-
formation is generated. (a) The ideally terminated
lattice with unstable dangling bonds. (b) Relaxation of
the surface atoms to form a nearly gr aphitelike layer.
(c) Relaxation of the subsurface atoms. (d) Periodic
ripple found by the small amount of residual compres-
sive stress in the surface layers. The ripple amplitudes
are shown greatly exaggerated for clarity in (d); in

fact, they are treated as a perturbation in the mathe-
matical formalism.

atom relaxation is 0.33 A; in a later work, s they
infer from surface-state spectra that the relaxa-
tion ean be 0.46 A or greater. Thus, the value
of 0.38 A tentatively chosen here is consistent
witii their calculations. This change of hybridiza-
tion from sp3 to sp2 is known to introduce a weak-
ening of the r back bonds. Thus the bonding of
layer No. 2 to layer No. 3 should be reduced as
is the case in graphite compared to diamond. As
a consequence, one can anticipate that layer No. 3
will relax inward toward layer No. 4 to form a
somewhat more planar double layer with the re-
laxation of perhaps —,50, as shown in Fig. 1(c).
The magnitude of this type of relaxation decreases
with increasing depth into the crystal.

There is excess energy stored in the crystal per
unit volume in the surface region because the hy-
bridization in that region is partially sp', while
the hybridization in the hulk is sp3. This excess
energy per unit volume will produce a uniform
hydrostatic pressure. Thus we can anticipate
that there may be a residual surface energy and
a surface pressure available which can be the

driving force for a surface deformation. The
usual type of deformation which relaxes the sur-
face energy to some extent is a uniform bowing of
the macroscopic crystal into a spherical shell.
Another mode of deformation is possible which

can relax the surface energy without straining
most of the crystal bulk. This mode is a periodic
surface ripple which is damped into the bulk, as
shown in Fig. 1(d). This periodic deformation is
similar in mathematical representation to standing
surface waves at fluid interfaces, to electronic
surface states, and possibly also to the ripple
distortions suggested on the basis of surface pho-
nons and charge-density waves. '3 '4 But this is
the first time, to the authors' knowledge, that
periodic surface ripples have been used as a
basis for the direct interpretation of fractional-
order LEED beam-intensity variations with pri-
mary-electron energy.

In summary, we propose on the basis of experi-
mental analysis of fractional-order I EED beam-
intensity variations with primary-electron energy
that a ripplelike deformation of at least the top
two double atomic layers is responsible for the
7 && 7 superlattice of the annealed Si(111)surface.
It is not clear at this writing whether periodic
stress relaxation of rehybridization energy or
periodic static deformation owing to dynamic in-
stabilities of periodic surface exeitations, are
responsible for the ripple deformation nor is it
clear that these various phenomena are distinct.
It is clear that surface-layer atomic defect models

by themselves cannot account for the experimental
observations although they may coexist with the

ripple distortions. We will not speculate further
on the origin of the 7 && 7 periodicity. Rather, as
in all the existing atomic surface models, ' '4 we
will accept this superlattice as an experimental
fact. Our unique contribution is to use a ripple
model to calculate the fractional-order LEED
beam intensities from single-scattering theory
and to compare these calculated intensities with
experimental LEED intensity data. For the Si(111)
7 x 7 surface, symmetry requires that the 7-fold
surface ripple have triangular lateral periodicity,
as shown in Fig. 2. Each side of each triangle
has seven atoms. The dashed line is the [112]
direction in the surface plane, along which the
elevation in Fig. 1 was drawn. The shading is a
measure of the surface-atom height in the ripple
deformation, that is, a measure of the ripple amp-
litude.

The paper is arranged as follows. Sec.
II is devoted to the theoretical formulation of the
ripple model. Experimental data wiD be intro-
duced to narrow the theoretical options. The frac-
tional-order LEED intensities are calculated in
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(0,7)

V is the experimentally measured voltage of the
scattered electron beam in vacuum, and 10 V is
a reasonable value of the inner potential for Si.
Because the incident beam is at normal incidence
and the exit beam is at angle 0, k, is multiplied
by (1+cos8), to yield

k,'=2v(V+ IP)~~'160 ' ~(I+ cos8), (2)

(0,0) (7,0)

FIG. 2. Schematic of atomic-height deformation
Z(s, I) in the Si(111) 7&& 7 surface plane. The magnitude
of deformation is proportional to the shading. The
dashed line indicates the [112]direction along which
Fig. 1 was constructed.

Sec. III, and in Sec. IV, the computed and experi-
mental LEED patterns are compared. The con-
clusions are discussed in Sec. V.

1I. THEORY

The objective of the new model is to reproduce
the rotational symmetry variations with primary
beam energy of the experimental fractional-order
LEED patterns. It is not our intention to present
a detailed multiple-scattering computation of the
beam-intensity primary-energy dependence of
every fractional-order beam. In fact, the latter
undertaking would be impossible. A complete
dynamical scattering analysis of the proposed
surface structure is out of the question with pres-
ently available computer capabilities. There are
far too many atoms in the unit cell. Therefore,
following the procedures established by Duke and
Tucker, "it suffices to compute the kinematical
(single scattering} Bragg envelopes of the normal
incidence, fractional-order beam intensity pro-
files in order to analyze the rotational symmetry
variation with primary-beam energy of the frac-
tional- order beams.

The lattice scattering factor in this kinematical
formulation is given by

oo 49

f=gg exp[i(k„rz)]exp[i[k,'Z„(r„)]}.
n~l rn

This is a sum over all the atoms in the n layers
comprising the lattice. The nth layer has 49
atoms in the unit cell; each of these atoms has a
lateral coordinate r„and a depth coordinate Z„(r„).
Because of the proposed ripple deformation,
Z„(r„)is a 7-fold periodic function of the lateral
coordinate r„.In Eq. (1), the lateral wave vector
is k„and the normal wave vector is k, =2v/X. Here
&= [150/(V+ 10)]'~2 (A. is in angstroms, V in volts),

as required in Eq. (1).
It is convenient to consider Z„(r„)as the sum of

one component which is independent of the ripple
and another component which depends only on the
ripple,

Z„(r„)= i„+y„5,F(r„). (3)

x exp(i(k', y„5,E(r„)].
Since the ripple amplitude y„6,is small for all
layers, it is considered a perturbation and the
exponential on the far right-hand side in Eq. (4)
can be expanded to yield

00 49

f=g exp[i(k,'g„)]Qexp[i(k, r„)]

(4)

n=l rn

x [1+ik',y„5g'(r„)].
It can be shown for the Si(111}7 x 7 lattice that

k„~r„=', 2v(ts„+mt„), — (6)

where l and m are integers describing the lateral
wave vector and k, = ll + ~~ where —', 2~l and
—',

, 2~ni are the unit wave vectors at 60 to each
other. Also, sn and t„areintegers and multiples
of 3 describing the lateral location of each atom
referred to the surface plane and rn=sns+ tnt,
where s and t are the unit spatial vectors at 120
to each other. The nearest-neighbor distance in
the first layer is a, = ~s

~
=a, /v 2 =3.831 A.

Fractional-order LEED beams are defined as
those for which l and m are all integers except
for multiples of seven. For fractional-order
beams it follows from symmetry that
Z„exp[i(k„~)]= 0. A well-known example of this

Here f„is the ripple-independent part; for an
ideally terminated lattice with n = 1, 2, 3, .. . , it
canbe seen from Fig. 1(a) that $„=0,,'D, D, 1—,'D, -
2D, 2-,'D, .. . , where D is the double-layer perio-
dicity given in terms of the lattice constant a,
by D= a,/&3=3. 12 A. The double layer thickness
is 5, = 4D. Each layer is assumed to have its own

ripple amplitude y„5,and a common ripple shape
factor E(r„}as in similar problems of surface
waves on liquids or surface electronic states. The
combination of Eqs. (1) and (2) yields

OO 49

f=g exp[i(k', g„)]gexp[i(k, .r„)]
n=l x'n
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in one dimension is

N 1 . lg exp 2vin7 =0,
nW

which holds for all values of the integer l except
for multiples of seven. Only the fractional-order
beams are of interest here as the deformation
gives rise to the fractional-order beams, while
the undeformed lattice produces the integral-order
beams (i.e., l and m multiples of seven}. Hence,
the lattice scattering factor for an individual frac
tional order -beam is obtained from Eq. (5) by re-
taining only the second term of the last square
bracket,

49

f=ik~50+ y exp[i(k~t„)]gF(r„}exp[i(k~ r„}].
nW rn

(7)

There are too many unknowns (y„,f„)for each
n to proceed further without obtaining assistance
from experimental LEED data. Let us then con-
sider the magnitude of the phase shift $
= k', (r.„t)b-etween layers for various primary
energies. Consider first the phase shift between
the first and third layers of the ideal periodicity
D: $».--2v(1+ cosa)(V/150)' 'D. For an average
experimental value of cos6 =0.88, this yields
$»=3.01'. Consider how $» varies in a 5-V in-
terval near 100 P

g~ ~ (105) —tf)» (100)= 3.01(l105 —4 100)

=0.74 rad.

Thus, this term accounts for an appreciable frac-
tion of a radian (42.4') in phase shift for only a.
5-V primary-energy interval. It is expected that
a LEED pattern would be different with such an
appreciable phase change since sin42. 6' and
cos42.6' are considerably different from their un-
perturbed values 0 and 1, respectively. The data
to be described in more detail later shows that
5-V primary-energy increments significantly
changes the fractional-order LEED pattern near
100 V. We conclude that this 5-V experimentally
observed variation can be accounted for by inter-
ference between at least two layers of separation
D. This is the spacing between double layers.

Next, consider the phase shift g» between the
first two layers which constitute the first double
layer. It has already been suggested that the driv-
ing force for the ripple deformation is the change
of hybridization from sp' to sp' in the surface
double layer. Thus, the spacing of the first double
layer relaxes perhaps to &50 or 8D. Using the
same arguments given above, it follows tQat this
phase shift energy dependence gear 100 V is

+ ik,'5,y, exp[i(k,'D)] g F(r') exp[i(k„r'}], (10)

where, for simplicity in notation, r and r are in-
troduced to indicate each of the atom locations in
the first and second graphitelike double layers,
respectively. There are 2 x 49 = 98 atoms in each
double layer 7 & 7 unit cell. The relationship of
r' to r is needed to combine the terms in Eti. (10).
For every atom location r', in one graphitelike
plane there are three translational vectors

73 between the three neare st- neighbor atom
locations r„r„andr, in the other graphitelike
plane, as shown schematically in Fig. 3(a). These
translational vectors referred to the unit vector
s and t, are

rj (37 &)t r2 ( 39 3)i rs ( 31 3) (11}

and are easily derived from inspection of Fig. 3(b).
It is also evident from Fig. 3(a) that r' can be
represented in three equivalent ways

r = r, + 7'„r= r2+ Y2
W)r = r3+ 7'3 ~ (12)

The two graphitelike layers are offset from each
other by either of the three equivalent vectors

By summing E|I. (12) it can be shown
that

P»(105) —$„(100)= 0.38(v'105 —v'100}

=0.093 rad=5. 3 .
This shift is too small to account for an appreci-
able fractional-order LEED pattern change in
5-V intervals, since sin5. 3'-0 and cos5.3 -1.
We conclude that in comparing Eqs. (8) and (8)
with LEED data, the most important terms to
retain are those which give scatterings betaken
double layers and we choose to neglect, for a first
approximation, the terms which give scattering
zvithin a double layer. In particular, we will con-
sider only the first two double layers in this prob-
lem, i.e., y„y„y„y8,...=0. Furthermore,
we will consider the double layers to be so close
together carnpared to D that each double layer will
be approximated mathematically by a planar layer,
i.e., f, =f» f, =$4, y, =y» and y, =y4. Each planar
layer therefore has a nearly graphitelike Si struc-
ture, which is known for at least one crystal in
nature": P-USi . We use these simplifications be-
cause they highlight the main features of the data,
without introducing what we consider to be unnec-
essary and unmanagable mathematical complica-
tions.

The consequence of the above simplifications is
that Eq. (7} can be written as

98

f= ik',5,y, Q F(r) exp[i(k„~r)]
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3
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since Tl+ 72+ 7'3=0. Thus r is given as the aver-
age of the lateral distances in three nearest neigh-
bors in the other plane. By analogy we assert that
the shape factor in the second graphitelike layer
is also the arithmetic average of the three nearest
neighbors in the first graphitelike layer

(14)

FIG. 4. Overlay showing how the two graphitelike
layers are offset by either T„T2,or 73. The subsur-
face layer is shown as that portion with hexagonal
shapes for atom locations and thicker lines joining the
atoms.

This assertion incorporates the appropriate 3-fold
rotational symmetry evident from inspection of
the two graphitelike layer stacking as shown in
Fig. 4 and from the following argument. These
layers are offset laterally by either 7;, 7'„or7,
which are equivalent by symmetry for flat layers.
But in the presence of a rippled superlattice, the
depth dimension is a function of the v's, so the
7's are no longer equivalent. One alternative pos-
sible shape factor, given by F,(r')=F(r, +7;) would

yield a computed LEED pattern with a pronounced
reflection symmetry, because 7, is preferred
over 7, and ~,. Still another possible shape factor,

3

F (r')=6 Q F(r )+F(—r ),
u =1

would yield computed LEED patterns with perfect
6-fold symmetry. These reflection and 6-fold sym-
metries are contrary to experimental LEED data.

The selected shape factor given in Eq. (14}is the
only one of the above choices which incorporates
the threefold symmetry needed to reproduce the
observed LEED data.

By combining Eq. (14) with Eq. (10}, we obtain

98

f= ik„'60y,g F(r) exp[i(k„r)]

+ 3 ik ', 5,y, exp[i(k}D)]

3 98

x P g F(r„)exp[i(k„~r')].
u=1

(15)

But from Eq. (12}we have r'=r„+7„,for all p.
When this relation is substituted for r' in the last
term of Eq. (15), that term becomes

98

P g F(r„)exp[i(k„r')]
u "-1 ru

98

= g g F(r„)exp(i[k} '(r„+r„)]}

(o)

98

= g exp[i(k„7„)]gF(r„)exp[i(k„r„)]
uM ru

3 98

= g exp[i(kI T„)]g F(r) exp[i(k„r)].
u=1 r

(16)

/
/

/
/

/ (2 I-)3

( I,O)

(b)

The final form of Eq. (16) follows by symmetry,
since in a sum over all 98 atoms in the 6-fold ro-
tationally symmetric graphitelike superlattice,
it makes no difference whether the origin of co-
ordinates is chosen to be at Tl T2 or ~3 By
combining Eqs. (15}and (16}and grouping of terms
we finally obtain

0( )
I 23' '3

FIG. 3. Relationship between a surface vector r and
a subsurface vector r' in the graphitelike layers. (a)
Vector diagram. (b) Detail showing definition of unit
translational vectors & which offset the surface and
subsurface graphitelike layers.

f ik'll y (}ex exp[i{e'D}=]E exp['{k,„e„}[)
x Q Fr exp[i(kI r)],

where
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y= (-')(r./y, ),
k„r,= (2w/7)(2l/3+ m/3),

k„~T2 = (2v/7)(-l/3+ m/3),

k„~r, = (2w/7)(-l/3 —2m/3) .
It can be shown that cos8 needed in the leading

k', term [see Eq. (2)] is given by

cosH (1 kI ki/k ) (18)

for the Si(111)7 x 7 surface, where

kp ki [(I+ m cos6 ly}2 + (m sin6(IP ]
x [(2w/7a, ) cos30']'. (19)

III. CALCULATION OF LEED INTENSITY

I(l, m, y, V}= (k60y~)2R2( &}
~
T(l, m, y, V)

~

2G (I, m },
(21}

and
~
&(I, m, r, V) ~' can be explicitly written as

~&( fm, r, V) ~'=I+2y(cosp, +cosp, +cosp, )

+ y'(3+ 2[cos($, —Q,)+ cos(Q, g,)
+ cos(@,—y,)]}, (22)

It is convenient to write Eq. (17) in a short-
hand notation as

f= ik,6,y,R(8)T(l, m, y, V)G(l, m), (2o)

where R(8) = 1+ cos&; T(f, m, y, V) = 1+y exp[i(k,'D}]
xZ, ,exp[i(k„T„)];G(l, m}=Z; F(r) exp[i(k„.r}].
The R(8) term depends only on &; it is chosen to
cut off abruptly at 8=40, because the LEED dis-
play screen used in the data collection subtends
that half angle. The G(l, m) term is 6-fold sym-
metric and repeats every third unit cell in re-
ciprocal space. The term of most interest for
comparison with experimental LEED data is the
translational term T(l, m, y, V). This is 3-fold
symmetric, depends on primary energy, and
also repeats every third unit cell in reciprocal
space. This is the term most responsible for the
intricate fractional-order LEED patterns and
their variations with primary-beam energy.

The LEED intensities I are given by
~f~',

reversal where l--l, m --m, there is a phase
reversal P--P, so that

T(-l, -m, y, V) = 1+y exp(ik[D} exp ( iP-+ a) . (25}

The absolute values of these terms are

~T(l, m, y, V}~'=I+y'exp(2e)

+ 2y exp[a cos(k~D+ P)]

~T(-l, -m, y, V) ~2=1+y~exp(2c)

+ 2y exp[a cos(k,'D —P}].

(26a)

(26b)
The condition when

~
T(l, m, y, V} ~' =

~
T(-l, -m, y,

V) ~' is special; it signifies that there is a perfect
6-fold rotational symmetry. This 6-fold condition
is given by

cos(k,'D+ P) = cos(k,'D —P),

and occurs for all values of p (all beams l, m}
whenever

k,'D=Nm, N=integer.

(27)

(28)

Substituting the definition for k,' from Etl. (2) in«
the above, we can solve for the primary-beam
voltage V, corresponding to 6-fold rotational sym-
metry,

V, = 150[X/2D(l+ cos8)]2 —10. (29a)

VG = 1.081N —10 I (29b)

which will be compared with experimental data
in Sec. IV.

The G(l, m) function was not computed from first
principles, since F(r) is unknawn at this stage.
Rather a simplified form of G(f, m) was selected
which fits the data presented in Sec. IV. Since
the term G(l, m) is 6-fold symmetric, it will
merely increase the line intensity connecting the
primary spots in the LEED patterns. We have
chosen a functional form

It is important to emphasize that the above sym-
metry arguments are completely independent of the
values af y or G(f, m}. The average value af 8 be-
tween the maximum 45 and minimum 10' used in
collecting the data is 8 = 27.5'. Using cos~=0.887,
and D = 3.12 A in the above, we have

where G(l~ m }= C+ E)+ f~+ f g~~, (30}
D+k'T~, p (23)

For analysis of 3-fold rotational symmetry re-
versals, it is more convenient to write T(l, m; y, V)
in phasor form,

T(l, m, y, V) = 1+y exp(ik~~D) exp(iP+ &), (24)

where P and & are real functions of l and m. It
also follows that in a 3-fold rotational symmetry

w here C is a constant and the other terms are
given by

1 for x, a multiple of 7
~x=

0 otherwise,
(31)

with x= l, m or l+m. Therefore, for a fractional-
order LEED beam on any coordinate line (l, 0),
(0, m), or (I, -m) we have G'(line) = (C+ 1)', while
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for the fractional order beams off a coordinate
line, G'(no line) =C'. Thus, the ratio of intensities
of coordinate lines in the LEED.pattern to the rest
of the LEED pattern is determined by the para-
meter C. We chose C=3 for the comparison of
computation and experiment given in Sec. IV. It
should be stressed again that G(l, m) is indepen-
dent of V; it contributes nothing significant to the
3-fold intricacies af the LEED pattern. This im-
plies that F(r) is not a critical function for the
comparison of computation and experiment in ac-
counting for LEED pattern rotational symmetry
variations. However, a specific selection of F(r)
will determine the distribution of intensity among
the fractional-order beams. For example, in
the limit F =0 (i.e., a perfectly unrippled layer)
all fractional order beam intensities vanish, as
seen, for example, from Eq. (V).

IV. COMPARISON OF LEED THEORY AND EXPERIMENT

Ig. this section we review how the experimental
data was obtained, shen@ and tabulate the data,
describe how the theoretical Eq. (21) was analyzed
by computer to display computed fractional-order
LEED patterns, and finaQy compare computed
and experimental data in some detail.

The LEED patterns were obtained from a four-
grid Varian 120 display-type LEED-AES (Auger
electron spectroscopy) system with a rotatable,
temperature controlled sample manipulator. The
half angle of the LEED optics was 40 . The sup-
pressor grid of the LEED optics filtered out the
inelastically scattered electrons that suffered an
energy loss greater than about 10 V. The LEED
intensities were recorded photographically at
room temperature at a base pressure of 5 & 10 '
Torr (6.8 x10~ Pa). The silicon sample was a
(111)oriented single crystal (n type, n =10"cm~)
whose surface was prepared by chemical polish-
ing. The surface was ordered in the vacuum sys-
tem by resistive heating using tantalum tape elec-
trodes. The crystal dimensions were: area—

(o)
. . ""

4I
'

I.+I i5

*

~ ~ ~

0 ~ ~

~ ~ ~ ' ~ OO ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I(
~ ~ ~ o+OOOe ~ ~ ~ ~ Oo ~ ~ ~ ~ oO~

~ ~ ~ OOa ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 1

~ ~ ~ ~ ~ ~
~ ~ ~ ~

~ ~
~ ~

1.2V x 0.64 cm; thickness —0.16 cm. The (V xV)
reconstruction pattern was obtained directly by
heating the sample to 1200 'e (measured with an
optical pyrometer) for about 15 sec, switching
off the heater current and allowing the sample to
cool to room temperature. AES was used to de-
termine the cleanliness of the surface. Measure-
ments with an axiaQy integral gun 3 kV cylindxical
mirror analyzer revealed ozQy- silicon structure
in the AES spectrum.

The LEED patterns were recorded photographic-
aQy from the display screen on 35 mm Kodak
Tri-X (ASA 400) film. Photographs were recorded
at 5-V intervals and no photographic run took long-
er than one-b~&& hour. After that time interval,
an AES spectrum was again taken to check sur-
face cleanliness. No contaminant from the res-
idual gases in the vacuum chamber were observed
after this half-hour interval. Nevertheless, after
each photographic run the sample was reannealed
as described above. Typical primary-electron
beam currents for recording the LEED patterns
were in the low microamp range. Precautions
were taken to shield out stray magnetic fields
which might distort the. LEED pattern symmetry.

Examples of LEED patterns observed experi-
mentally and computed theoretically are shown

in Figs. 5-9 for primary-beam voltages V in 5-V
intervals over the range 105-125 V. Panel. (a) of

FIG. 6. "Star" LEED pattern at 110 V; (a) experimental,
(b) theoretical.
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FIG. 5. "Thin propeller" LEED pattern at 105 V;
(a) experimental~ (b) theoretical.

FIG. 7. Modified "star" LEEP pattern at 115 V; (a)
experimental, (b) theoretical.
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Fig. 5 is an experimental LEED pattern (negat1ve
print for clarity) at 105 V and panel (b) is the
corresponding computed LEED pattern at the same
experimentally determined voltage (105 V) of the
electrons in vacuum. R is worth repeating here
that a 10-V constant inner potential has already
been included in the theoretical analysis, starting
w1tl1 Eg. (2). ThRt is, th8 scRtt81 lllg voltRge 1llside
the crystal has been taken. as 115 V in the example
of Fig. 5. Similar comparisons of.experiment
and computation are given in Figs. 6-9. These
experimentaL and computed LEED patterns shiv
a striking progression of rotational symmetxy
from a "thin propeHer" at 105 7„to a "star" at
110 7, to a "modified star" at 115 7, to a "Bal-
lantine three ring" at 120 V, to a "modified triple
ring" at 125 V. The 3-fold rotational symmetries
a,t 105 and 125 V are clearly reversed.

All computed LKED patterns were generated
with the following inputs. Eguation (21) was solved

by computer. The parameter y was given the val-
ue y= -0.1 throllgh best fl't (sublective) to 'the dRtR

although fail ly good fits %'ere also obtalmllme

using y=+0.1. The parameter C in Eg. (30}was.
given the value 3 in order to give a good ratio of
spot llltensitles Rlong the symmetry lines (l, 0),
(0, m), compared to the other spot intensities.

E is vrorth repeating here that the intensities of
the computed integral-Ordw'beams are not tobe com-

FIG. 10. Plot showing symmetry reversal as a 5xnc-
tlon of voltage. The symxn8txy xatio R(V ) ls calculated
from Eq. (32), and is an ob]ective measure of the sym-
metry in the LEED pattern. Patterns with voltages at
8= 1 are six-fold symmetric; those with R & 1 and 8 & 1
have (+} and (-) pattern symmetries, respectively. The
squax'es are experimental; the dash8d curve is th80-
retical.

pared with corresponding experimental beams
since most contributions to the intensities of these
beams have been excluded by symmetry in Eq. ('f}.

The computed pattern intensities %'ere normal-
ized according to the. foBoeing rute. After the in-
tensities mere computed for all beams according
to Etl. (21), the fractional-order beams with max-
imum and minimum intensitie8 %'ere found by a
search routine. The intensities were normalized
by setting the minimum intensity at zero and the
maximum intensity at unity. A graphic display
was generated which prints out a hexagonal "spot"
of the proper size to scale with the intensity of the
beam. The computed LEED patterns of Figs.
5(b)-9(b) were obtained from this display.

An experimental determination of the rotational
symmetry reversals was obtained from the fol-
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FIG. 9. Modified "Ballantine three ring" LEED pat-
tern at-125 V. (a) experiinental. Q) theoretical.

FIG. 11. Typical very low voltage (40 V) LEED pat-
terns, showing nearly 6-fold symmetxy and voltage de-
pendence in the experimental pattern (a) but got in the
theoretical pattex n (b). Because the electron mean-free
path is very small, only one graphitelike layex primar-
ily contributes to the scattering.
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FIG. 12. Same as in Fig. 11, with V=45 V.
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FIG. 14. Same as in Fig. X2, except V=185 V.
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FIG. 13. Typical very-high-voltage I.ERD pattern.
Notice the disk of low-spot intensity. Because the
mean free path is large, perhaps three graphitelike
layers contribute to the. scattering pattern, whidh can-
not be accounted for with only two. graphitelike layers
in the model. V=180 V. (a) experimental. {b) their. eti-
cal.

lowiag objective procedui e., A symmetry ratio
funetien X(F) was circulated at each veltage ac-
cenkb~ to th@ fckl6eiig formula

P' f(I, O, V) -g'l(-i, o, V)
R(V)= I - ' ' . (32)

'f(l, 0, V)+pi(-1, 0, V)

The sums are over all fracfionsl-order beams
(indicated by yrimes) in the line from near the
center to the edge of the pattern. This ratio is
plotted as sqiasres in Pig. 10 sh h. functioa Of

primary energy over the r~4. 20-2()0 V. It
seems that 2t(F) has a nearly sinusoidal variation,
with a period of -50-V near 100 V.

A periodic viAation is exyected according to
the syinmetry x eversal arguments described
earlier indeed by dtfferentlating the theoretical
Eq. (29b) the symmetry reversal occurs at dV, /dN

.=2.1%X, which:near V, =100 V becomes a 22-V
ixkervILl. This is the same as the experimental in-
tervtL'I, M, that Mage. For a more complete test
between eompatltioa and experiment, the lt(V)
function ln EQ, (32) was computed beam by beam
using Eq. (21). As before, the integral-order

beams were ignored. The It(V) function computed
this vraj is shmvn in Fig. 10 by the dashed curve.
It also shows a nearly siixusoidal variation as ex-
pected from the experiraentsl data aalu anticipated
from the. theoreticIIl symmetry reversal argument
above. Agreement is good in the range of -50-130
V.

For silicon, the mean free path 6f electrons in
the lattice is =O.Vv V A, provided V & 10 V. Thus,
at 40 V or less the mean-free path is much smal-
ler than that at 100 V. As a consequence, me ex-
pect. that at 20-40 V the beam penetx ates primarily
only one of the grayhitelike layers described above
in Sec. II. Thus, for these low-primary energies,
the LEED pattern intensities should be nearly 6-
fold symmetric, energy independent, and should
not agree with theory based on two graphitelike
layers. These predictions are in agreement with
expeximental data, as seen in the typical LEED
patterns of Figs. 11(a), taken at 40 V, and 12(a),
taken at 45 V. As expected from the above argu-
ment, the computed patterns in Figs. 11(b) and

12(b) do not agree with the data in this low-voltage
range. Oa the other hand, for voltages higher
than 150 V, the primary beam could penetrate
perhaps three graphitelike douMe layers, inst', cad
of the two assumed in Eg. (20). As a result, the

patterns for V & 150 V should shower new effects
due to interferences between three graphitelike
layers. This is observed. experimentally. At 180
V, a light disk is present in the central section
of the LEED pattern as shown in Fig. 13(a). At
«85' V this light disk expands some~hat as Sh0%ll
in Fig. 14(a). The light disk pattern does not
agree with theory in Figs. 13(b) and 14(b); in fact,
the light disk is not obtainable from Eq. (21), given
any combination of y or C.

V. DISCUSSION

%hile other rpodels' "have been proposed for
the 7 x 7 pattern on Si(ill), none have incoryor-
ated the symmetries and energy- dependences ob-
tainable fram the experimental X.RED patterns.
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It is the thrust in this work to first examine the
energy dependence and rotational symmetry be-
havior of the experimental fractional-order LEED
patterns, and then to use thi. s information to elim-
inate many possible atomic surface structure mod-

els. In this manner, the models of Lander and

Morrison, ' and Phillips" comprising 13 Si-
atom vacancies in the topmost layer unit cell are
xuled out. The model of Harrison' involving 13
Si adatoms instead of vacancies arranged in the
same manner also is similarly ruled out. Hane-
man's model' involves rumpled 2 x 1 layers with

raised (R) and lowered (L) atoms which are ar-
ranged with stacking faults in a 7-fold fashion such
as (LRLRLRL ~LRLRLRL ~, etc It w. as not specu-
lated why these peculiar sequences occur, or how

the 2 && 1 rumpled layers intersect in three direc-
tions. Nevertheless, it is the only one of the above

models which conceivably could yield some energy
dependence in a one-dimensional version of the
LEED pattern, although it is far too weak to
account for the 5-V variations observed in the

data.
It is also evident in all the existing defect mod-

els' "that a subpexiod of two-atom units is pre-
ferred over others, except for the seven-atom period
constituting the superlattice. Thus, a LEED pat-
tern derived from a model with this preferred 2-
fold subperiod might have extra fractional-order
beams comprising a 2& 2 reconstruction. These
extra half-integral order beams are not observed
in the voltage range from 20 V to at least 235 V.

The periodic stress relaxation ripple model sug-

gested here incorporates scattering from 196 per-
turbed atoms and accounts for the observed 5-V
primary energy variations in the fractional order-
LEED patterns, for the periodic rotational symme-

try reversals, as seen in Fig. 10, and for certain
details in the LEED patterns, as seen in Figs.
5-9. The model generates no additional (e.g. ,
2-fold) subperiods; only the pure 7-fold subperiod
evident in the experimental data.

Finally, the symmetry arguments described
above are very general and are not dependent on

the selection of values for the fitting parameters
y and C, which are chosen merely for best fits to
the LEED pattern details. At extremely low and

high voltages new effects appear, as expected, in

the LEED patterns. These are caused by the
variation of the electron mean free path with pri-
mary energy and associated change in the number

of lattice layers participating in the scattering.
The stress relaxation ripple model has a driving

force which in our model originates from the
change of bond hybridization from pure sP to more
sP'-like in the surface region. These bond chang-
es have already been shown by Appelbaum and

Hamann to account for the observed surface states
spectra on the Si(111)7 & 'l surface, although their
calculation was done for Si(111) 1 x 1. They in-
ferred' that "very small energies and atomic dis-
placements separate these two structures. " Our

ripple model with its vanishingly small perturba-
tion amplitude is therefore consistent with the
concepts advanced for this surface by Appelbaum

and Hamann.
Overatemperaturerangeof 80 Cnear800 Cthe

Si(111)7 x 7 pattern gradually changes to S. Si(111)
1x 1 pattern. ' This implies that the perturbation
amplitudes y, and y, gradually decrease to zero in
this temperature range. The temperature depen-
dence of y, and y, can perhaps be accounted for by
a differential thermal expansion of the rippled and

undistorted portions of the lattice.
Adsorbates which preserve the Si(111) I x 7 pat-

tern include'0 H and" Ga an adsorbate which de
stroys the pattern at 0.04-monolayer coverage is

It is not clear how to unambiguously relate
this adsorbate information to the proposed model.

The ripple deformation may have implications
for other systems of interest. These include peri-
odic deformations at the Si-SiO, interface, and

large periodic deformation on the surface of cer-
tain Ill-V crystals such as GaAs(100) and Ge(111)
which have an Sx 2 structure. The periodic ripple
deformation may also be the progenitor of disloca-
tions in epitaxial growth.

The periodic surface excitation models cited from
from the theoretical literature also predict ripple
distortions that generate expanded periodicities in

the surface plane. As mentioned in Sec. I, it is
not clear at this writing whether the stress-relax-
ation model or the surface-relaxation models are
more realistic, nor is it clear that th|„yare unre-
lated. Neither approach apparently predicts the
7 && 'l periodicity from first principles, while both

appear to accommodate this periodicity. Also,
both models predict a surface-phase transition
over a narrow temperature range (not quantita-
tively indicated) over which the fractional order-
LEED pattern (i.e., the superlattice) should dis-
appear. The apparent success of the contracted
double layer (graphitic) approximation in repro-
ducing the rotational symmetries of the fractional-
order LEED patterns appears to argue in favor of
the stress-relaxation model. However, further ex-
perimental and theoretical investigation is re-
quired to clarify the physical origin and the de-
tailed atomic structure of this surface.
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