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We report measurements of the high-field Righi-Leduc coefficient of polycrystalline specimens of
potassium. The measurements were made between 2 and 9 K for magnetic fields up to 9 T on specimens
having residual-resistance ratios ranging from 2100 to 7300. We find that the lattice thermal conductivity
causes the low-temperature Righi-Leduc coefficient to be field dependent. Using simple theoretical ideas, we
are able to determine the magnitude and temperature dependence of the lattice conductivity and demonstrate
that it is not large enough to be responsible for the previously observed field dependence in the transverse
thermal magnetoconductivity of potassium. After correcting the measured Righi-Leduc coefficient for the
lattice contribution, we find it close to the theoretical predictions. When compared to the Hall coefficient,
we find a substantial deviation from the Wiedemann-Franz law, in direct contrast to the theoretical
predictions. By combining measurements of the thermal gradients in both directions perpendicular to the
magnetic field we are able to operationally define an average thermal scattering time 7,,. We find our values

of 7, are consistent with theoretical predictions.

I. INTRODUCTION

During the past several years it has become
firmly established that the magnetotransport co-
efficients of potassium are anomalous in that their
magnetic field dependence does not follow that pre-
dicted by the semiclassical theory of Lifshitz,
Azbel, and Kaganov (LAK)." 2 This theory makes
several unambiguous predictions concerning the
magnetic field dependence of the various transport
coefficients; most, if not all, of these predictions
are not borne out by experiment. The following
paragraph is a brief outline of the conflicts; for
a more complete discussion, including a discus-
sion of several theoretical explanations, see Refs.
3 and 4.

For an uncompensated metal such as potassium,
which has a closed nearly spherical Fermi sur-
face® the L AK theory predicts that in the high-
field limit (w,7> 1), the diagonal components of
the two resistivity (thermal and electrical) tensors
will saturate (become independent of the magnetic
field), and the off-diagonal components will tend
to their free-electron values. Experiment has
shown several of these predictions to be untrue.
The transverse electrical magnetoresistivity is
linear in the applied field, the transverse thermal
magnetoresistivity has a term that is quadratic in
the field,* ® 7 and the two longitudinal magneto-
resistivities appear to be linear in the applied
field.> ® On the other hand, the measured Hall
coefficient of potassium agrees, within a few per-
cent, with the semiclassical predictions'® (how-
ever, see below, Sec. V). This paper presents
the results of measurements of the Righi-Leduc
(thermal Hall) coefficient of potassium. These
measurements were performed with two object-

ives in mind: (i) to determine if the off-diagonal
elements of the thermal-resistivity tensor obeyed
the LAK theory, and (ii) to investigate the possi-
bility that the lattice conductivity plays a large
role in the quadratic term in the transverse’
thermal magnetoresistivity. We may briefly sum-
marize our most important findings: (a) the mea-
sured Righi-Leduc coefficient is within a few per-
cent of the predicted value and (b) our measure-
ments show conclusively that the thermal conduct-
ivity of the lattice cannot be as large as necessary
to explain the field dependence of the thermal mag-
netoresistivity. An inconsistency arises if the lat-
tice thermal conductivity is used to explain the
field dependence of both the Righi-Leduc effect and
the transverse thermal magnetoresistance. We
note that extending the measurements of the ther-
mal transport coefficients to fields well in excess
of 1 T has contributed remarkably to our ability
to unfold the various processes contributing to
these coefficients.

Section II is a brief discussion of the effects of
a finite lattice conductivity on the transport co-
efficients of a metal. Section III briefly discusses
sample preparation and measurement techniques.
Section IV presents the actual experimental data
with several brief comments and the data are
analyzed in Sec. V where our conclusions are pre-
sented. )

II. LATTICE THERMAL CONDUCTION AND ITS EFFECT
ON THE THERMAL TRANSPORT COEFFICIENTS
This section is a discussion of the effect that a

finite lattice thermal conductivity has in deter-
mining the measured values of the thermal trans-
port coefficients of a metal; in particular, we are
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interested in the effect of the lattice conductivity
ke on the behavior of the transverse thermal mag-
netoresistivity and on the Righi-Leduc coefficient
in the high-field limit. Only the case of an un-
compensated metal with a closed Fermi surface is
considered; for a discussion of the results for
other cases see Ref. 11.

Ignoring magnetothermoelectric effects,!! the
thermal current density 30 may be written

Jo=—K- VT,
where T is the absolute temperature and ﬁ, the
thermal-conductivity tensor, is a function of tem-
perature, magnetic field, and purity. Experi-
mentally, one usually directs the heat current

along the specimen and measures the resultant
gradient:

-VT =W-J, ,
where W= K~! is the thermal-resistivity tensor.
For the purposes of this discussion the thermal
current may be considered to consist of two types
of carriers: (i) electrons, whose trajectories are
affected by the magnetic field, and (ii) phonons,
whose trajectories are unaffected by the magnetic
field. We represent the thermal conductivity of
each of these systems of carriers by the tensors
K, and K,, respectively, and assume they add
linearly to determine the total thermal conductiv-
ity:
With the magnetic field H=HZ and parallel to a

high-symmetry direction, the two tensors may be
written

K, Ky, 0
Ke=| -Kyy K,y 0
0 0 K,

and ﬁ, =K, 1. Adding these two tensors and invert-
ing the result yields the thermal resistivities

W,'g‘ :(Kxx+Kl)/[(Kx:+K:)2+K3y], (1)
Wiy ==Ky /(K +5, P +K 2,1, (2)
Wee=1/(K,. +K,) 3)

(we have assumed cubic symmetry).

These are the transport coefficients one would
measure in the presence of a nonzero lattice ther-
mal conductivity. The quantities of most interest
to us are the electronic contributions to these co-
efficieats, defined when k,=0:

K, -K
Wa=gz KL, Vo KELIKE, W =1/K,,.
4)
Using Eq. (4), we may rewrite Egs. (1)-(3):
Wl We, i [(we, r/we,] 5)
il (1 +Ic,W,':,‘)2+(K‘W,‘m)2 ’
ny =W:y/[(1 +tKe W:x)z +(Kl W:y )2] ’ (6)
Woe=We/(1+K,We,) . (7)

These results have been confirmed in the low-
field limit.'? In that limit, one obtains for “rea-
sonably” pure materials, WX =W¢, and W¥

=W, (1 +k, W5, )%, the measured Righi-Leduc co-
efficient being less than the electronic coefficient
by the factor (Kelectrom'c/xtoul)z-

In this paper we are concerned about the field and
temperature dependence of these results [Egs.
(5)-(7)] in the high-field limit. For an uncompen-
sated cubic metal with a closed Fermi surface,
the high-field limit (w,7>> 1 where w, is the cyclo-
tron frequenéy and 7 is the mean time between
scattering events) of the electronic thermal-con-
ductivity tensor may be shown to be?:

A, /H® L,Tne/H O
K,=| -L,Tne/H A, /H? 0 |.
0 0 A,,

The coefficients A;; depend on temperature, scat-
tering, etc., but are independent of the magnetic
field. This, of course, leads to the well-known
prediction of a saturating magnetoresistivity and
a “free-electron” Righi-Leduc effect:

Wi =A,,/(L,Tne) ,
and
Wi,=H/L,Tne=HRy/L,T .

(L, is the Lorenz number. It should be also noted
that these results do not depend on the relaxation-
time approximation.) Comparing these results
with similar results for the electrical magneto-
resistivity! shows that in the high-field limit the
ratio of the Hall resistivity to the electronic con-
tribution to the Righi-Leduc resistivity is L,T;
that is, the theory predicts that for the off-dia-
gonal terms, the Wiedemann-Franz law is obeyed
exactly in the high-field limit.

To proceed further we first define a “very-high-
field limit,” which occurs when the magnetic field
is so large that (k,W¢,)*>1 or H> L,T/k,Ry .

On the other hand, if we roughly determine the re-
laxation time from the free-electron resistivity,
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p3t=ne®*r/m, w,7>(L,T/Ryk.)(w,T/H). The
asymptotic behavior of W¥ and W¥ will be dis-
cussed for two cases, either k, Wy, is negligible
or it is not negligible compared to one. Note that
for a particular metal either of these cases can
occur, depending on the variation of W7, with the
magnetic field.

A. High-field limit: 1 <<, 7<< (L,T/RyK,) (e, 1/H)

Case (i): k,WE 2 1. From Egs. (5) and (6),
with appropriate approximations, it may be shown
that

w¥ =we_/(1+k,WE,) (8)
and
WH=we, /(1+k, WE, P . 9)

The presence of the nonzero lattice conductivity
substantially reduces the experimentally mea-
sured magnitudes of both transport coefficients
from the magnitude due to electronic conduction.
Experimentally this situation will occur whenever
the electronic thermal conductivity is substantially
reduced by alloying or when the saturation value
of W¢, is large. [We note that there is a practical
limit to increasing Wi, by alloying since we must
be in the high-field limit for Eqs. (8) and (9) to be
valid.]

" Case (ii): k,W§, <1. Inthis case, from Egs.
(5) and (6):

WH=We, +k, (WE,)? and Wi =w¢, . (10)
In this limit the lattice conductivity has essentially
no effect upon the Righi-Leduc term, but a quad-
ratic magnetic field dependence is introduced into
the thermal magnetoresistivity (W§, « H). (As
mentioned, such a quadratic field dependence has
been observed in the thermal magnetoresistivity
of potassium*' ® 7 and indium.'®* The application

of this result to potassium is discussed in Sec.

v.)

B. Very-high-field limit: w 7 >>(L0T/RHKg Nw, 7/H)
In this case Egs. (5) and (6) yield

W¥ =1/k, and W¥ =1/W¢ «2. (11)

The thermal magnetoresistivity again saturates,
at a different but obvious value, but now the Righi-
Leduc term decreases with increasing field.

In general this very-high-field limit is experi-
mentally unattainable. For example, aluminum
with a Hall coefficient' that varies between Ry
=1.02%107'° and —0.33 x107!° m3/C and with a
lattice conductivity'® k,~0.05 W/mK yields (at a
temperature of 3 K) a very-high-field limit in ex-
cess of 10* T, a field that is clearly unattainable

in the laboratory. However, in potassium, the
high-field Hall coefficient is over 10 times as
large and «, has been postulated to be as much as
200 times as large.” This reduces the very-high-
field limit to about 12 T. This is an attainable
field and the effects of nearing this very-high-
field region should be noticeable at fields con-
siderably lower than this value. We discuss this
further in Sec. V.

III. EXPERIMENTAL DETAILS

Most of the details concerning specimen prepara-
tion and mounting procedures and the measuring
apparatus have been reported previously.? ¢ 16
Standard linear heat-flow techniques were employ-
ed, with the temperature gradients in the speci-
men being measured using four germanium re-
sistance thermometers calibrated as a function of
the applied magnetic field as well as the tempera-
ture. The resistance of the measuring thermo-
meters was determined using four-terminal ac po-
tentiometric techniques. The data were obtained
in two groups, using two different superconducting
solenoids. For specimens K-19 and K-22, a 1.8-T
2-in.-bore solenoid was employed and, for speci-
mens KHF 5, 7, and 8, a 1.5-in.-bore solenoid,
nominally rated at 8 T at 4.2 K was employed.
(This magnet was capable of 10 T at 2 K.) For the
runs in the 8-T magnet, the germanium thermo-
meters were calibrated versus field during each
run, using a capacitance thermometer!” as a trans-
fer standard. The capacitance thermometer is
wired into one arm of an active-bridge tempera-
ture controller.'® The temperature is chosen in
zero magnetic field and the controller balanced;
as the magnetic field is increased, the resistances
of the germanium thermometers change rapidly,
but the capacitance thermometer is unaffected by
the field, enabling the controller to maintain the
temperature. We found we are able to maintain
the temperature to within 5 mK or less during the
40-min calibration run, the error being due to
drift in the capacitive sensor. The resistance of
the germanium thermometers in zero field (at the
same capacitance thermometer value) is mea-
sured before and after the calibration run and a
linear correction applied to account for the drift.
Once the calibration data is obtained, we proceed
to obtain the thermal-resistivity and Righi-Leduc
data. During all runs the 25-Hz thermometer cur-
rent is adjusted to keep the power dissipation in
the thermometers below 1 nW.

All resistance, magnetic field, and heater power
data are measured using a digital data acquisition
system!® with paper tape output; the tape is then
read into a computer which calculates the tem-
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peratures from the field and resistance values and
performs the subsequent data analysis.

' Data was taken with the magnetic field in both
directions normal to the large surfaces of the
flat-plate specimens and that component of the
transverse temperature gradient that is odd in the
applied magnetic field is used to determine the
Righi-Leduc coefficient.

The magnetic field is determined by measuring
the magnet current. The current in the 1.8-T sole-
noid was calibrated versus the magnetic field
using NMR techniques,?® the 8-T coil current was
calibrated using a rotating coil gaussmeter.?’ In
the 1.8-T coil and in the 8-T coil below 1.5 T, a
small current-field hysteresis was noted; to en-
sure that the magnitude of the normal and reverse
magnetic fields agreed to with 0.05%, a bismuth
magnetoresistance probe®? was placed near the
specimen, and the magnet current adjusted until
the field up and field down magnetoresistances
matched.

Since the changes in the thermal resistance of
potassium with field are very large, the heat cur-
rent used is gradually reduced as the field is in-
creased to keep the average specimen temperature
within 50 mK of the chosen value during the field
sweep.

The .specimens were fabricated and mounted as
previously described; their physical character-
istics are shown in Table I. Following our pre-
vious procedures,? '® the zero-magnetic-field
thermal resistivity was measured for each speci-
men and plotted vs T®. The zero-temperature in-
tercept and slope are shown in Table I; the zero-
temperature intercept is used to determine the
residual resistivity ratio (RRR) as previously
discussed.'®

All the specimens were annealed under vacuum,
at room temperature, in a bath of paraffin oil for
at least two days and then carefully mounted. The
specimens were then slow-cooled® to liquid-N,

TABLE I. Physical characteristics of samples.

Specimen? RRR? Width® Thickness®
(mm) (mm)
K-19 2350 7.0 1.0
K-22 3920 7.0 1.0
KHF-5 2900 8.0 1.2
KHF-7 2090 8.0 1.0
KHF-8 7300 8.0 1.3

2Qur potassium was purchased from MSA Corp., Evans
City, Pa.

®The RRR was calculated using the Wiedemann-Franz
law as described in Ref. 16.

.©The thickness measurements are accurate to +0.05
mm while the width measurements are accurate to +0.1
mm.
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FIG. 1. Measured Righi-Leduc coefficient of potassium
times the temperature as a function of the applied magne-
tic field; only the higher temperatures are displayed
The specimens shown are representative of the range of
purity studied.

temperatures over a period of 45 min. The pre-
cise details of the sample mounting techniques and
details of the cryostat have been described pre-
viously.* 18

IV. RESULTS

In order to keep the actual experimental results
separate from the interpretation and analysis,
this section discusses the experimental quantities
as measured along with several brief comments.
Section V contains a detailed analysis of the data.

Figure 1 shows high-temperature Righi-Leduc
data from two representative specimens KHF-8
over the entire field range and similar data for
K-22, over a lower field range. In the interest
of clarity not all of the data have been plotted.
Figure 2 shows some ofthe lower temperature data
for KHF-5 and -8. (The curves in the figure are
explained in Sec. V.) These figures show the
Righi-Leduc coefficient times temperature as a

20
KHF-5 T:3.44K
o o
| o0 o o
1.8 o o 00, o
20+ KHF -5 T=4.59K

H(T)

FIG. 2. Measured Righi-Leduc coefficient of potassium
times the temperature as a function of the applied mag-
netic field, for several low temperatures. These data
illustrate the field dependence of TR¥, at high fields.
The curves are discussed in the text.
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function of the applied magnetic field, where the
measured Righi-Leduc coefficient is determined
from the transverse thermal gradient V, T and the
thermal current Jg:

TRY, =(-V,T)T/HJ,

(We plot TRy, as it is the thermal analog of R.)
The pertinent parameters for the other specimens
are shown in Table II. (The thermal magneto-
resistivity data of these as well as several other
specimens are reported elsewhere.?®) The+e are
several points to be noted in the data. At low
fields there is considerable temperature and field
dependence to TRY;. For magnetic fields on the
order of 1.2 to 2 T, at the higher temperatures
investigated, TRy; settles down to a constant
value independent of field and temperature (at
least to fields of the order of 8 T). From Fig. 2,
however, it may be observed that the lower-tem-
perature curves show a noticeable decrease in
TRY, at higher fields. This decrease is dis-
cussed in Sec. V in the light of the results of
Sec. IL

It should also be noted that TRY, remains tem-
perature dependent to much higher fields than
does the Hall coefficient.!?

V. DISCUSSION

This section presents the interpretation and

analysis of the data and is divided into three parts.

It begins in Sec. VA with a discussion of the pro-
cess used to determine when the high-field limit
for thermal phenomena has been reached. Section
VB discusses the Righi-Leduc coefficient and the

effects of the lattice thermal conductivity. Section

V C discusses the high-field results for the Righi-
Leduc coefficient, compares the results with the
predictions of the semiclassical theory and dis-
cusses the magnetoresistance anomalies in gen-
eral.

A. High-field limit

As discussed in a previous article (Ref. 4), when
thermal transport is considered, what is meant
by the high-field limit is somewhat unclear. The
problem lies in deciding on a scattering time 7,

TABLE II. Experimental Righi-Leduc coefficients.

Specimen Field range (TRg1)ay
K-19 18T 1.75 x107% m’K2/CWQ
K-22 18T 1.73
KHF-5 9.3T 1.84
KHF-7 9.3T 1.75
KHF-8 9.3 T 1.72

appropriate for thermal transport processes; it is
not possible from the Boltzmann equation to math-
ematically define an average “relaxation time” for
small-angle inelastic scattering events. However,
it is possible to obtain a reasonable determination
of w, 7, from simultaneous measurements of the
two temperature gradients (V,7 and V, T') in a
specimen, following a procedure analogous to the
electrical case. We consider first the electrical
transport coefficients. It is easy to show using
simple ideas, that

WeTy IHRH/pO =Ey/Ex’

where 7, is the mean scattei-ing time for deter-
mining electrical conduction, and E, and E, are
the components of the electric field parallel and
perpendicular to the current flow. Thus, in the
electric case, w, 7, >1 implies E,> E,. Pro-

ceeding by analogy for the thermal case, an op-
erational definition of w,7y is

W Ty =V, T/V, T .

We will assume the specimen is well into the high-
field limit when the Hall gradient is dominant and
V,T>V,T. In Fig. 3, V,T/V, T vs H is plotted for
specimen KHF-8 at 3.55 K. V,T/V,T rapidly in-
creases, reaching 5.2 at 0.7 T and then drops down
approximately as H™', the decrease being due to
the rapid onset of the quadratic field-dependent
term in the thermal magnetoresistance. Concen-
trating on the rising portion of the curve we may
draw a straight line in a manner that ignores the
onset of the linear and quadratic term in the ther-
mal resistivity. (This is simply making the usual
assumption of the semiclassical theory, that elec-
tron scattering rates are field independent.) From
this line the field at which w,7, =1 may be deter-
mined. In this case, (w,7,)=1at H=0.05 T. We
have done this for all our specimens at each tem-

6_
H
54| © v,T
~ o é -
> 4 o v
N O
~ 3 o
° o
& 2 °© o,
%o
| <o
o ! | | 1 ]
9) 2 4 6 8 10
H(T)

FIG. 3. Ratio of the thermal gradient perpendicular
to the heat current to the thermal gradient parallel to
the heat current (see inset) as a function of the applied
magnetic field. The line drawn at low fields is discus-
sed in the text.
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perature; Fig. 4 is a plot of H, vs T for speci-
mens KHF-5, 7, and 8 where H, is the field at
which w,7, =1. (The electrical analog is the field
at which R,/p=1.) The data are plotted after sub-
tracting an impurity component as follows. A plot
of H, vs T is essentially a plot of 1/7,y Vs T.
Noting that

I/Ttnt = 1/'rimp +1/‘rph ’

and estimating 1/7,,, or, rather, H, ;,, from W(H
=0, T)T | y=o, leads to

H =[ w(0, T)T]T=0LO/RB .

1, imp

This value was determined for each specimen and
was then subtracted from the temperature-depend-
ent values. The results are plotted in Fig. 4; this
figure may also be viewed as a plot of 1/7n vs T.
Simple theoretical models and measurements® of
1/7,, for potassium have indicated that 1/7,, should
be cubic in the temperature. The solid curve in
Fig. 4 is cubic in the temperature and is seen to
be quite a good fit. The coefficient of T° for this
curve is 1.2Xx10"2 T/K3, or scaling by e/m, we
have at 4 K

1/7,, =14 x10° rad/sec.

This may be compared to the results of Wagner
and Albers,?® who have calculated the average
scattering rate at 4 K:

1/7,, =3.2x10° rad/sec.

Thus the magnitude of the experimental value of
Ty 1S in fair agreement with calculated values and
the temperature dependence is in excellent agree-
ment; this gives additional support to our opera-
tional method of obtaining w.7;,. We consider that
the curve in Fig. 4 represents the transition field
between low- and high-field behavior. It is im-
portant to note that the high-field limits deter-

9r
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FIG. 4. H,, the field at which w,T,=1 as a function
of the temperature. The impurity contribution to 74y,
has been substracted from H;.

mined in this manner are in general significantly
higher than those determined from the electrical
resistivity. For example, for specimen KHF-5,
Pimp =2.46x107° @ -cm and the impurity contribu-
tion to the electrical resistivity is at least 10
times as large as the temperature-dependent por-
tion of the electrical resistivity?® to temperatures
as high as 4 K. Thus, w,7,=1 at fields of the or-
der of 0.05 T, and is essentially independent of
temperature to temperatures in excess of 4 K.
From Fig. 4, when the impurity term is added in,
it may be seen that at 4 K, w,7, =1 at about 0.15 T,
a field nearly 3 times as large.

In the discussion to follow we will distinguish be-
tween the high- and low-field limits according to
the curve in Fig. 4. It is also worth noting that
for our purest specimens at low temperatures
w,T, is in excess of 200.

B. Effects of the lattice conductivity on TRY,

This section examines the effect of a finite lat-
tice thermal conductivity on the high-field values
of TRY¥,. To discuss the data in terms of the re-
sults from Sec. II it is necessary to determine
k, Wi, and k,WS,. Unfortunately, a good experi-
mental value for k, is not available for specimens
of the purity used in this work. For such high-
purity specimens there are in the literature two
estimates of «,: Ekin,?® using a variational cal-
culation and only considering phonon-electron
scattering, has determined values for k, over a
wide temperature range, and, Fletcher’ in an at-
tempt to explain the quadratic field dependence of
the thermal magnetoresistance of potassium has
determined possible values of x,. These two re-
sults will be used to examine the high-field Righi-
Leduc coefficient. For discussion purposes, we
will concentrate on specimen KHF-8, using the
T =3.55 K data, plotted in Fig. 2. It will be dem-
onstrated that the large k, necessary to explain
the thermal magnetoresistivity data is inconsistent
with the Righi-Leduc data (and also inconsistent
with the approximations one makes to obtain it).

Both the electrical and thermal magnetoresistiv-
ity of potassium are highly anomalous® * % 7; nei-
ther one shows any signs of saturation. Thus it is
not clear if semiclassical magnetoconductivity
theory is applicable to this seemingly simple me-
tal. However, the off-diagonal terms in the res-
istivity tensors do appear to approach the values
predicted by LAK: the Hall coefficient is within
(4—6)% of the predicted value and the Righi-Leduc
coefficient is within 5%. (Figure 1 and Table IL.)
Thus, a negligible error will be introduced by
using free-electron values for W3, to determine
the relative magnitudes of the terms in the de-
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nominators of Egs. (5)-(11).

Fletcher’ made the interesting speculation that
the entire quadratic term in the thermal magneto-
resistivity of potassium was due to the lattice
term, i.e., he assumed that both «, W5, and
kZ(Wg, P could be neglected and analyzed his data
using Eq. (10). Fittingour thermal resistivity?*data
to Eq. (10), we obtaink, =15.9 W/mK; usingR ,,
=4,45x107!° m®*/C and this value for k,, kZ(Wg,)
~0.54 at H=9 T and T =3.55. This is certainly not
negligible compared to 1. Similarly, with WZ,
=Wp5 - ke (W5,)?, we obtain k, W5, =0.06. Both
these terms contribute significantly to the de-
nominator in Eqgs. (5) and (6). We are led to two
conclusions: (i) the large x, implies that we are
at magnetic field values intermediate between the
high- and very-high-field limit and that we must
use Eq. (5) to determine W§, and (ii) Fletcher’s
argument is internally inconsistent. Inserting the
above values for k, W, and k,W¢, into Eq. (6)
we obtain

we/we, =TRY, /TR%, =0.6

at 3.55 K and 9 T. As may be seen from Fig, 2
there are no such large decreases in TRY,, Thus
the assumption of a large anomalous k, being the
cause of the quadratic term in the thermal mag-
netoresistivity leads to a prediction of a substan-
tial decrease in the measured Righi-Leduc co-
efficient. Experimentally this does not occur and
we conclude that Fletcher’s speculation is not cor-
rect.

From Fig. 2 we note that there is a (5-10)% de-
crease in TR¥ as the field increases. Using
Egs. (5) and (6), we have attempted to fit this data
and in the process determine k,. The results are
the solid curves in Fig. 2. To obtain these curves
we (a) “guessed” a value for k. ; (b) calculated W,
from Eq. (5) (all terms were used); (c) used the
free-electron value of W3, in the bracket of Eq.
(6) and calculated values of W¢, and k, in Eq. (6)
to determine W¥ ; and (d) fit the result to the
“intermediate” field values. Curve I uses Flet-
cher’s speculation for k,, curve II uses Ekin’s
K¢, and curve III is a “best” fit to the data.

We again observe that these results definitely
rule out a large k,. Curve II, using Ekin’s value
(=3.7 W/mK) is similarly seen to be a poor fit,
the “best” fit being obtained with k,=1 W/mK. We
have performed similar fits to the Righi-Leduc
data for other temperatures and specimens and
we are able to estimate «x, as a function of temp-
erature. Before discussing the results, a few
words of caution are in order. First, and most
importantly, we are assuming that the decrease in
TR¥, at high fields is due to k,. This may not be
so; it is certainly possible that this may be re-

lated to the magnetoresistive anomaly of potas-
sium. Secondly, the effects of x, on TR, are
small and measurement imprecision precludes an
accurate determination. Thus, while we are able
to rule out large values of k,, the most we are
able to say about the magnitude of k, is that the
results are consistent with our data and seem to
show the expected temperature dependence.

Figure 5 is a plot of the values determined for
k, for specimen KHF-5, plotted as k, vs T?. The
line in the figure is a “free-hand” fit, and we may
say that k, =(3.3 +1) X1072T2 is consistent with our
Righi-Leduc data. Within the errors, k, appears
to have the temperature dependence expected for
electron-phonon limited phonon conduction, but
has a magnitude that is roughly 4 times less than
that calculated by Ekin. This is quite reasonable
considering the approximations made in that cal-
culation.

There are two additional points to be mentioned:

(a) In using Eq. (5) to determine W%, a problem
arises. For any nonzero value of k,, if Wk has a
quadratic field dependence, Eq. (5) yields a non-
physical result for W¢, at sufficiently high fields.
This is a result of the mathematics and is not phy-
sical. W¥ will ultimately saturate at a value of
1/k, no matter how large WZ, gets.

(b) The free-electron value of Wi, was used in
the denominator of Eq. (6) to determine WY,. This
leads to a few percent error in the value for «,
and is unimportant.

We are therefore led to several conclusions:

(i) The lattice thermal conductivity cannot be the
sole cause of the quadratic term in the magneto-
thermal resistivity, but can only account for a
small percentage of it;

3~
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FIG. 5. Lattice thermal conductivity of the potassium
as a function of the square of the temperature for speci-
men KHF-5. The errors are determined by the fit to the
Righi-Leduc data.
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(ii) The terms «,Wg, and (k,Wg,)? in Egs. (5) and
(6) are not negligible in potassium;

(iii) The values obtained for k, are 3 to 5 times
less in magnitude than those calculated by Ekin.
This is not unreasonable since Ekin’s calculation
depends strongly on the pseudopotential and the
variational function chosen for the distribution
function. Even so, we consider our results to be
in reasonable agreement with Ekin’s; and the
results for k, appear to have the predicted tem-
perature dependence—at least over the narrow
temperature range we observed.

C. High-field Righi-Leduc coefficient

We have determined the high-field limiting value
of TR}, for each of our specimens. This was
accomplished at each temperature by (a) deter-
mining from Fig. 4, the appropriate field for
which w7, >1, (b) roughly determining the field
at which &, begins to have an effect, (c) fitting a
straight line to the data between these limits, and
(d) averaging all the data for each specimen. The
results are listed in Table II. We note that the
spread in the values is about 7%, which is approx-
imately the error expected due to geometry er-
rors. The average value of TR%; is 1.76x1072
m? K?/CW ; this may be compared to Fletcher
and Friedman’s?” value, TR%. =1.79 X10"2 m*K?/
CW&. (This was obtained from their Fig. 2, at
a temperature at which their specimens should be
in the high-field limit; note that their geometrical
errors are the same as ours.) These results are
to be compared with the predictions of the semi-
classical theory.

The LAK theory" 2 predicts that, regardless of
the number of type of scattering mechanisms pres-
ent in a metal such as potassium, the off-diagonal
components of the electrical and thermal resist-
ivity tensor are given by

W, =HRy, =—H/L,Tne, andp,,=HRy=-H/ne,

where 7 is the electron density. Thus, according
to this theory, in the limit w.7>1, only the static
parameters-of the metal and na the number or
type of scattering mechanisms determine the Hall
and Righi-Leduc coefficients. Babiskin and Sieb-
enman?® and Chimenti and Maxfield!® have shown
that the Hall coefficient of potassium is inde-
pendent of field and nearly equal to the predicted
free-electron value.

We observe that our average value of TR =1.76
x10"2m*K?/C W  is within 3% of the free-electron
value TRy, , =1.82x10"2 m®*K?/CW Q.

Thus, in the high-field limit, the off-diagonal
terms in the two resistivity tensors have magni-
tudes within a few percent of the theoretical pre-

dictions and are field and temperature independent.
Since, theoretically, these off-diagonal terms are
independent of the number or nature of scattering
mechanisms, and are determined solely by the
electronic structure, whereas the diagonal tensor
elements vanish in the absence of scattering pro-
cesses, it may be concluded that an understanding
of the magnetoresistance is to be found either in
the scattering processes or in the “curvature” of
the orbits.

Our results, together with the Hall coefficient
data appear to indicate that there are no gross
effects due to band structure or the Fermi surface
in the field range from 0.1 to 10 T, or 1 <w,Ty,
<290,

There are however, two weak links in this argu-
ment. In a study of the Hall coefficient, Chimenti
and Maxfield'® deduced Ry from high-frequency
helicon wave transmission measurements on single
and polycrystalline specimens of potassium. They
observe a small (~4%) directional anisotropy in
R, which is well outside their experimental error.
Such anisotropy is definitely not expected. Second-
ly, three very different measurements of Ry, each -
having an overall accuracy of better than 3%, all
show Ry to be (4-6)% larger thanR, . (These
are the high-frequency helicon transmission mea-
surements'® just mentioned, helicon absorption
edge measurements,?® and low-frequency helicon-
like electromagnetic resonances in spheres.*°)
{Only one measurement? finds 1% agreement with
Ry, ¢ and they do not adequately discuss their er-
rors.) This is potentially a very important devia-
tion as the semiclassical theory predicts R ,=1/ne.

It is also possible that TR}, may differ from
TR g1, i by (3—4)%. Additionally, we note Ry
>Ry, . Whereas Ry, may be less than Ry, ; thus,
there could be, depending on the crystal orienta-
tion, as much as an 11% increase in the Lorenz
ratio. A deviation of this magnitude is very im-
portant; LAK unambiguously predicts Rg/TR%;
=L,. One possibility is that a small group of car-
riers is not in the high-field limit and thus R, and
Ry, have not yet reached their true asymptotic
values. This is an unlikely explanation; Chimenti
and Maxfield’s measurements show no significant
variation in the magnitude or field dependence of
R, between 2.2 K and 4.2 K and our measurements
show no real changes in TR, with temperature
and field (disregarding the effects of the lattice
conduction). To verify this simultaneous measure-
ments of the Hall and Righi-Leduc coefficients
must be made.

We may conclude this discussion by summarizing
the several major points we feel are evident in our
data.

(i) In the high-field limit the Righi-Leduc coeffic-
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ient is nearly equal to the prediction of the semi-
classical theory.

(ii) It is possible that the high-field Righi- Leduc
coefficient is (3—4)% less than the semiclassical
prediction. Coupled with the results for the Hall
coefficient, we note that the Lorenz ratio is too
large. Since the theory unambiguously predicts
R,/TR%, = L,, these small deviations may be of
considerable importance.

(iii)Because the Righi-Leduc coefficient of pot-
assium is relatively large and because the change
in electronic thermal resistivity is very large,
great care must be exercised in determining the
effects of the lattice thermal conductivity on the
magnetothermal transport coefficients.

(iv) A large anomalous lattice conductivity is not
consistent with our data.

(v) A lattice conductivity consistent with our data
can be extracted and has a magnitude that is in fair
agreement with a simple theoretical calculation and
has the correct temperature dependence.

" (vi) By using the ratio of the transverse to be
longitudinal temperature gradient we are able to
determine when w_7,,>1. The value of 7, thus
measured agrees well with calculated values.
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