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Quantum statistical theory of semiconductor junctions in thermal equilibrium

Oldwig von Roos
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91103

(Received 13 July 1977)

By means of a quantum-mechanical phase-space distribution function and its corresponding Boltzmann

equation, the free-carrier and electric-field distributions of one-dimensional semiconductor junctions (n-p, p-

p +, etc.) are evaluated. It is shown that quantum and exchange corrections, which have been neglected in

the past, play an important role in the determination of the built-in electric field within the transition region,

the region in which the doping concentration changes rapidly (from n-type to p-type material for instance).

This is particularly true in cases of high doping concentrations, i.e., when carrier densities become

degenerate. Exact expressions will be given for the maximum built-in electric field in case of abrupt

junctions. It is also shown that the exchange effect induces a slight change in the position of the band edges

which persists through the homogeneous (neutral) part of the junction far away from the transition region. A

numerical example is given and the quantitative differences between heavily doped (degenerate) and

nondegenerate (classical) junction characteristics (maximum electric field, built-in voltage and carrier

concentration within the transition region) are determined. The theory is briefly generalized to encompass

high-low junctions.

I. INTRODUCTION

Before going into the details of the theory let us
delineate the model of the semiconductor junction
which will be analyzed in the main body of this

paper. Later, generalizations will be made at

appropriate points.
From the outset we are considering an abrupt

one-dimensional n-p junction in thermal equilibri-
um. The junction is located at x =0. The uniform-

ly doped n-type material extends into the half-
space x &0, whereas the uniformly doped p-type
material extends into the half-space x &0. The n-
type material is so heavily doped that degenerate
statistics for the electrons apply. By necessity
then the hole concentration or minority carrier-
number density is nondegenerate in the n material. '
We must emphasize that current mechanisms which

may be due to a varity of causes (majority-carrier
tunneling, minority-carrier diffusion, and other
mechanisms) need not concern us since we are
dealing with thermal equilibrium throughout. Also,
the assumption of a uniform impurity number den-

sity precludes the incorporation of the effect of
band-gap tailing, ' an effect which is due to spatial
fluctuations in the impurity density and affects
both the electron and hole band edges and is not

particularly dependent on the average impurity
density although spatial fluctuations tend to be
larger the larger the average impurity concentra-
tions are. We shall, however, see that a slight
rise of the conduction-band edge occurs which is
exclusively due to degeneracy. Furthermore, we

consider the semiconductor crystal to be ideal,
while grain boundaries and other faults are ig-
nored. The mechanism of trapping is severely

affected by these faults, but fortunately trapping
plays no role in considerations of thermal equi-
librium. In the language of transport theory the

collision integral is absent in thermal equilibrium.
In a by now-classical paper' Slater has given a

survey of the Thomas-Fermi approach adapted to
the electron-hole distribution in semiconductors.
Not many authors' have used this approach for a
determination of n-p junction characteristics iri

spite of the large literature devoted to semicon-
ductor-device theory. The reason for this is the
fact that there exists an excellent, approximate
and therefore mach simpler theory than the self-
consistent-field theory of Thomas-Fermi. This
is the theory developed by Shockley' which contains
as ce'ntral part the assumption of a "depletion lay-
er." The depletion-layer assumption is dealt with

in all textbooks which expatiate on semiconductor
junction theory. ' Under this assumption an n-p
junction is visualized as consisting of three parts.
T'he n part, the depletion layer between n- and p-
type material in which the free-carrier concen-
tration is assumed to be negligibly small, and the

p part. Both n and p parts are assumed to be elec-
trically neutral and contain no electric field wheth-

er or not an external voltage is applied across the

junction. The depletion layer itself is endowed

with a certain width which may be determined by
the requirement of overall space-charge neutrality
and the magnitude of the donor and acceptor con-
centrations on either side of the depletion layer.
In reality of course the free-carrier number den-

sity is a continuous function of the distance from
the junction and does not change abruptly to zero.
As the dopant concentration increases and the car-
rier concentration becomes more and more de-
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generate the depletion-layer assumption becomes
more and more questionable even under conditions
of thermal equilibrium. It is of course true that
in a situation far off equilibrium, under conditions
of high-level injection, the depletion-layer approxi-
mation breaks down completely whether or not the
carrier concentration is degenerate. ' We will
therefore refrain from making any approximations
in addition to the Thomas-Fermi self-consistent-
fieM approximation and consider the junction or
transition layer a region in which carrier concen-
trations change continuously, albeit rapidly.

If the doping levels stay moderately high a clas-
sical Maxwell-Boltzmann velocity distribution for
free carriers can be assumed. But as the doping
level increases and the impurity density becomes
larger and larger, quantum-mechanical effects
become more and more important.

These effects can be classified as due to the Pauli
principle (exclusion principle) and the Heisenberg
principle (uncertainty principle). The former will
give rise to the necessity of introducing Fermi-
Dirac statistics and exchange effects mediated via
Coulomb forces. The latter will give rise to dif-
fraction or inhomogeneity effects of the wave pack-
ets constituting the free carriers.

Incorporation of these effects into an analysis
of highly doped junctions makes the use of a quan-
tum-mechanical formalism mandatory. Since the
effects to be described are largely statistical in
nature, it is advantageous to employ a quantum-
mechanical analog to the classical Boltzmann equa-
tion rather than Schrodinger's equation.

In Sec. II then, the quantum-mechanical Boltz-
mann equation as it applies to semiconductors will
be displayed and connection with previous work
will be established. In Sec. IO the theory of an n-p
junction will be derived with the tool provided for
in Sec. II and in Sec. IV some of the implications
will be worked gut with the aid of a numerical ex-
ample. Also generalizations to other junction con-
figurations (high-low junctions for instance) will be
given. To conclude this introduction a final re-
mark is in order: as the dopant concentration in-
creases and the semiconductor becomes degenerate
bvo effects will play a progressively more impor-
tant role. One effect is the previously mentioned
band-gap tailing due to spatial fluctuations of dopant
concentrations. As long as we are dealing with
thermal-equilibrium conditions this effect is unim-
portant since it changes only the density of states
near the band edge insignificantly changing the
electrostatic-potential distribution. The effect is
however important under nonequilibrium conditions
(enhanced tunneling in Esaki diodes, etc.). An-
other effect is the broadening of donor (or acceptor)
levels. ' But as long as the overlap of wave func-

tions corresponding to this broadening is confined
to only a few impurity centers (=10 say), electrons
residing there can hardly be called free. ' Hence-
forth we neglect these effects.

II. PRELIMINARIES

Some time ago the author developed a quantum-
mechanical Boltzmann equation" which proved to
be particularly simple in dealing with exchange ef-
fects." Although the reader is referred to these
papers for details, we give here those properties
of the distribution function which are subsequently
utilized in the development of the junction theory.

For a one-electron system define

F(r, k) =(2v) ' 'pm„g„(r)c„*(k)e '"' .

Iexp(-iV-, ~ V~) —1] V(r)F(r, k)

(V-, V„-)"V(r) F(r, k), (3)
n=&

with the understanding that the gradient V-, only
operates on V(r). Remember that k = (m/k) v we
see that in the limit 5 = 0: Eq. (2) goes over into
the classical Liouville equation

+ v V- F = —V-V(r) ~ V F(r v).
Bt m v

Some other important properties of I are

(4)

F(r, k) d'k =N(r), (5)

or the integration over k (or velocity) space gives
the number density of electrons. But since I as
defined by Eq. (1) is in general complex it is not
an observable, although observable quantities may
be extracted from it quite similar to the way it is
done with classical statistical distribution func-
tions. An example was already provided by Eq.
(5). Another example is the mean kinetic energy
It is simply given by

Here k =(m/k) v is the wave vector, g„ is a com-
plete orthonormal set of wave functions, c„*is their
complex-conjugate Fourier transforms, and w„are
the statistical weights (probability of occupancy of
state n). The equation satisfied by expression (1)
is

(
h . h—+ —k v--i g' p'

at m ' 2m

z=
&

[exp( iV , ~ -V-„)-—1] V(r)F .
where V'is the potential energy acting on the elec-
tron and the operator on the right-hand side of Eq.
(2) is defined by
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E„;„= k'F(r, k)d'kd'r .

Sometimes one should realize that F is not an ob-
servable. This circumstance is for instance re-
flected in the fact that the mass current density
(flux) of electrons is given by

j=hRe kF r, k 4'k (7)

rather than by the integral itself (Re means real
part).

In order 4o proceed, and introduce the spirit of
the Thomas-Fermi self-consistent approach, Eq.
(2) has to be augmented by the Coulomb interaction
and exchange terms mediated by the Coulomb
forces. In short, the many body counterpart of
Eq. (2) has to be invoked. But this has been done

by Levine and this author many years ago." There,

the many. electron formalism" was applied to the
electron cloud of an atom or ion." It is conceptual-
ly very easy to apply the theory developed in Ref.
12 to semiconductor junctions with due regard to
necessary modifications imposed by the fact that
the free carriers consist of electrons and holes
rather than electrons alone, the electron and hole
masses are effective masses determined by the
curvature of the bottom (top) of the conduction
(valence) bands and that finally the electrostatic
forces between the charged particles are effec-
tively weakened by the static. dielectric constant &.

A further simplification arises from the assumed
one dimensionality of the junction considered. If
U(x) defines the potential energy normalized to
zero atx =-~ (deep inside the n-type material),
the Boltzmann equation for the one particle dis-
tribution function for electrons F, (x, v) may be
written

(
s 1 s,U e - N s' 1 " ih "s"+'U 2 s"+'f
Sx m~ Bx Bv m~ Bx m~ () m Bx (TT +2)! 91/

' 2A+, d' l exp(il ~ v)f, (x, 1)
2ftl

1;, Vr ~ ) ,v —,e' '(v-v'( 'F)'+ ( v'),m
(8)

The last term on the right-hand side of Eq. (8) is due to exchange. " & is the static dielectric constant of

the medium. The vector r in the arguments of F, is r—= (x, 0, 0) and the ) ector v is defined as v—= (v, v, , v,).
There are of course no exchange terms arising from electron-hole interactions since electrons and holes
are distinguishable. " The quantity f, defined by

f, = f d' eee(-r'I ~ v)F(r, v),
is the Fourier transform of F, An equatio. n completely analogous to Eq. (8) can be written for holes al-
most immediately. %e merely have to replace the effective electron mass m, by the effective hole mass

m„, the electrostatic energy U by -U and finally the electron distribution function F, by the corresponding
hole distribution function F„." In other words

s 1 BU s - ih s' 1 " ih "s""U 2 s"+'
V + n+2 F) (xe v)

sx m„sx s " ' m„sx' m„„, m„sx"" (n+2)! sv""

+ 2, d' l exp(i 1 ~ v)f„(x,1)
2&1h

1 - A 1 3 2- AF r+ 1 v — d~v~v-v'~ F r+ 1 v' . (10)m„' 2)T' " m„

The system of equations (8) and (10) is closed by
the self-consistent requirement (Poisson's equa-
tion)

d'v[F„(x, v) -F,(x, v)]
d U 4we

E

+)v (*) ))„(e)). —
Nv =ND, (x) [1+pal exp(e~ —ev)] ' (12a)

N~ and N„are the effective donor and acceptor
number densities, i.e., the number density of
positively charged donor s and negatively charged
acceptors, respectively, and e is the dielectric
constant of' the medium. For the case of monoval-
ent donors and acceptors we have
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N„=N„,(x) [I+P„'exp(e„—e~)] '. (12b)

Here PD and P„are the spin degeneracies of the
donor and acceptor ground states, respectively. "
cD E'g and Q~ are the energies of the donor, ac-
ceptor, and Fermi levels in units of kT, respec-
tively. ND, and N„, represent the total donor and

acceptor densities which are allowed to be functions
of x, the distance from the junction. In our model,
introduced in Sec. I,

N =0 for x&0,

N„=O for x&0.

Equation (12} must not be taken too seriously since
in any realistic case several monovalent as well as
multivalent impurities may be present. Also com-
pensating acceptor levels in the n-type material as
well as compensating donor levels in the p-type
material may not be overlooked. ND(x) and N„(x)
are considered to be known functions of x given by
the type of semiconductor material under consider-
ation.

Equations (8), (10), and (11) constiture the start-
ing point of the junction theory to be developed in

Sec. III. Before entering into that development an
additional remark is in order. Both Eqs. (8) and

(10) do not contain any exchange contributions aris-
ing from bound-free interactions between free elec-
trons and electrons residing on acceptor sites for
instance. But these contributions are negligible
since the overlap of the plane waves associated
with free electrons (or holes) with the bound (local-
ized) electrons (or holes) is in fact very small.

sities and are likely to become progressively
smaller as the order of expansion is increased.
An excellent approximation for the distribution
function in zeroth order is already given by,"
assuming local equilibrium,

3

4g' 2kT

U(x) —E~
kT (16)

q =q (x) = (E —U)/kT = e —u (x},

ec =Eo/kT

(18a}

(18b)

for the number density of electrons and holes,

N, = M'vE„(x, v) =N, S»,(q) (19a)

In analogy, the solution of Eq. (15) is taken to be

I 3

4~' e 2kT

E, -U(x)+E
kT

&~ is the energy of the band gap. As stated
earlier the potential energy U is normalized to
zero at x =-~. This signifies that all energies
are measured from the bottom of the conduction
band in the uniform n-type material far away from
the junction. It also means that the conduction band
edge moves up or down depending on the functional
dependence of U(x), the Fermi level and the band

gap being constant throughout the junction as they
must in thermal equilibrium. Adopting largely the
terminology of Blakemore" we have with

III. DEVELOPMENT OF THE THEORY

g0 j. 2 (14)

~~

V +
B & BU B F„,(x, v) =0.

BX fRh BX BV
(15)

We shall keep only terms to order k' [in Eq. (14)]
because we know that quantum and exchange cor-
rections are only contributing at fairly high den-

Equations (8), (10), and (11) are formidable
equations which can only be solved by approxi-
mations. Since for nondegenex'ate semiconductors
quantum effects will be negligible and with increas-
ing doping levels these effects become more and

more important, we propose to solve Eq. (8) by an

expansion in@ so that for gg =0 classical results
prevail. Faithful to our introductory remarks that
we only consider degenerate electron concentra-
tions (for the n-type material x&0) of the junction
we may write

and

N„= d'VFhOX&v =Nv +&/2 ~ G (19b)

respectively. The Fermi-Dirac integrals are de-
fined by Blakemore. " N, and N, are the well-
known effective density of states. " For the con-
venience of the reader we give here two proper-
ties of the Fermi-Dirac integrals which will be
needed later. They are

S,. (q) = exp(q) for q --~ (classical limit), (A)

as, (q) = s, ,(q) .
dg

For more details the reader is referred to
Blakemore. " Before we turn to Eq (14) and a.de-
termination of the quantum corrections +y and
we would like to point out that the set of equations
(8), (10), and (11) has been reduced to a determin-
ation of only one function, i.e., U(x) or equivalent-
ly q(x), the conduction-band edge. " To proceed
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now, we have to solve ~. (8) with the help of Eq.
(14). Indicating the derivative with respect to x
by means of a prime, we have first from Eq. (18a)
the important relationship for the electric-field
vector E—= (E, O, O):

E = (k T-/e) )I' = U'. (20)

To find F, and E, as defined by Eq. (14), all one
has to do is to insert Eq. (14) into Eq. (8) and
equate like powers of I and solve the ensuing equa, —

tions for F, and F, keeping in mind Eq. (18}for
E„which obviously satisfies the equation

The fundamental equation for the electric field E
or for that matter the potential U follows now from
Eqs. (20) and (11). The latter may be written in
terms of g as follows:

4ge' —X„p~g2 -eg —'g

ex m, ex

The details of such a calculation have been given
in Ref. 12. With the definitions Xe = (e kT//8xe'N, )'~', (28a)

We now introduce two eharaeteristic lengths, the
Debye length

(f )
eo @ ))eO kT y= y2/2+0

we merely quote the result

F, = (i/2m-,') EvF,"&

and

(22)
and the "thexmal" de Broglie length

~,„=(k'/2m, kT)'~'.

The equation for g can now be written more con-
cisely

with

8 2 2 {4)
2re'

(1)
4 «+o — 3 So+.o ym PPl

(23b)

+ 3, [n"& 3g2(n}l'sn'

tll
[ ( )]2 A D (29)

go= de v —v Eox v (23c)

Equation (23b) is identical with Eq. (35) of Ref. 12
if the angular velocity of the Fermi gas considered
there is set equal to zero.

From Eq. (11) it is clear that we need to evalu-
ate the integx'als of the distribution functions over
velocity space. Using the fact that

(f1}
Bg g gO (24)

which follows from definition (22), and using Eq.
(19a), it is not difficult to discover that (the term
F, does not contribute)

e'O'E'
( ). . .,( )+'''

(25)
where the dots represent the exchange term which
can easily be evaluated using the definition (22)
rather than (24) and is given by

The third term on the right-hand side of Eq. (29)
is due to quantum-mechanical diffraction effects
(sometimes called inhomogeneity correction} and

the fourth term is due to exchange mediated by the
electron-electron interaction. The differential
equation (29) possesses a unique solution for q if
appropriate boundary conditions ax e imposed. Far
away from the junction or transition layer charge
neutrality prevails. For any junction this means
that for x=-~ (deep inside the n-type material we

must have with g(-~) =)I:

&.P,g.(n-)+ ( &.I&-.g*('a-)I =((' (- ) ~

(30a)

In Eq. (30a) hole and acceptor contributions have

been neglected. Also the electric field vanishes
[)i'=0 according to Eq. (20)]. For x=+~ (deep in-
side the p-type material), setting )I (+~) =)I„ne-
glecting electron as well as donor contributions,
and using the fact that the hole distribution is non-

degenerate, we have

N, exp(-ee -)7,) =N„(+~) ~

[7re'k'/m, (kT)'e]N', [8:,/, ()i)]'. (28)
Both N ( ~) and N„(+~) are given quantities.

With both N and N as given functions of x Eq
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(29) together with the boundary conditions (30}p»-
vide for a unique solution of g and therefore, the
electric field and the carrier concentrations
throughout the junction. Unfort:unately, Eq. (29)
cannot be integrated analyticaQy. However if N„
—ND is constant or a simple function of g over a
wide range of x, a first integral of Eq. (29) can
readily be found. In the following we shall assume
an abrupt n-p junction. . Looking back to Eqs. (12)
and noting that the hole concentration is nondegen-
erate, so that ~„-e~& 1, we have

N» for x&0,
N

0 for x&0,
(31)

where N„, is constant. However for the n side of
the junction x&0 we must be careful. Since the
electron concentration may be degenerate, e~ -e D

may even be greater than one. The energy levels
of the donors ED follow the conduction band edge. "
In other words

e~-e~= (E„-U+ U-ED)/kT=n —eD,

with a constant eD. %e therefore have for the
donor number density

0 for x)0,
ND=

N»[1+ pDexp(n —eD)]
' for x&0,

(32)

with constant NDp.
It is now easy to integrate Eq. (29) by standard

methods. For x &0 (p-type material)

n"=~.' r./. (n)+ " ~./. (-n-~. )
Nc

+-'~ h(n')'6: ./. (n)

2
(h

p ( )
Ao (34)

4 AD
'+

N N

Here P(n) is defined by

P. is given by

P (n) = [r,/, (u)]'du, (38)

N(: +3/2(n ) N)) +3/2( n ee) '

The solutions (34) and (37) for the two separate
sides of the junction must be joined together at
x=0. With the aid of Eq. (20) we may rewrite n
in terms of the electric field E and have

(39)

X

n=nl(x)=n — E(y)dy (x&o)
kT

(40a)

X

n n2(x) =n+-
kT E(y) dy (x& 0) . (40b)

Since g determines the carrier concentration and
the latter must be continuous at x= 0, we have

n, (0) =n, (o) =n. . (41a)

The electric field must also be continuous at x=0,
therefore

n((0) =n,'(0) =n|. (41b}

From Eqs. (40) and (41a) it now follows that the
built in voltage is simply given by

+ oo kT
E(y) dy = (n n, ), -

m ()o e
(42)

where, of course, g and g are determined from
Eqs. (30). Conditions (41) together with Eqs. (34)
and (37) give

and the integration constant C is again obtained
from the requirement of a vanishing electric'field
at x=-~ and is given by

C ' =N»(n —ln [1+P~ exp(n -e~)]]

(',(q)= J (() q, (N)]'du. (38)
( N~o + NDO ) n —NDO ln [1+ p~

exp�

(n() —e p) ]

The integration constant C, is determined by the
requirement that at x=+~ (for n =n, ) the electric
field vanishes, which signifies that g' =0 at x=+~
[see Eq. (20)]. It follows that

C+= [&gon++ N. &3/a-(n+) + N„6'3/2(-n+- &(:)]~

For x &0 (n-type material)

(36}

n"=x,' 6„,(n)+ " 0„,(-n-~, )
C

2
+ -'~lh(n')'6', /, (n)+

&

'"
y (n)

NDp C

N $n —ln [1+P~ exp(n —e,')]]+
N,

(37)

= C —C. + —„'" N, Jt [6: „,(u)]'du, (43)
D

a transcendental equation for the determination of
Once qp is known, gp' or equivalently the elec-

tric field at x= 0 can be determined via Eq. (34) or
(38). The electric field at x=0 is the maximum
electric field because E monotonically increases
in going to x= 0 from either side of the junction
and E' is discontinuous at x=0.

Unfortunately a second integration of Eqs. (34)
and (37) cannot be performed analytically even in
the completely nondegenerate case. %e therefore
confine ourselves to a determination of the maxi-
mum electric field and the carrier concentrations
at x=0 in Sec. IV.
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IV. DISCUSSION AND GENERALIZATIONS V, = (kT/e) 1n(N„JN„+), (51)

With the help of the equations derived in Sec. III,
we determine various quantities for nondegenerate
junctions. In this case quantum effects can safely
be neglected. This is formally achieved by putting

)(,„=0. Also 6:~()])=e" throughout. Equations (3)
then yield

)7 =]n(NDo/N, ),q, =ln(N„/N„, ) -eo, (44)

so that the built-in voltage is given by [from Eq.
(42)]

V~ = (kT/e) ln(ND, N„, /n,'), (45)

since n,'= N, N„exp(-e~). Furthermore, the elec-
tron number density at x= 0 is given by

n ~ Ap Dp Ap)
N~G=NDp

N NDo Ao

NDG —NAG

ND +NAG
(46}

This follows with a little algebra, from Eqs. (36),
(39), and (43}. The maximum electric field com-
putes now from Eq. (37), for instance, to be

E,„=E(0) = (SvkTNDJe)'~'

x (» —1 —ln»)' ' (statvolt/cm), (47)

where» =N, o/N))o. Equation (45) is we]], ](nown,

but Eqs. (46) and (47) are not. The depletion-layer
theory gives

a well-known expression. From Eq. (43) it follows

after some algebra that

N„o=N„(0) = exp 'N„o(N„JN„+)"&+ ( &o "&+) . (52)

The maximum electric field is given by

Em,„=(SvkTN„ge) ' '

x (» —1 —ln»)' ' (statvolt/cm),

where» is now given by» =N„,/N„, [N„, from Eq.
(52)]. There is no counterpart for Eq. (53) in the

depletion-layer theory for the simple reason that
a high-low junction does not possess a depletion
layer. With NA, =10"cm ' and all other pertinent
values unchanged it turns out that the maximum

electric field is E,„=5.46x10' (V/cm) for the P-
P' junction, a value pretty much the same as that

calculated for the n-p junction zvitk the assumption
of a depletion layer [E,„of Eq. (49)] and therefore
5(P/p larger than the value for the n-P junction as-
suming the validity of the Thomas-Fermi approach
of this paper.

We turn now to a discussion of degenerate n-P

junctions. As the dopant level of the n side of the

junction increases, quantum effects become more
and more important.

One of the boundary conditions [Eq. (30a)] now

reads

6:,~,(~ ) —, —,
'" [6:,&.(n )]'
D

E,„= (Sw kTN„Jc)' '[ln(N„o Nzz/n, ' }]' '. (48)

A quick comparison with typical values n; = 1.6
&&1Q' cm ', NA, =10"cm ', ND =10"cm ', e

=11.8, T =300 K (typical for Si) gives

,„=5.53)(10' V/cm, E,„=8.17)(10 (V/cm),

(49}

a difference by a factor of 1.5 between the two val-
ues. Since the built in voltage is the same in both

theories, the higher value of E,„signifies a nar-
rower transition region for the depletion-layer'
theory.

A nondegenerate abrupt high-low junction may be
treated in the same manner. A junction consisting
of P-.type materi@1 in which the side x &0 is more
heavily doped (acceptor concentration N„,) than

the other side (x &0) can be evaluated, using the

formalism developed in Sec. III, by merely replac-
ing Eq. (30a) by an equation analogous to Eq. (30b),
namely,

&(o) & &(o) &(1) & &(1)
g C & - E c (56)

or

(G) E(1) (1) (0)

(57}

~ [1+PDexp(~r-eD)] ', (54}
Nc

using Eq. (12a) and neglecting hole and acceptor
contributions because of their smallness. The sec-
ond term on the left-hand side of Eq. (54) is due to

exchange a,nd is missing in the customary treat-
ment. ' The significance of this term is the follow-

ing. Equation (54) is valid deep inside the n mate-
rial far away from the junction. If we call p' the

solution of Eq. (54) without the exchange term, or

F,~,())" ) = (N~N, ) [1+P)) exp()](') —e)))] ' (55)

and the solution for (7 of Eq. (54) )7('), then we

have

eN(x-p~ -()l ) = N„, , (50) E(o) E(z) —kT ((7(z) ))(o) ) & 0

and ignoring the electron concentration throughout.
The built in voltage V~ is now given by

In fact, assuming for the moment that g' -q"
is small, we have
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())(o) + &(x) ))(o))—
cP ())(o)) + ())(z) ))(o))0 ( (0))

Treating the exchange term as a perturbation in
this case, solving for g~' —q ', we obtain

uT5E = n(1} n(0} = ——th F q(0}

N„= N„F,&,( eo q-) =N„ex-'(p-e G )) ), - (60)

so that the minimum energy for an electron to jump
into a hole by emitting radiation is still kTeq. No
band-gap narrowing occurs. This is not surprising
since the band-gap narrowing is primarily due to a
broadening of the donor levels into a band which

TABLE I. Input parameters for the calculation of the
maximum electric field.

Input parameter Value

Ngp

%DO

N~

N„
kT
Pg)
CD

Eg

~th

10"cm '
Variable
2.8 x 10~~ cm 3

1.05 x 10"cm-'
0.0259 eV
2 (spin multiplicity)
1.7 (donor level)
43.24 (band gap)
11.8 (dielectric constant)
12.2 A (using free-electron mass)
5.5 A

x 1 — ~ 1+P exp q~'} -&~
N,

-1
xP~exp(q(o) -e)))6: ',g, (58)

which is usually negative. %e note an increase of
the conduction-band edge with inn'easing doping
level. The consequences are twofold. The built-in
voltage V, dec) eased as seen from Eq. (42),

~o = (&T/e)())(') 1,)+-(1/e)«, '1'(o" (59)
1

since 5E, is negative and g, is not changed from
its value of Eq. (30b) [the P side of the junction
(x & 0) being nondegenerate]. Another consequence
is that tunneling probabilities may be altered (Ref.
17, p. 159). But since this is a nonequilibrium ef-
fect we are not pursuing this aspect here any fur-
ther, in any case the inhomogeneity effect will
overshadow the exchange effect right at the edge of
the junction where tunneling occurs if the P side of
the junction is also degenerate. Although the posi-
tion of the conduction-band edge is raised relative
to its position for the nondegenerate case so is. the
position of the valence-band edge. This follows
from the fact that

TABLE II. Maximum electric field as a function of
donor concentration computed with and without quantum

corrections.

X~ (cm-')

E (V/cm)
E~ (V/cm) with quantum

classical corrections % difference

0.43 x 10~9

0.74
1.36
2.50
4.60
8.55

1.08 x 105

1.48
1.80
2.27
2.83
3.33

0.90 x10
1.33
1.65
2.12
2.66
3.13

16%
10%
8%
7%
6%
6%

eventually is incorporated into the conduction band
thus producing a ny. rrowing of the gap. As to the
magnitude of 5E„suffice it to say that for X~
= 10"cia ' in silicon at 300'K it turns out to be of
the order of 5 meV which is about an order of
magnitude smaller than the ionization energy of the
donors phosphorus or arsenic.

Prom the preceding pages it is easy to see how
the maximum electric field in the transition region
between n- and P-type material is computed.
From the given values of donor and acceptor con-
centrations, Eqs. (30) and (54), we compute the
quantities )) and )), . Then turning to Eqs. (36) and
(39) the integration constants C and C, are de-
termined. Once this is done, we turn to Eq. (43)
to obtain g„ the conduction-band edge at x = 0.
Finally ))0 is calculated via Eq. (34) or (37) and
from qo the value of g,„, the maximum electric
field is extracted through the definition (20). We
have performed such a calculation with the input
parameters for a model of a silicon n-p junction
listed in Table I. The result of the calculations is
listed in Table II. From Table II it is seen that the
maximum electric field is significantly smaller
when quantum corrections are taken into account.
The quantum corrections consist of two parts, the
inhomogeneity correction [the third term on the
right-hand side of Eq. (29)] and the exchange cor-
rection [the fourth term of the right-hand side of
Eq. (29)]. Both tend to increase as the dopant con-
centration is inerea, sed. But their effect on the
electric field is in opposite directions. The inho-
mogeneity contribution tends to increase the field,
whereas the exchange contribution tends to de-
crease the built-in electric field.

This decrease of the electric field is a manifesta-
tion of the Pauli principle, the electrons, being
screened from each other, occupy a larger volume
and lower their mutual interaction energy thus giv-
ing rise to a smaller potential energy difference
between n and p material [see Eq. (59)] and conse-
quently a lowering of the maximum'electric field.
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On the other hand, the larger the donor concen-
tration leaving the acceptor concentration un-
changed on the other side of the junction, the larg-
er the inhomogeneity across the junction and con-
sequently the larger the contribution of the inhomo-
geneity correction becomes compared to the ex-
change contribution and indeed, as the last column
shows the difference between the classical and
quantum-mechanical calculations becomes smaller
with an increasing donor concentration. But this
does not mean that ultimately quantum and classi-
cal calculations coalesce. It simply means that the
expansion (14) has been terminated too early, only
terms up to order h' having been considered here.
But going to higher orders in h is not warranted
since at higher built-in electrical fields the very
concept of an abrupt junction becomes questionable.
The core electronic wave function will spread
through the whole transition region and the simple
self-consistent Thomas-Fermi approximation, at
least in its present form, will break down. Also,
at the necessarily high dopant concentrations the
host lattice will be strained in such a manner that
the effective mass equations underlying this theory'
become invalid.

V. SUMMARY

On the preceding pages the Thomas-'Fermi self-
consistent approximation within the context of a
quantum-mechanical phase-space distribution func-
tion was applied to a semiconductor junction in
thermal equilibrium. Even in the simplest case of
a one-dimensional abrupt junction, the differential

equation for the determination of the free-carrier
number densities and the electric field as a func-
tion of x, the distance from the (discontinuous)
transition from n-type to p-type material, proved
not to be amenable to an analytic sojution whether
or not. the carrier concentration is degenerate.
However, the expressions for the maximum elec-
tric field induced by the polarization of the junction
have been shown to be simple enough to lie within

easy reach of a pocket calculator. The most im-
portant result of the analysis of Sec. IV is the fact
that as soon as degeneracy sets in (N~& 10" cm '
for silicon) quantum effects, although not all im-
portant, are by no means negligible (see Table II).
In tracing back the origin of these quantum effects
(inhomogeneity and exchange contributions), we

find the pivotal equation (27), Poisson's equation,
to contain these effects. But Poisson's equation
constitutes an integral part of all nonequilibrium
analyses. It is therefore obvious that quantum ef-
fects must be incorporated into any device analysis
which uses a high degree of sophistication. "

As already stated in Sec. I certain effects which

btecome important at very high dopant concentra-
tions have not been incorporated into the present
analysis. The theory does not take into account
donor-level broadening and the ensuing interaction
with the conduction band (band-gap narrowing and

ta.iling). It is therefore confined in its application
to donor number densities less than 10' cm ' (for
silicon). It is felt that this is no serious drawback
since in many applications (for instance solar
cells) doping concentrations of 10"cm ' are rarely
encountered.

*This paper presents the results of one phase of re-
search carried out at the Jet Propulsion Laboratory,
California Institute of Technology, under Contract No.
NAS 7-100, sponsored by NASA.
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