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The frequency-dependent conductivity of the quasi-two-dimensional electron gas of a semiconducting surface

inversion layer in the presence of a dc magnetic field is calculated. Both electron-electron and electron-

impurity scattering are included in the model. The conductivity is evaluated using the memory-function

technique. The line shape of the fundamental cyclotron resonance is studied for a variety of values of

frequency, transport relaxation time, and quasiparticle lifetime. The frequency-dependent shift in the

cyclotron mass obtained in the calculations is found to be quite small.

I. INTRODUCTION

The amplitude of the Shubnikov-de Haas oscilla-
tions in the conductivity of a surface inversion
layer is known to depend upon the quasiparticle
mass m*. The experimentally observed' depen-

dence of m* on the electron concentration has been
interpreted' as resulting from electron-electron
interactions. The agreement of the experimental
data with the mass enhancement calculated within

the framework of the dynamic random-phase ap-
proximation (RPA) is surprisingly good. As a
check on the validity of the theoretical interpreta-
tion several groups' decided independently to study

cyclotron resonance of the inversion-layer carr-
iers using far-infrared radiation. An elementary
argument shows that electron- electron interactions
cannot affect the position of the resonance for a
translationally invariant electron gas. Therefore,
only the bare band mass should appear in the ex-
pression for the electron cyclotron frequency.
Any concentration-dependent enhancement of the

mass determined in these experiments, where
electron- electron interaction effects are not ex-
pected to occur, would certainly cast doubt upon

the interpretation of the mass enhancement ob-
tained in the dc experiments (i.e. , from the tem-
perature dependence of the amplitude of the Shub-

niko v- de Haas oscillations) .
Far- inf rared cyclotron- resonance experiments

have been performed and repeated by a large num-

ber of investigators. "' The results have led to

a number of lively discussions since data from
different laboratories, or at least the interpreta-
tion of their data by different experimental groups,
do not always agree. A number of unexpected
results have been obtained. Among them are: (i)

the occurrence of relatively strong "harmonics"
of the fundamental cyclotron resonance at not

quite integral multiples of the fundamental reso-
nance', (ii) a concentration dependence of the
"harmonic" mass (obtained by equating the fre
quency of the l th harmonic to leB/m*c) quite simi-
lar to that observed in the dc experiments'; (iii)
an apparent dependence of the mass-associated
with the fundamental resonance on concentration
and on frequency'; and (iv) a strong dependence of

the fundamental mass on temperature. '
We have recently proposed a model, ' that is ca-

pable of explaining at least some of these observa-
tions. In this model both electron-electron and

electron-impurity interactions are included. A

similar model in which electron-electron inter-
actions are treated in an approximate way has
been studied by Ando. ' In the absence of a mag-
netic field the zero-temperature ac conductivity

has also been calculated by Tzoar et al." The
suggestion that electron-electron interaction ef-
fects in cyclotron resonance of inversion-layer
carriers could become apparent in the presence of
impurities was first suggested by Kennedy et al. ,~

on the basis of an apparent dependence of the cyclo-
tron mass on the value of uw„. Here ~ is the fre-
quency of the far-infrared radiation and T„ is the
transport lifetime. For very large coT„ the ob-
served cyclotron mass is close to the bare band

mass, but as ~7'„ is decreased the apparent cyclo-
tron mass appears to increase. In this paper we

present some numerical calculatioris based on the
model' which we propose d previously. We find

the line shape of the resonance is sensitive to the
single-particle lifetime T'. Because r is affected
not only by the electron-impurity interaction but
also by electron-electron scattering, we have not
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attempted to evaluate r from first principles.
What we have done is to choose 7 empirically by
fitting one of the cyclotron-resonance line shapes
at each concentration. Although the calculated
line shapes agree reasonably well with experiment,
our results for the cyclotron-mass shift are too
small to account for the measurements of Ref. 6.

In Sec. II we briefly describe the model. The
memory-function approach to the ac conductivity
in the presence of a magnetic field is given. The
expression for the cyclotron mass in terms of the
electron-impurity potential is derived. The total
Hamiltonian which describes the system is also
given there. In Sec. IG the definition of the single-
particle Green's function in the single-level ap-
proximation is given. The calculations of the
memory function and the approximations involved
are discussed in detail, and numerical results
are presented. Section IV contains a summary
and discussion of our results.

II. FORMULATION

In the presence of a dc magnetic field H=(O, O, H}
oriented normal to the surface, the power trans-
mitted through the surface inversion layer can be
expressed in terms of the frequency-dependent
conductivity o,(~) = v„vie„. The conductivity
itself can be written"

OO

(al 40 (d

where Q e(t} is the current-current correlation
function, N is the total number of carriers per unit
area with charge -e and the bare band mass m,
and e is the frequency of the far-infrared electric
field. Q ~(t) is of the form

Q (t) =-i8 (t) & [J.(t),J (o)]), (2)

where 8(t) stands for the unit-step function; 8(t) =0
if t(0, and 8(t}= I if t) 0. The current J is equal
to (-e/m)[P+(Ne/c)A(R)], where P is the momen-
turn of the center of mass of the electrons and
A(R) is the dc vector potential at the position of
the center of mass. The Hamiltonian H of the sys-
tem can be written

H=g —(p,.r —A(r,.) rI r(r,. —rr)

respectively. By using the fact that for a uniform
magnetic field the vector potential A(r,.) can be
written

(4)A(r, ) =A(r, —R) +A(R),

where R is the center-of-mass coordinate of the
electrons, we can rewrite the Hamiltonian in Eq.
(3) in the form

[P + (Ne/c)A(R}]'
2M R

+g eiit 5 [u(q)eiI (P-g )]
a. fe &

(5}

The first term on the right-hand side of Eq. (5) is
the kinetic energy of the center of mass. The cen-
ter of mass acts exactly like a particle with charge
-Ne and mass M =Nm in a uniform magnetic field.
H„ is the Hamiltonian describing the relative mo-
tion of electrons and includes electron-electron
interactions. The last term in Eq. (5) is the elec-
tron-impurity interaction which couples the in-
ternal coordinates r& = r& —R to the center-of-mass
coordinate R. In the absence of electron-impurity
scattering [u(q) =0], the center of mass and the
relative degrees of freedom are completely un-
coupled. A spatially uniform ac electric field
couples only to the center-of-mass coordinate, so
that Kohn's argument' about the absence of elec-
tron-electron interaction effects in cyclotron res-
onance is clearly valid.

We study the equation of motion Q ~(t),

id tQ.()(t) = 6(t) &[J.(t), Je(0)]&

+ 8(t) &[J.(t),J.(0)]) (6)

+i dte'"' -i 8 t) J„t,J„O
m CO

(7)

and

For a two-dimensional electron gas (i.e. , neglect-
ing all of the higher subbands of the surface po-
tential well}, the n and P appearing in Eq. (6) can
be either x or y. It is apparent Q„„=Q„and that
Q„,=- Q,„. Taking the Fourier transform with re-
spect to time gives

&Q (&) =&[J,(0),J„(0)])

'+g u(q) exp[iq (r~ —R,)]. (3)
~Q ((e) = &[J,(0),J,(0)]&

+i dte' '(- i)8(t) ([J„(t),Z„(0)]). (8)
In this equation p,. is the momentum of the ith elec-
tron, and V(r& —r&) describes the electron-electron
interaction. u(q) is the Fourier transform of the
electron-impurity potential, and R, and r,. are the
positions of the lth impurity and the jth electron,

Recall that

e e NeJ(0)=--v(0)=- —P+—A .
m m c

Thus,
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e ie8J (0) =- —(( (0) =——m" meX'

e ie 8 eM&,J (0) =-—w (0) =——— 'X.m" m&P m

(9)

(10)

In Appendix A, we show that I„,(0) =I,„(0)=0; there-
fore Eq. (20) implies

A„(t =0) =0, A (t=0) = —ig,„(0) .

The time derivative of J„is given by

i[J„H-]=- (u, J,+(e/m)U„, (12)

where U = SU/8It, and U is the last term in Eq.
(5), namely, the electron-impurity interaction

U=Q e( 'N[u(q)e". '~J 8('] . (13)

Similarly one can show that 2, = ~,&„+(e/m) U, .
Substituting these results into the equations of mo-
tion [Eqs. (7) and (8)] gives

())f))„((())= —i (u,f)t„„((u)—ii„,(u) )

and

(()Q„„(&u)= —i(e/m)'M (d —i(d,Q ((u) —ii„„((()).

In these equations

(14)

(15)

) (z)= —f dt&' '(—()8(t) (IU (t),J (0))) .
iso

We can go a step further by writing the equations
of motion for I~., they can be shown to have the
form

(16)

Here we have used the relations A(R) = (O, HX, O)

and e, =eH/mc. Throughout this paper we talkee 8
equal to unity. It is clear that

[J,(0),J„(0)J= —i(e/m)'M co, .

Solving the equations of motion [Eqs. (14'), (15),
(17), and (18)] for Q, =Q„„+if„,to lowest order in

the concentration of impurities gives

(21)

where

)t(q, K) = —i dte' 8(t) ([p (t), p (0)])

is the density-density correlation function, and p,
is the density fluctuation operator. n,. is the con-
centration of impurities. By using the holomor-
phic memory function approach of Gotze and
Wolf le,"we can express the conductivity as

iNe'/m
(dv()), + M(())) '

where

M((()) =M, ((d) +i M, (+) = (I/Nm(()) Q„((()) .

(22)

where p„,((d) = (m/e)2[&„, ((()) —Q„,(0)J. After aver-
aging over the impurity coordinates, Q„„(v) be-
comes

(())) =n, g lu(q) I'q'. [X(q) (d) X(q) 0)], (21')

and

(L)i„„((())=A„(t = 0) + i(u, i„„((d)+i t(()()d

where

A.,(t =0) =(e/m)'([U. , ((,J)

(di„„((d)=A (t =0) —i(d, i„,(&u)+i(t)„((d),

(17)

(18) (23}

(24)

The conductivity can be expressed in a more fa-
miliar form by introducing a frequency-dependent
mass and relaxation time defined by

m*(~) =m[1+M(((d)/&u],

r(())) =M (((())[I +M, ((())/(d ] .

Then the conductivity takes the Drude form

and iNe '/m *((u)
(T (d) =

[&u v eH/m *((())c]+ i 7'(v) (25)

x ([U,(t), U,(0)J) . (19)

By symmetry arguments, if we average Eqs. (19)
and (18) over impurity coordinates, the contribu-
tion from (t),„(())}vanishes. We assume that all the

retarded Green's functions I ()((d) and (t) ()((d) re-
main finite as ())- 0. Then from Eqs. (17) and (18)
we find

A„,(t =0) =- i(e,I„„(0)—i(t)„,(0)

The fundamental resonance occurs at the frequen-
cy satisfying the equation (() =eH/m~((d)c. This is
renormalized from the bare resonance by a factor
[I+M, ((d)/())]. It should be emphasized that M ((d)

depends both on frequency and on magnetic field.
The function &(q., (d) appearing in Eq. (21) is the
density-density correlation function of the inter-
acting electron gas. Electron- electron interact-
ings enter the expression for o,((d) only through
the presenc'e of the function [)t(q, (d) —y(q, 0)].
random-phase approximation )t(q, (d) can be written

and (20) X(q, ~) = g(q, (d)/[I —I'(q) Xo(q, &8], (26)

A, (t =0) =i(u, i,„(0). where V(q) is the Fourier transform of the effec-
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tive electron-electron interaction in the inversion
layer, and X (q, (u) is the density-density correla-
tion function in the absence of V(q). Chiu and
Quinn" have evaluated X (q, tu) for a two-dimen-
sional electron gas in the presence of a dc mag-
netic field. We have used this X,(q, v) in a pre-
vious paper' to discuss the behavior of o,(e), Some
of the unexpected results outlined in Sec. I can be
explained qualitatively. In Sec III we shall calcu-
late the dynamical conductivity of the electrons in
the surface inversion layer in the presence of a
magnetic field. Before we do that, let us rewrite
the Hamiltonian given in Eq. (3) in the form of
second quantization

Xo(r, t) = —t 8(t) ([p(r, t), p(0, 0)]),
where p(r) is the density operator

(31)

(32)

r/r(r) is the annihilation operator for a particle at
position r. g(r) can be written

~(v) which is given by Eq. (22). tif((u) depends
ori the density-density correlation function X(q, &).
In random phase approximation X(q, v) is of the
form given by Eq. (26). In Eq. (26), X,(q, &kk) is the
density-density correlation function in the absence
of electron-electron interactions. In time and con-
figuration spaces X,(r, t) can be written

H=PE„Ct, C, +V„+U,
ny k~

where

V„=2+P V(q)Z„(q„,k, +q„k,)
Q nantn', tn'

x J» .(-q„,k,' —q„k,')

(2'I)
p(r) = g e "~'q„(x+ak„)c„, . (33)

nv gty

From Eqs. (32) and (33), the Fourier transform of
f)(r} in momentum space can be written

P(q)=gg Z„»( q„,k„-k„+q,) Ct, C„.~, (34)
nn'

where J„„,has been given by Eq. (28). From Eqs.
(31}and (34), we can show that X (q, z) is given by
the expression

and

U= Q u(q)e "8&J„»
a~l n,

x v~» (k„,q„,s)), (35)

X,(q, &u) = g g Z„» (q„,k„,k, —q „)Z~ (-q„k„—q„,k, )

x (q„k„,k, —q,)ct, C», ,
In these equations the symbol J„ is given by

where w~(k„, q„, &u) is the Fourier transform with
respect to time of the function

&„(q„,k„k,') = e "Pk„(—+ ak, ) v„»(k„q, t)

x kt
—+ak dx.

tn g(
(28)

&„=(n+ —,')e, is the Landau-level energy, and a
=I/m&d, . Ct

k and C„„are, respectively, the
creation and the annihilation operators for elec-
trons in the Landau level (n, k,). The wave func-
tion associated with the Landau level is

(29)

x exp[- —,'(x/u+ uk, P] . (30)

III. CALCULATION

Q„(x/a+uk„) is the nth eigenfunction of a simple
harmonic oscillator. It can be expressed in terms
of Hermite polynomials by the equation

p„(x/a+uk, ) =(Wv2"kk! u) ' 'H„(x/a+uk, )

(36}

The right-hand side of Eq. (36) can be written in
terms of the product of two causal Green's func-
tions'4 which are defined, respectively,

G„(k„t)=-$(T[C„, (t)ct ]),

G»(k, —q, t)= —i(T[C» k, (t)ct» k ]).
Because we are considering a two-dimensional
electron gas in the presence of a magnetic field,
the Landau energies of these electrons depend
only on the quantum number n but not o'n the mo-
mentum k, or q, . It is straightforward to show
that the Green's functions in Eq. (37) do not de-
pend on the momentum indices. For simplicity
we can drop k, and q, in Eq. (3'I) and write

In order to calculate the dynamical conductivity
&,(kkk), we need to determine the memory function G„(t) =G„(k„,t), G (t) =G (k —q, t) . (38)
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}(.(q, &) =g C.» (q)&.,» (~), (39)

where

C„(q)=QZ (q„,k„,k, -q, )

&&&» „(-q„,k„-q„k,) (40)

&.„((u)= TQ G„((d, + (d)G» (ur, }.

In terms of the Green's functions we can rewrite
Eq. (35}as

B. Evaluation of 7l'„„(u)

In Sec. II, we have described the method of ob-
taining the memory function M(&}. The memory
function M(&u) is correctly evaluated to the lowest
order in the impurity concentration. Therefore
in evaluating the density-density correlation func-
tion, }!(q,(e), the effects of electron-impurity
scattering should no longer be included. If this is
the case, and the Green's functions appearing in

x„»((e) are not renormalized by the impurity
potential, and we should have

G„((d}= 1/((d —t„),
In the above expression for x„»((e), T is the tem-
perature and G„(up, ) is the finite-temperature
Green's function. "

where

e„=(n+-,'}(g,—e, . (46)

A. Evaluation of C„„(q)

The function C„» (q) appearing in Eq. (40) has
been discussed for a three-dimensional electron
plasma. " Since the wave function (t(„(x/(I) which
enters Eq. (40) through J~ is independent of wheth-
er the electron gas is two dimensional or three
dimensional, the quantity C„»(q) is the same for
both cases. From Ref. 15, C„„, can be written

c~(q) =~ l&.»(q) I'

(41}

- &.»(q) = dx e' "Q

p = (2A/w)eH/kc, (42)

where A is the area of the inversion layer. The
integral appearing in Eq. (41) can be evaluated
using standard tables of integrals. " If we replace
n' by n' =n+ l with l an integer, the explicit final
form for C„„„(q)can be written

nl 2l 2 2

The function L„'( a~2)q2is the associated Laguerre
polynomial. For /&0, L„'(x) is given by

(n+l)t x
(l+m)! (n —m)! m! ' (44)

Here p stands for the degeneracy or the number of
states on each Landau level. If we include the spin
and the valley degeneracies for the Si(100) surface,
then p has the value

Here &~is the Fermi energy of the electron gas.
At finite temperature (d becomes (e, = (2l+ 1)xT.
From Eq. (40), w„»((d+i6) can be written explicitly
as

.
6) f(e» ) -f(~.)

n (d+ C~ —6„+i~ ' (47)

where f(x) is the Fermi distribution. Iff(c») -f(q )
40, Eq. (47) predicts that whenever &u equals
e„- e» = (n —n')(d„x„» ( (di+6) diverges. These di-
vergences will appear in the memory function
M(m) through the function X (q, (d) appearing in Eq.
(26). On the other hand these sharp divergences
have not been found in experimental measure-
ments, " and thus they have to be removed by in-
cluding higher-order effects of electron-impurity
scatterings. The most intuitive way to remove
these singularities is to renormalize the Green's
function in Eq. (38) by electron-impurity inter-
actions. To do this certainly needs justification.
The only justification we can give is to note that
in the absence of a magnetic field and of electron-
electron interaction" the inverse of the transport
lifetime or the memory function appearing in Eq.
(22), can be obtained from a density-density cor-
relation function which is a product of two Green's
functions, and these two Green's functions should
be renormalized by electron-impurity scatterings.
Although the final value of the transport lifetime
in Ref. 1V does not depend on the Green's functions
renormalization, in the present case }('(q, (d) must
be renormalized by electron-impurity scatterings
in order to remove the singularities.

The renormalized Green's function can be writ-
ten in the form"

and for l&0, it can be written (48)

L((x}-~ ( I)((( (n+ l)! x
(l+m)! (n —m}! m! (45)

where I'„„, measures the level width which comes
from the electron-impurity scattering. It is given
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-', I'„=n, Q Ju, (q) /' JE„„,(q) J', (4&)

where u, (q) is the value of the electron-impurity
scattering potential properly screened by electrons
on the Fermi surface. In general, Eq. (48) can
only be solved numerically. For simplicity, we
shall adopt the single-level approximation for the
Green's function. " We have

G „'(&)= ~ - z, - il,„G,(&) ~ (5o)

For short-range interaction u, (q) can be regarded
as constant; it is then straightforward to show
that I'„„is independent of n. If we replace 1"„„by
F, then F has the value"

I"= cg,(2/wv), (51)

where 7, the scattering lifetime of an electron in
the absence of the magnetic field, is given by

/u, (@)J'dy=n, .m Ju, /'. (52}

1Rezs~ ((u) =-—
r dz f(z )[ReG"„(z+ &u) ImG„"(z)

+RW" (z —~) ImG„"(z)],

(55)

Imz„„((o}=-— dz [f(z)-f(z+(o)]
a CO

x ImG"„(z+ (o) lmG~ (z) .
The function f(z) is defined as f(z) = (I+e'/T) '.
Because the Green's function depends on the Fermi
energy &~ through &„, E„must be determined self-
consistently through the condition which conserves
the number of electrons N in tne inversion layer

40 DO

Cz f(z) imGe(z) =—. (56)
n=o

p'

From Eg. (56), cz not only depends on temperature
T, but also depends on the magnetic field H.

This last result for T is obtained by assuming g, (p)
to be a constant u, . The Green's function G„(u&)
given by Eq. (50) can be solved for self-consistent-

F» (&u —&„) & I"we find

G.(~+f~) =(2/I')((0- ~„-[(N —z„)' —I"]'"}; (53)

and for ((o —&„)'&I', we have

G.(~+f6) = (2/I")(~- ~„-f[1"-(~- ~„)']'I'). (54)
With the Green's function given by the above equa-
tions, the function w„~(~) appearing in Eg. (40) can
be evaluated rather easily. We obtain the real part
and the imaginary part of the retarded w„~ (v+f &)
= ze~(&u) as follows:

M(&u) =(4zm N&oT~, )
' 3 &'(q, O)

V(q)

x [z-'(q, ~) —e-'(q, 0)] . (58)

Here 7„ is the electron transport lifetime in the
absence of H and is defined as

1 n;m
fu, (+) f'(I —cos@)dQ. (59)

0

We have assumed here that g,(P) is a constant and
thus v, ,'=n,.mu', . The effective electron-electron
interaction V(q) has been obtained previously'; it
is given by

V(q) = (2ve'/e, q)I(q/b),

where

f(x) = (1+x}'[8x(33+ 54x+44x'+18x'+ 3x')

+2e,(e, + &, cothqD) '] . (60)

&, = 11.8 and &0 = 3.8 are, respectively, the dielec-
tric constants of Si and its oxide. D =1000A is the
thickness of the oxide. The average value of the
thickness of the inversion layer is given by (z)
=3b ', and it depends on the number of electrons.
The real part M, (v} and the imaginary part M,(e}
of M(&o} can then be calculated numerically. The
real part of the conductivity o, (u&} which is respon-
sible for the cyclotron resonance is given by

Re(r, &u)=, -2 (61)
Ne' r '((u)

m*(+) [(u —eH/m*((u) c] '+ r (~)
where the renormalized mass m*(~) and the re-
laxation time 7(~) are defined in Eris. (23) and (24)
in terms of M„(+) and M, (&o). We have calculated
Reo,(&u} for the sample of Abstreiter et af,"by
using the IBM 3600 Computer at Brown University.
The carrier concentration for this sample is N
=2.6X10"electrons cm ', and its mobility p, at
T=4.5 K is p, =7000cm'/Vsec. The transport
lifetime r„appearing in the expression for M(&u}

C. Numerical calculation of the memory function N(w) and

the ac conductivity o,(u)

The electron-impurity potential u(q} appearing
in Eg. (21'} should not be renormalized by elec-
trons on the Fermi surface. Since we have as-
sumed that the screened potential u, (q) appearing
in Eg. (52) is a constant for short-range inter-
action, u(q) can be approximated in terms of u, (q)
=u, through the equation

u, =u(q)/c(q, O), (5V

where t(q, ur) =1 —V(q)X, (q, ~). For &v=0, z(q, &u)

is just the static dielectric constant of the electron
gas. M(z) in Eg. (22) can be rewritten
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can be fixed by the relationship r„=m/e p, . The
bare mass of the electron is m =0.19m„where
mo is the free-electron mass. With the carrier
concentration of this sample, the thickness (z) of
the inversion layer is estimated" to be (z) = 20A.
Using the parameters given above and putting the
single-particle lifetime r of Eq. (52) equal to
r = r„, we have evaluated Reo,(&u) as a function of
H (in kG) by fixing the incident &u =3.66 meV. The
result is shown in curve (a) of Fig. 1. The solid
curve is our calculation and the dashed curve is
the classical line shape. The dotted curve appear-
ing in the figure is the result of experimental mea-
surements. " Figure 1 shows clearly that the
calculated line shape, curve (a), does not agree
very well with the experimental result. We believe
that the reason of this discrepancy is primarily
due to the fact that we have assumed that T= Tt,
by assuming a zero-range electron-impurity inter-
action. The relationship T=Tt is no longer true
if we include the effect of electron-electron inter-
action in the calculation of the electron self-energy.
It is well known that the electron-electron inter-
action can directly contribute to the lifetime T of

a single particle but that it cannot contribute to
the transport lifetime 7„ in the absence of impu-
rities or phonons. " Strictly speaking, the single-
particle lifetime r defined in Eq. (52) should be
replaced by

(62)

where T„ is the correction to T due to electron-
electron interaction only. The screened electron-
impurity potential in general is not of zero range
so that the factor of (1 —cosQ) appearing in the
right-hand side of Eq. (59) makes r„different
from the time r appearing in Eq. (52). Although

can be determined by the mobility of the sam-
ple, T is not known at all. The best we can do here
is to put T„=pT and regard p as a parameter of
the order of magnitude of 1. For curve (b) of Fig.
1, we have chosen P = 1.8, the obtained line shape
agrees reasonably well with the experimental data.
At H= 31 kG both curves (a) and (b) show a weak
"harmonic" structure at 2+,= &. The cyclotron
resonance peak is at H= 62 kG. The remaining
structure of the line shape is due to the oscillations
of the Fermi energy as a function of magnetic field.
f ~ has been calculated self-consistently from Eq.
(56). The plot of &r as a function of H is shown in

Fig. 2. The functions M, (&u) and M, (&u) have also
been numerically calculated; the results are shown

in Fig. 3. We also did similar calculations for the

sample of Kennedy et al. The sample has a mo-
bility p, =6500 cm /Vsec at T=4.5'K and an elec-
tron concentration N =1.5 && 10" electrons cm '.
The thickness of the inversion layer (z) for this
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FIG. 1. Reo, (cu) vs magnetic field in kG. The solid
curves labeled (a) and (b) are theoretical results for ~
=7t~/1. 8. 7t~ is fixed from the value of the dc mobility
p(7000 cm /V sec) at T =4.5'K. The external frequency
cu is set at cu = 3.68m eV. All the parameters are taken
to agree with the experimental situation (Ref. 21).
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FIG. 2 ~ Fermi energy (in units of temperature) vs
magnetic field. All parameters needed are taken to
agree with the sample of Ref. 21.
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FIG. 3. Memory function M(w) =M~(w)+ iM~(co) (in units
of temperature) vs magnetic field is calculated by using
the parameters of Ref. 21.

value of N is estimated to be (z) ='30A. The cyclo-
tron-resonance line shape for the external fre-
quency (d =52.4 cm ' has been calculated for 7' '
= 1.57','„2.0&,'„and 2.5&,',. The results are shown
in Fig. 4. From Fig. 5, it seems that the line
shape with 7' ' = 2-.5w, ', agrees reasonably well with
the experimental measurements. ' By fixing the
value of the single-particle lifetime 7 ' =2.57,,',
the cyclotron-resonance line shapes for (d =25.4
cm ' and (d = 11.2 cm ' have also been computed.
The results shown in Fig. 6 and V, respectively.
In Fig. 7 the calculation has not been extended be-
low 20 kG, because too much computing time is
needed there. We also have calculated the line
shape as a function of (d in Fig. 8 by fixing the mag-
netic field H = 52 kG. The cyclotron mass shift
4m =m*-m, and m* depends on the resonance
frequency w through M, (&u) as given in Eq. (23).
The results for 4m/m as a function of the cyclo-
tron-resonance frequency v are shown in Fig. 9
for both samples considered previously. The
structure of the curves in Fig. 9 is due to the os-
cillation of the Fermi level as a function of the
magnetic field. Our calculations show that the
values of ~/m are always less than 5% and os-
cillate as the resonance frequency & or the mag-
netic field H increases. Our results are within
the experimental error bars of Abstreiter et al,"
but do not agree with the experimental measure-
ments of Kennedy et al.' who obtained almost a

I s I i I s I a I i I s I s

60 70 80 90 100 I IO 120 I 30 I 40
MAGNETIC FIELD t'Re)

FIG. 4. Re 0,(cu) vs magnetic field for experimental pa-
rameters corresponding to the data of Kennedy et al.
(Ref. 6). The mobility p for this sample is p, = 6500 cm /
V sec. The solid curves labeled (a), (b), and (c) are the-
oretical results for 7 =et„T=vt, /2. 0, 7=st~/2. 5 at a
frequency of ~ = 52.4 cm

10% effect on &m/m. This latter discrepancy is
possibly due to the method of defining m*(+). The
authors in Ref. 6 essentially fit their experimental
line shape with the best Drude formula for o, al-
lowing m* to be a parameter for the fit.

IV. DISCUSSION

The main shortcoming of the present calculation
seems to be the necessity of introducing a quasi-
particle lifetime 7 which is not calculated from
first principles. When no dc magnetic field is
present, the function X(q, v) —X(q, 0) appearing in
Eq. (21) can be approximated by its value in the
absence of electron-impurity scattering, and 7

never enters the calculation. The reason for this
is that we need to evaluate Q„„only to first order
in the concentration of impurities. Since the right-
hand side of Eq. (21) contains a factor of n, , it is
already of first order even when X(q, &u) —X(q, 0) is
independent of impurity scattering. We have eval-
uated the memory function M(~) in the absence of
a dc magnetic field by approximating the un-
screened electron-impurity potential u, by
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e(q, 0)(n,.m7 „) '~'as discussed in Sec. III. The ex-
pressionforM((d) canbe written

M(q)=(qq 'Nq„) ' Jqqq v- q'(q, q(q-
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FIG. 9. Mass shift Dmlm vs frequency is calculated
for the sample of Kennedy et al. (Ref. 6) (solid line) and
the sample of Abstreiter et al. (Ref. 21) (dashed line),
respectively.

parameter. Reasonably good agreement with the
experimental data can be obtained in this way. How-
ever, our numerical calculations indicate that the
constant of proportionality depends somewhat on
frequency (as well as on concentration); this de-
pendence is unexpected and somewhat disappointing.

In summary, we have shown how electron-elec-
tron interactions together with electron-impurity
scattering can affect cyclotron resonance in semi-
conducting surface inversion layers. The funda-
mental resonance is shifted and its width is af-
fected by these interactions. Both m* and r can
be thought of as functions of both frequency and
magnetic field. The magnitude of the shift in the
fundamental cyclotron mass turns out to be less
than 5' for reasonable values of the experimental
parameters.

In addition to the calculation in Ref. 13, the quan-
tity )t, (q, e) was also calculated by Morgenstein
Horing et al".

This expression is essentially identical to that of
Tzoar et al. except that we have approximated the
unscreened electron-impurity potential as des-
cribed above. By noting that the real part of c (q, v)
is an even function of ~, and the imaginary part
is an odd function of &, one can demonstrate that
for very small (d,

APPENDIX A

In this appendix we shall show that

1,„(0)=I„(0}=0. (Al)

M, (&u) = I/r„, + O((o'),

M, (w) =a &g + 0 (m ),

where a is a constant. For larger values of ~ we
have evaluated M, (~) numerically, using the ef-
fective electron-electron interaction which takes
account of image charges in the oxide layer. Re-
sults for the mass shift Am/m as a function of
frequency are similar in shape to those of Tzoar
et al,"but the amplitude of the shift is smaller.

In the presence of a dc magnetic field )t(q, ~) has
resonances at (d =n(d„where n is an integer. These
resonances correspond to transitions between Lan-
dau levels, and they take the form of 6-function
singularities in the absence of broadening associ-
ated with electron-impurity and electron-electron
scattering. In order to broaden these resonances,
we have introduced a finite quasiparticle lifetime
into the Green's functions which enter the expres-
sion for Z(q, ur). We must do this in order to ob-
tain a reasonable line shape for the absorption
spectrum. The quasiparticle lifetime v is ex-
pected to differ from the transport lifetime 7„if
the impurities have a finite range. We do not at-
tempt to calculate 7 from first principles but in-
stead assume the r is proportional to v„, and let
the constant of proportionality be an adjustable

J„=—(e/m) v„=—(e/m) (P„—M &u, Y) (A2)

J„=—(e/m)v„= —(e/m)P, . (A3)

Let us introduce the retarded Green's function of
two operators A and B defined as

Gs(A, B, u)) = —i dt e '~8(t) ([A(t), B]) ~ (A4)

Then from Eq. (16), I ~(m) is given by

I ~((u} = —(e'/m'}G "(U,v~, (o} . (A5)

The Green's function G"(P„,v„cu) satisfies the
equation of motion

In Sec. II we have derived Eqs. (14), (15}, (17),
and (18) by using the vector potential A = (O, HX, O).
It is straightforward to show that those equations
are still valid even if a different vector potential
is chosen. This conclusion means that our results
are gauge invariant. It is much easier to obtain
Eq. (Al) if we choose the vector potential to be
A = ( HY, 0, 0). -In this gauge, the current opera-
tors appearing in Q ~(&o) and I ~(&u) are given by
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(uG" (P„v„,(u} = ([P„,v„])+G"([P„,H], v„, (u)

= —iG" (U„,v„, &u) . (A6}

We assume that the Green's function is regular or
has a finite value at v = 0; then we obtain G"(U„. , v„, 0)
=0 from Eq. (A6}. Using Eq. (A5} we have I~(0}=0.

Similarly we have the equation of motion

~G"(P„,v„, (o) = ([P„&„])+G "([P„,H], &„,(a)

= -iG"(U„,v„u&) . (A7)

Letting ~-0, we obtain G"(U„,v„&u}=0. Using
Eq. (A5), we fi.nd I„„(0)=0.
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