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He phase transition in dilute mixtures of He in superfluid He
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A theory of pairing, which includes many-body effects and is exact in the limit of low density, is employed to
calculate a pairing interaction for the 'He component which contains concentration-dependent effects. Using
the latest He effective potentials the maximum transition temperature at low pressure is estimated to be of
order 10 ' mK. At high pressure both s- and p-state transitions may occur at temperatures as high as the 0.1-
mK range.

I. INTRODUCTION

The recent discovery of the supe~fluid phase
transition in. liquid 'He has stimulated renewed
interest in the possibility of observing a transition
in the 'He component of dilute mixtures of 'He in
He. ' The usual model for mixtures at very low

temperatures is that of a system of low-density
Fermions of effective mass mo~ interacting via an
effective interaction v,«. Within this context the
'He is assumed to be in its ground state and
serves only as an "aether" in which the 'He atoms
move and which modifies their mass and inter-
action. A.number of authors have used this model
to calculate the transition temperature directly
from v,«within the BCS pairing theory. We have
calculated the pairing interaction and T, employing
the latest phenomenological effective potential'
and including concentration dependent many-body
effects.

Our starting point is a general theory of pairing
in low-density systems developed by Layzer and
the author. " In this theory, which will be dis-
cussed in more detail in Sec. II, the pairing inter-
action U~ for pairs with orbital angular momentum
L, is written as a sum of a "BCS"part U~ and a
part 6U~ due to many-body contributions to the
irreducible particle-particle scattering vertex.
U~ results when this vertex is approximated by
the ba, re interparticle potential (or v,« in the ap-
plication to mixtures). It was shown in Refs. 3 and
4 that 6U~ predominates over UI in the limit of
very low density for pairing with I.&0. Thus,
since the 'He component of the mixture is assumed
to be low density and I. =1 pairing may be appro-
priate at certain concentr'ations, the 5U correction
should be included. It turns out, however, that at
the relevant concentrations, 5U~ is a relatively
small correction which tends to suppress pairing
in s states and enhance it in P states.

6U~ depends explicitly on the 'He concentration

and can be calculated exactly to leading order in
the concentration. Unfortunately, due to our pres-
ent lack of knowledge of the effective interaction,
the concentration dependence of U~ cannot yet be
taken into account in a consistent way. The leading
contribution to U~~ is directly related to the
"free-space" scattering phase shift calculated
from v,«. Since v,« is obtained from experiments
at several concentrations' the phase shifts im-
plicitly contain concentration dependent effects.
In addition, for I =0, we have also included an ex-
plicitly concentration-dependent term in Uo~cs [see
Eq. (12)] which has been neglected in most other
calculations and tends to suppress s state pairing.
Owing to these difficulties the magnitudes of the
resulting T,'s should be viewed with caution.

Briefly, the results are as follows. At zero
pressure the P state provides the highest T, for
Fermi momentum k„&0.24 A ' ('He concentration
&1.9%%u~). The transition temperatures are dis-
couragingly low: the maximum s-state T, is 1.3
x 10 ' mK at k~ =0.15 A ' (0.6% 'He) and the high-
est P™stateT, of 4&10 4 mK occurs at the maxi-
mum concentration of about 6.5%. This experi-
mentally unfortunate situation may improve at
higher pressure. We have also done calculations
at 10 and 20 atm using the "speculative" effective
potentials of Landau et al. ' and find the highest
T, 's at 20 atm. ' Indeed, both an s-state transition
at low concentration (-1'%%uo) and a P-state transition
near the limiting concentration may occur at tem-
peratures that should soon be experimentally ac-
cessible. It must be, stressed however that the
high-pressure results are only tentative; further
experimental investigation of the high-pressure
region is necessary not only to seek the transition
itself but also to obtain enough additional data to
accurately determine the effective potential.

In Sec. II we discuss pairing in low-density sys-
tems in general and in Sec. III application is made
to 'He-'He mixtures. In Sec. IV the numerical re-
sults are presented.
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II. PAIRING IN LOW-DENSITY FERMION SYSTEMS

Before considering the application to mixtures
we outline the general theory of pairing in low-
density systems. " This theory provides exact
results at low density for arbitrary L-state pairing
in systems with short-range (including hard-core)
interactions. The starting point is the exact gap
equation linearized at T = T,

(p (p, &u„) = -T,Q Q I(p, k; v„, (u ) G(k, ~ )

U =(m/k )(k Llv'ly(k, L))

l 4 (kr, L)) =
l k„,L) —G~v'

l g (k„,Q)

(rlk, I.) =kryo, (kr),

(4)

(5)

(6)

1
G

m

" ('~"') (lk)(kl —lk„)(krl), (t)
Ck

&& G(—k, -(u )(p(k, (u, ) . (1)

G is the exact normal-state single particle propa-
gator and I(P, k) is the irreducible interaction
vertex for an antiparallel-spin particle pair scat-
tering from (P, -P) to (k, —k). We note that for
calculation of T, in a system without long-range
magnetic order in the unpaired state it is suffi-
cient to consider only the pairing amplitude for
pairs in antiparallel spin states. ' Singlet and trip-
let amplitudes are obtained as the appropriate
combinations of the antiparallel-spin amplitude.

It was shown in Refs. 3 and 4 that in the low-
density limit Eq. (1) reduces to the BCS "weak-
coupling" form with

I- v'(p, k) = v(p, k) + Re5I(p, k; 0, 0),
where v is the primary interatomic interaction and
6I is the many-body contribution. This reduction
to weak-coupling form is expected to be a reason-
able approximation also at higher density so long
as T,/Tr is small and I(P, k) is not strongly ener-
gy dependent. Following Emery and Sessler' (ES)
a pairing interaction U~ can now be defined such
that U~ &0 is the transition criterion and

Tc =4.56(m/m*) Tr exp(mm/2m*U~) .
In the ES formalism U~ is obtained from the follow-
ing set of equations:

One now writes

UBcs +gU

with U~ defined as the pairing interaction for
6I=O. The principal and perhaps somewhat sur-
prising result" is that in the low-density limit,
6U~o. 5I~~x', while U~~ ~x' ". In this limit
5U~ is repulsive for L =0 and attractive for L & 0,
independent of the sign or strength of v. Thus, for
L & 0, ~U~ predominates at low enough density.
Indeed, a hard-sphere gas should be condensed
with P-state pairing at sufficiently low density and
temperature. '

To provide background for the application to mix-
tures, we consider now the low-density limit in
somewhat more detail. The leading contributions
to 5I at low density are obtained by replacing v
with the Qalitskii- Feynman particle-particle t ma-
trix' in the second- and higher-order diagrams
for I. Note that the first-order I diagram v (which
is by definition not included in 6I) must not be re-
placed by t since I must be irreducible in the
particle-particle channel. The replacement can be
done however in diagrams for OI and has the nice
side effect of removing the divergence difficulties
associated with a hard-core interaction. As a
matter of fact, a hard-core v also causes no
problem in the calculation of U~~cs since Eqs. (4)
and (5) with v'- v are of t-matrix form and wash
out the singular effect of the hard core. The actual
solution of the equations must of course be car-
ried out in position space when v(r) has no Fou-
rier transform. ' The diagrammatic representa-
tion of the integral equation satisfied by t is
shown in Fig. 1. Note that no exchange diagram is
included; we do perturbation theory in unantisy-
metrized form in terms of interaction lines. The
diagrams contributing to 5 I at second order (in t)
are shown in Fig. 2.

Qalitskii' has shown that the 1 matrix has the
following form at low density:

(-m/4m)t =f+5f,
where f denotes the standard free-space scattering
a, mplitude and 5f contains the many-body effects
of the exclusion principle and off-the-energy-shell

where ti, = (ksT, ) ' and the energy e& is measured
from the Fermi level.

A convenient expansion parameter at low density
is x =—krfocc (density)'I', where f, is the zero-ener-
gy s-wave scattering amplitude (the negative of
the scattering length). In a hard-sphere gas, for
example, f0=-A. For the 'He component of mix-
tures x lies in the range 0&x&0.4.

V +

FIG. 1. Particle-particle t matrix.
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FIG. 2. Second-order (jn the particle-particle t-mat-
rix t) contributions to the many-body irreducible pair
interaction function &I(p, &) for particles with equal and

opposite momenta p and spin s.

5U, =X,x'+O(x') .

The A~ have been calculated exactly' with the re-
sult Qp 0 51 and 4, = -0.05 for L, = 0 and 1, re-
spectively. The x' contribution has been calculated
approximately' but will not be discussed here be-
cause, as will be seen shortly, there are addition-
al x' contributions in the case of mixtures which
cannot yet be accurately estimated.

The expansion of UBcs for L, —0 i

U' '= —x+(4/m)x'+O(x') .

scattering. 5f contains an additional factor of x
relative to f. As we here only wish to indicate the
origin of the leading terms in the density expansion
we have written Eq. (9) in symbolic form. For a
detailed account of the Qalitskii theory the reader
is referred to Ref. 9 or the book of Fetter and
Walecka. " Jn the low-density limit t approaches
the constant (—4m/m)f, .' In this limit diagrams (a)
and (c) of Fig. 1 cancel exactly, leaving diagram
(b) as the sole contribution. This contribution is
proportional to fog(p+0), where Q is just one-
half the usual polarization bubble. To leading
order one can neglect the second term in Eq (5).
which leads to 5U~ = (m/k~)(k„, L~GI

~ k~, I ).' Thus
one easily verifies that the leading term in 5U is
order x'.

That diagrams (a) and (c) must cancel to leading
order can be seen by the following argument. "
Since the spin projections of the entering and leav-
ing particles in Fig. 2 are fixed, in both diagrams
(a) and (c) one of the t scatterings must occur in a
parallel spin state while in diagra. m (b) both are in
antiparallel states. Now in the low-density limit
where t reduces to the constant interaction f„
diagrams (a) and (c) must be omitted since scat-
tering of parallel spin particles by a zero-range
contact interaction is forbidden by the Pauli prin-
ciple.

The expansion of 6U~ thus has the form

This result has been proved by direct calculation'
from Eqs. (4)-(7) employing a model v consisting
of a repulsive hard core plus a 6-function attrac-
tion designed to simulate the 'He potential. The
result is presumably valid for any short-range
potential.

From Eqs. (10) and (11) we see that for" fo&0
the system is condensed with s-state pairing as
x-0. As kF increases, the x and higher-order
terms will eventually cause U, to turn repulsive, "
at which point P-state pairing must be considered.

III. APPI. ICATION TO He-4He MIXTURES

Several difficulties appear when the above low-
density theory is applied to mixtures. In this case
we take v to be v,qf, the effective interaction"'
between two 'He quasiparticles. &e assume for
now that v,« is independent of the 'He concentra-
tion. This assumption will be discussed shortly.
Since v,« includes contributions from the 'He back-
ground medium, we must ask whether 5I can also
be included without "double counting. " The OI

diagrams in Fig. 2, for example, can be consid-
ered classically as three-body collisions in which
a particle from the Fermi sea interacts with the
original Cooper pair. ' Now, as pointed out by
Emery, " three-body collisions are, to some ex-
tent, accounted for in v,«since the 'third 'He must
displace a 'He whose effect is already included in
v ff However, the important point is that at low
density the )ezdzzg contribution to 6U comes en-
tirely from diagram (b) in which an exchange oc-
curs between one member of the original pair and
the third particle. Since this exchange process
could not take place if the third particle were a
'He, we conclude that diagram (b) is got con-
tained in v,«. The same argument holds for dia-
gram (c). Diagra, m (a) on the other hand is a non-
exchange, density-fluctuation-type diagram and is
probably, at least partially, included in the part of
v ff a ri s ing from exc hange of a 'He phonon. We
have shown however that diagram (a) does not con-
tribute to 5U at leading order (x'). At order x'
and higher, contributions to OI appear which do
"double count. " We avoid the difficult problem of
exactly how these diagrams should be handled by
retaining only the leading term in the expansion of
O'U. Preliminary calculations show that T, is not
particularly sensitive to the x' contributions.

In order to include the rather large contribu-
tions to U~ at order x' ", it is convenient to in-
troduce the phase shift approximation. " This is
equivalent to replacing G~ in Eq. (5) by a free-
space Green's function when calculating U~ . Then
Ugcs- -tan5~(k~), where 5~(k~) is the "free-space"
phase shift, due to v,«, for scattering at relative



540 DOUG I. AS FAY l6

U,"'= -tan5, (k,) + (4/m) x'+ O(x'),
UBcs =-tan5, (k ) +O(x') .

(12)

(13)

At L, =0, the x' correction to the phase-shift ap-
proximation due to many-body effects leads to a
factor e ' in the equation for T,' which has also
been noted by Emery. " As can be seen from Fig.
3, this correction has a sizable effect at the im-
portant densities.

To actually compute f, and the 5~(k~) for mix-
tures at zero pressure we employed the effective
potential (which is really a transition amplitude)
g((I) of Kuenhold and Ebner':

momentum k~. This approximation yields correct-
ly the x2i+' and z'i+' contributions to UiBcs Con-
centration dependence arising from exclusion
principle restrictions in G~ enters first at order
x' for I. =0 [see Eq. (11)] and at x' for I. =1.' Neg-
lecting, at L =0, possible corrections to the weak-
coupling from of the gap equation, "we have

with nzo*=2. 28m, in the zero-concentration limit'
we find from Eq. (15) f, =f, (0) = 1.00, in good agree-
ment with Emery's result. "

The validity of the application of the low-density
theory to mixtures depends. not only on the density
being low but also on the availability of an effective
interaction between an isolated pair of 'He atoms
in the 'He medium. The effective interaction we
used was obtained from measurements at finite
'IIe concentration and was assumed to be inde-
pendent of concentration. A possibly significant
concentration dependence was in fact suggested by
Kuenhold and Ebner' and recently Fu and Pethick"
have found a concentration-dependent contribution
to v ff which varies as c ' ', where c is the 'He
concentration. This result, together with Eq. (15),
indicates that the "free-space" scattering ampli-
tude f~(k) and hence f, are actually functions of the
density expansion parameter x and suggests, since
c'~'- kz, that fz (k) can be written in the general
form

(14) f~(k, x) =f~(k, 0) +z f~x+ ~ ~ ~ (17)

5z(k) =-,' sin 'I2kf~(k)/2L +1]

The zero-energy s-wave scattering a.mplitude is
needed to determine the expansion parameter x:
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FIG. 3. Contributions to the s-state pairing interaction
as functions of the Fermi momentum at zero pressure.

where q is the magnitude of the momentum trans-
fer, V is the volume, and q, =0.753 A '. The
partial waves of the standard scattering amplitude
f~(k) a.s a function of the relative momentum k are
given by

f (&)=-(4', ) 2~. ) ~A&(s)&, ( 2~. ).
(15)

The phase shifts required for calculation of U~~

are computed from

where we now define x =—k„f,(0, 0). Assuming the
correctness of Eq. (17), our use of the experi-
mentally determined f,(0, x) instead of f, (0, 0) in
the expansion parameter x does not give rise to
error in the leading term of 6U~. The corrections
entering 6U at order x' probably do not have a
significant effect on 7, unless 6f, turns out to be
anomalously large.

The ef fee t of cone entration dependence on U~
is more serious. As with &U, the leading term
(-x'~") is not affected but, for L =0, corrections
would enter as soon as order x', the order at
which many-body effects have been retained in
Eq. (12). While concentration-dependent effects
cannot be consistently taken into account due to
our lack of detailed knowledge of the effective in-
teraction, the phase shifts calculated from the
phenomenological effective interaction include the
concentration dependence in some average sense
and may thus provide reasonably good numerical
results.

IV. NUMERICAL RESULTS

The various contributions to the pairing inter-
action for L = 0 at zero pressure are shown in Fig.
3. Our 5,(k) has the same general shape as
Emery's" but is somewhat less attractive. The
other curves in Fig. 3 are obtained from Eqs. (8),
(10), a,nd (12). The point at which the s-state
pairing interaction turns repulsive is seen to be
substantially lowered by the many-"body correc-
tions. In the density range of interest, 5U, is a
rather small (and attractive) correction to U~~c'.
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FIG. 4. Pairing interaction Ul. for ~. =0 and 1 as func-

tions of Fermi momentum at pressures P = 0 and 20 atm.

at zero pressure and k =0.34 A ', U, =-0.097
and 5 U] 0 006 U'0 and U, are shown in Fig. 4

as functions of k~. The transition temperatures
quoted in the Introduction follow from Eq. (3) with
m*/m = 1.05.

At high pressure we employed the potential of
Landau et a/. ' which ha. s the same form as Eq. (14)
but without the exponential factor. At 20 atm with

m,*=2.72m, we find f, =0.924. A calculation iden-
tical to that at zero pressure leads to the results
shown in Fig. 4. The maximum s-state T, is 0.24
mK at k~ =0.19 A ' (-1% 'He), while, for L = 1, T,
climbs into the mK range for large k~ near the
solubility limit. As mentioned in the Introduction,
the quantitative high-pressure results should
probably not be taken very seriously, particularly

at high concentration where U, is sensitive to the
form of the effective potential at large momentum
transfers. Also, in this large k~ region, correc-
tions to the low-density theory may be' important.
On the other hand, the prediction of the rather
high T, for the s-state transition at high pressure
and low concentration should be less sensitive to
these effects. The high-T, values at high pressure
arise essentially from the strong momentum-
transfer dependence of the effective interaction of
Landau et gl. The enhanced s state T, is due to
the fact that, at high pressure, the minimum of
A(q) occurs for q) 0 (see Fig. 8 of Ref. 5). This
leads to an increase in the integral in Eq. (15) and
a corresponding increase in T, . The very large
increase in T, for L = 1 at high pressure and large
k~ occurs because A(q) becomes positive and
large at large q where the P~ in Eq. (15) has
turned negative. This behavior of g(q) is best
seen in Fig. 1 of Ref. 6. Further experimental in-
vestigation is required to determine whether this
behavior of A(q) actually occurs.

We note in passing that the predicted p-state
transition would most likely occur in a Balian-
Werthamer state" since the strong spin-fluctua-
tion effects which lead to the stability of the An-
derson-Morel state" in pure 'He do not play an
important role here.
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