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In order to test the usefulness of Compton scattering for the investigation of structural effects on the

ground state of solids, the structure dependence of the density of states (DOS), momentum density (MD),
and Compton profile (CP) has been studied using various ordered and disordered arrays of atom potentials of
the Koster-Slater impurity type. For the crystalline arrays the'results are exact within the one-electron

approximation. The dependence of the crystalline DOS, MD, and CP on the atom density and the

anisotropy of the structure is discussed. For the disordered distribution of atoms the results are exact within

the coherent-potential approximation. The results show that disorder is seen as a more atomiclike behavior of
the MD and the CP, and that the disorder-induced changes in these quantities are detectable with the

presently achievable experimental accuracy. In addition, approximate methods for evaluating MD's and CP's

are discussed and conclusions on their quality drawn.

I. INTRODUCTION

The differential scattering cross section for
Compton scattering is according to the impulse ap-
prdximation'' directly related to the ground state
of the electron system considered. Therefore, in

principle, Compton scattering is an ideal tool for
studying structural properties of various phases of
solids. The present state of the art in experi-
mental Compton spectroscopy may be character-
ized by two numbers (y-ray case): total momentum
resolution 0.4 a.u. and statistical counting accuracy
0.59'.' In addition to these uncertainties, aspects
such as multiple scattering, separation of the back-
ground, relativistic effects, and core corrections

. have to be considered at least for systems with
heavier constituents. Since structural properties
influence, to a first approximation, only the val-
ence contribution to the scattering process, it is
not clear at present to which extent different
phases of a given material are distinguishable in
the experiment.

Theoretical calculations of Compton Profiles (CP)
are based on the impulse approximation, ' which re-
lates the CP and the ground-state momentum den-
sity (MD) to each other. The calculation of MD's

is, however, a difficult problem even in the one-
electron approximation. Methods, such as the lin-
ear combination of atomic orbitals"' (LCAO) or the
pseudopotential approach'~' used extensively to de-
termine primarily energy-dependent properties of
periodic solids, are only valid for restricted energy
ranges, and may lead to systematical errors, the
magnitude of which is hard to estimate. Even in the
case of density- functional based self- consistent
methods, such as self- consistent orthogonalized
plane wave' (SCSOPW) or self-consistent discrete
variational metpod9 (SCDVM), correlation ef-
fects are at best incorporated in a statistical fash-

ion. Again there are no quantitative estimates of
these effects on the ground-state properties of per-
iodic solids. For solids without long-range order
or for large molecules, there are not even methods
for treating the electronic ground state at a com-
parable level within the one- electron approxi-
mation. In particular, for solids with only a well-
defined short-range order a theoretical description
of the ground state is still unavailable.

Thus, a number of basic questions on the ground-
state properties of periodic and nonperiodic solids
require answers to which Compton spectroscopy is
likely to be able to contribute, since it sensitively
only depends on the electronic ground state con-
trary to, e.g. , optical spectra which involve ex-
cited states of the system. The ground state, on
the other hand, is determined both by the con-
stituent atoms and by their structural arrangement.
This has been shown to be true long ago for the mo-
mentum distribution of simple molecular systems
in the pioneering work of Coulson et al." Also,
for a specific ionic crystal, the CP has been de-
monstrated to be orders of magnitudes mox e sen-
sitive to anisotropy than x-ray form factors. '
Therefore, CP's should, in general, bg sensitive
to changes in the local arrangement of the atoms in
the different phases of a given material. Of special
interest in this context are the disordered phases,
e.g. , the amorphous semiconductors, for which
first studies have revealed large differences in the
CP with respect to their crystalline counterparts. "

The aim of the present work is to study these
structural effects quantitatively, in order to ex-
plore their influence on the CP and in order to see
whether these effects are measurable with the pre-
sent experimental technique. The electronic den-
sity of states (DOS) and the ground-state MD and

CP are the key quantities considexed in this model
study resulting in answers exact in a sense defined
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In the impulse approximation the CP, Z„-(q), is re-
lated to the MD of the ground state N$):

J~(q) = 2fd ( «{(p)5{t«—,(« —2k p), (4)

where q = ((d —k')/2k, and ~ and k denote the energy
and momentum transfer, respectively. In the one-
electron approximation, the MD is given by (T =0 K)

below. In Sec. II, the model solids are defined.
The results for the Qreen's functions for these sys-
tems are derived in Appendices A, 8, and C. The
ground-state yroperties DOS, MD, and CP are yre-
sented in See. III. Approximations for the momen-
tum density are considered in Sec. IV. In the dis-
cussion in Sec. V crystal formation, structural
changes between crystalline yhases, and order-dis-
order transitions are considered in order to obtain
information on the sensitivity of the CP. In See. V,
the LCAO approximation for the MD is also discus-
sed in comparison with the exact results. This
provides criteria for the validity of approximate
methods when evaluating ground-state properties of
real solids.

II. MODEL

Consider a solid of volume Q consisting of N mo-
del yotentials each of which may be assigned only
one s-like valence state. Such model atoms CRIl be
represented by the scattering operator (in free-
eiectron representation)

t(k, k', E) =4v/(X, + jVE) =t(E). (1)

f(E) has a pole at the energy E,= —fC,' of the s-like
state and corresponds to the potential(,)

(-4v/vo, ~k- k'
~

~ v@0

~. 0, otherwise

in the limit vo- A'o ~ with KO=2k'o —vo re
maining finite (Appendix A).

The specific structures studied are (i) the crystal
lattice with one atom per unit cell and (ii) the ran-
dom distribution of atoms. For the crystal, the
one-electron Green's function ean be determined
exactly and for the random distribution it can be
evaluated exactly within the coherent-potential ay-
proximation" "(CPA). Using the one-electron
self-energy S(k, E), one obtains for the diagonal
yart of the Green's function

G(k, E) = I/[E O' —S(k, E)]. - (3)

The expressions for S(k, E) for the crystal and for
the random ease are. given in the Apyendices 8 and

C, respectively.

III. GROUND-STATE PROPERTIES

AND COMPTON PROFILE

(«(y)= ~ QI(,(RI*,

dEG(p, E') .

The density of states is given by

1 1
n(E) =-- — d'P ImG(p, E ),

and the Fermi energy E& by

n(E) dE = 1 .
~OO

In general the ground-state MD is related to the
one-electron density matrix y, (r, r') via the Four-
ier transformation

(«(s fu «f=s ««-".t'-"&«, («-, «-).

Thus, N(p) and consequently also Zf(q) contain in-
formation on the nondiagonal parts of the first-or-
der density matrix y, (r, r ). This is complemen-
tary to elastic x-ray scattering, which only yro-
vides information on the diagonal part of y, (r, r').

Using the Green's functions of the model systems
described in Sec. II, it is straightforward to deter-
mine n(E) and N(p). For the random distribution,
as mell as for the isolated atom, the MD is iso-
tropic and the CP reduces to the one-dimensional
integral

~( )=«,', fd{'~(«(I{7.I) (10)

For the crystal, N(p) also depends on the direction
of p, and the two-dimensional integrals associated
with the CP have been evaluated numerically. '

Results for n(E), N(p), and Z(q) are shown in
Figs. 1 and 2 for two densities of atoms 5 defined
as 5 =4'/(QK', ) 5 = 1 corresponds to an ordinary
density with sizeable nearest-neighbor inter-
actions. Two different crystal structures, the sim-
ple cubic crystal and the simple tetragonal crystal
with the lattice constant ratio y= c/a = 2, have been
considered. A relative convergence threshold of
0.001 for the MD was used in all cases. In Fig. 3,
the anisotropy of the Compton profile (ACP), de-
fined as

«I f (q) =~;(q) -~r(q),

1
),f s'((«(pa=(,

where the g&(p) 's are Fourier transformed one-
electron wave functions. The sum includes all oc-
cupied states j. N(p) is related to the one-electron
Green's function via
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FIG. 1. Density of states,
momentum density, and

Compton profile fox two
model solids with the den-
sity of atoms 6 =l. Simple
cubic crystal (full curve)
and random distribution
(broken curve). For the
simple cubic structure, the
momentum density and
Compton profile ax'e shown
along the [100] bonding dir-
ection. For reference, the
results fox the isolated
atom have also been plotted
(dotted curve). All quan-
tities are shown in reduced
units (see Appendix A).

has been plotted for 5=1, and @=1 and 2 for char-
acteristic directions. . Figures 4 and 5 disylay con-
tour mays of N(y) for 6 = 1 and y= 1 and 2, respec-
tively. Finally, in Fig. 6, the difference Cp's
(DCP) between the isolated atom and the random
and crystalline yhases are shown for 5=1, and y
= 1 and 2.

IV. APPROXIMATIONS FOR THE MOMENTUM DENSITY

could include orthogonalization effects with respect
to the core and also, to some extent, self-consis-
tency effects. For the present model systems,
with only one s-like state per atom, the LCAO sch-
eme turns out to be particularly simyle.

The LCAO Bloch function for the descriytion of a,

periodic solid is in the present case

q-„(r) = a- Qe""&y(r —H,),

A rigorous first-yrinciyles evaluation of the
ground-state MD of a real material is very com-
plicated or even impossible at present, as, for ex-
amyle, for the amorphous yhase of semicon-
ductors. It is thus imperative to search for real-
istic approximations involving as few adjustable
parameters as possible. For wave- function depen-
dent ground-state yroyerties, such as the MD, the
LCAQ method might be a suitable ayyroach, which

where P(r) denotes an s-like normalized atomic
function. a„- is the normalization constant. a„- clearly
deyends on the overlay between the atomic func-
tions and is only for orthogonal P's a constant eq-
ual to (N) '~'. a, may be written as

Here 6„is a reciyrocal-lattice vector and P(y) the
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FIG. 2. Density of states,
momentum density, and

brompton profile as in Fig.
1, but fox the density of
atoms 6=0.1.
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a configuration R„.. . , R„, the LCAO ansatz

0.02—
g (r) = Pc,(R„.. . , R„)(j((r—R,) (15)

O

0
1

O

c3

—0.0 2—

-004—
PF

5 /o OF J~pp(0)

q/ Ko

results formally in

iv(p =f(@
I e(» I' (16)

where (j1(p) only depends on the atomic part and

f(p) contains the details of the structure associated
with the particular configuration. In terms of the
Green's function one may write

FIG. 3. Anisotropy of the Compton profile for the
simple cubic (sc) and simple tetragonal (st) phases
with the density of atoms I5=1. sc [100]—[110]direc-
tions (fu11 curve), st [100]-[110]directions (broken
curve), and st [100]-[001]directions (dotted curve).
pz denotes the Fermi momentum.

Fourier transform of Q(r). For a crystal with one
atom in the unit cell and one state yer atom, one
obtains (Eq. 5)

dE G,y(E)f(p) Im e(y'(R(-(Igx& (17)Nn rr

with G, z(E) = (Q, IG(E) I(j(,,). The structural factor
f(p) depends both on the atomic positions R„.. . ,R„
and the interatomic interaction represented by
G».(E), the probability amplitude for an electron
with the energy E going from the state (t((r R,)—in-
to the state (t((r —R,,). Taking the average overall
configurations (R„.. . , R„)by using the associated
normalized probability density P(R„.. . , R„) one
obtains

Iv(p) = —„QIy(p- G„)I' 'Ie(p) I'. (14)
(f(y)) =1 —1 f d'xed P, (x1d(x(, " (18)

For the random distribution of atoms a more
complicated parametrization has to be made. For where

A(R, —R, ) =
N

IId R, P(R„R,IR„.. ., R„)
3, ~",QN !=3

E
dEG12(E;R11. . ., R~). (19)

In Eq. (18), the factorization"

P(R„.. . , R~) = P, (R,)P2(R, I R2)

xP(R„R, IR„.. . , R„)

has been used. P(R„R, IR„.. ., R„) denotes the
conditional probability of finding atoms at
R„.. . , R„once two atoms are fixed at R, and R,.
For a disordered system, macroscopic homo-
geneity and isotropy imply that

P, (R,)=0 ', P, (R, IR ) =P,(IR, —R~ I).

(20)

(21)

Thus ( f(p)) (Eq. 18) has been decomposed into a.

purely structural part P., and a second part depen-
ding on the interactions between atoms. In the case
of a periodic configuration f(p) is given by the pre-
factor of

I Q(p) I' in Eq. (14) and is a periodic func-
tion in p space. Further, for a completely random
distribution of atoms, in addition to P„also
P,(IR, —R, I) =const. and hence (f(p)) is simply the
Fourier transform of 4(x).

In order to investigate the equality of the LCAO
approximations (14) and (16) a choice of the atomic
function P has to be made. The simplest possi-
bility is to use that of the isolated atom (Appendix

I

A) such that the binding energy is left as an adjus-
table parameter E to account for the interatomic
interactions in the solid, i.e. ,

Iy(p) I'=8.zy(ff, P ) . (22)

By comparing the exact MD's (Apyendices B and C)
with the LCAO counterparts one obtains f(p) as a,

function cf the parameter A. If it would Qe pos-
sible to find a good fit for some value K such that
f(p) = const. , all interatomic interactions had been
included into the atomic function. Such a solution
is, however, in general not possible and would in
the present case mean that, e.g. , aIl crystalline
anisotropy effects would vanish.

Consider first the LCAO results for the crystal-
line case. In Figs. 7 and 8 the best fit of Eq. (14)
to the exact result for the MD (Appendix B) is
shown for 5 = 1,y = 1 and 5 = 1,y = 2, respectively.
The corresponding LCAO CP's have not been eval-
uated, since the latter differences are even smal-
ler, a statement which may be verified, e.g. , by
studying the examples given in Figs. 1 and 2. For
the random array of atoms with 5 = 1 the ratio

i(((pj)„„,/ I(j((p I)'=f'(p) has been plotted in Fig. 9.
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FIG. 4. Contour map of the simple cubic crystalline
momentum density. The density of atoms is 6=1. The
contour plane includes the origin of the momentum space
and the directions [100] and [001]. The width of the con-
tour. plane is 3, and the contour increment 41' && 0.025 re-
duced atomic units.

For comparison, Fig. 9 also shows the corres-
ponding f'(p) for the crystal with 5 = 1 and y= 1.

V. DISCUSSION

Consider first, the question concerning the sensi-
tivity of the CP with respect to changes in the MD.
By comparing the results shown in Figs. 1 and 2,
one reali. zes that the two-dimensional integral
smoothens most of the rather large differences in
the MD's. For example, the ratio of the atomic and
crystalline MD's is maximally 3.2 for the density
5 = 1, whereas the corresponding ratio for the CP's
is only about 1.3. Numbers like these of course
strictly apply only to the present model systems,
but quantitatively similar effects are also true for
more comphcated systems. '

FIG. 6. Difference Compton profile between the iso-
lated atom (IA), the random array (B), and the simple
cubic (sc) and simple tetragonal {st) crystals. IA-B
(full curve), R-sc [100] (broken curve), and 8-st [100]
(dashed curve where applicable 6=1 has been used.

A h sically more interesting aspect is the sensi-p
tivity of the CP against structural changes in the
system. Figure 3 shows that the CP exhibits a signi-
ficant anisotropy even for the simple cubic lattice.
For an energy transfer of the order of the Fermi
momentum P~, the CP along the nearest-neighbor
bond direction [100] is higher than in the nonbonding
direction [110]. For small q the effect is reversed
because of vanishing anistropy for large q and be-
cause of norm conservation. This behavior of the
CP reflects the well-known empirical rule on the
MD, namely that bond formation enhances the

—8—
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3

FIG. 5. Contour map of the simple tetragonal crystal-
line momentum density. For additional information see
caption of Fig. 4.

P/Ko

FIG. 7. Momentum density of the simple cubic crys-
tal with (5 = 1 in the [100] direction. Exact result (full
curve) and optimal fit of LCAO model with K=1.22
{broken curve). Inset shows the difference between the
LCAO and the exact results in the [100] (full curve) and
in the [110] (broken curve) directions also in reduced
units. p+ denotes the Fermi momentum.
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FIG. 8. Momentum density of the simple tetragonal
crystal with 6=1 in the [100] and [001] directions. [100],
exact result (full curve); [001], exact result (broken
curve); tlOOJ LCAO fit with &=1.30 (chain curve); and
[001] LCAO fit with g = 1.30 (dotted, curve). pz denotes
the Fermi momentum. '
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FIG. 9. Ratio of exact momentum density and
effective atomic momentum density for 6=1. Random
case with LCAO parameter g =1.01 (full curve), and
simple cubic crystal with LCAO parameter K=1.22
(broken curve).

higher-momentum components perpendicular to the
bonds at the cost of the parallel ones. The contour
maps for the simple cubic and simple tetragonal
lattices in Figs. 4 and 5 prove that this rule also
applies to the present s like systems. Quantitati-
vely the largest changes in the MD's associated
with crystal formation are not seen at momenta in-
volved in bond formation, but as a result of norm
conservation in a region close to the origin of the
momentum space. Furthermore, from Fig. 3 one
realizes that there may be anisotropies of the CP,
which are quite insensitive to major changes in the

system. For example, the doubling of the lattice
constant in the [001]direction introduces only
small changes into the anisotropies perpendicular
to this direction. This behavior parallels the ex-
perimental findings for the group-IVA semiconduc-
tors C, Si, and Ge." The ACP's of these ma-
terials, when scaled to equal density, are almost
the same for nonbonding directions ([110]-[100]),
whereas ACP's involving the bonding directions
(e.g. , [111]-[100])differ. One may thus conclude that
ACP's between nonbonding directions are mainly an
effect of the geometrical structure, while CP dif-
ferences associated with bonding directions are
more sensitive to changes in the chemical bond it-
self. A strict separation is of course not possible,
since the structure is determined by the chemical
bond and vice versa.

In a structural change relaxing the long-range or-
der of the crystalline phase, more drastic effects
are seen (Figs. 1,2, and 6). The MD and CP of the
disordered system show a more atomiclike be-
havior, i.e. , the widths of both the MD and CP are
smaller and consequently the values N(0) and J(0)
are larger than in the crystal. This means for the
disordered ground state a decrease of the prob-
ability density associated with intermediate-mo-
mentum components, when compared with the cry-
stal. Qne may thus deduce that the expectation val-
ue of the kinetic energy of the electrons, or via the
virial theorem, the cohesive energy, for the disor-
dered system shouM be smaller than for the crys-
tal. In addition, in the low-density case (Fig. 2),
the MD for the random distribution of atoms turns
out to equal almost quantitatively that of an iso-
lated atom, whereas the DQS is still considerably
broadened by the interatomic interactions. Al-
though the CPA, together with the assumption of
the completely random distribution involving large
overlap matrix elements, seems to overestimate
these trends, the conclusion is that disorder in
general broadens the DQ8,"and just the opposite
is true for the MD and the CP. Considering the
differences between the CP's of the isolated atom
and the random array and, on the other hand, of
the latter and the crystalline lattices shown in Fig.
6, one realizes that qualitatively all differences
are similar. The CP of the random array thus
seems to interpolate between the CP's of the iso-
lated atom and the crystal lattice. If one extends
this result to real amorphous materials, it means
that different amorphous phases may have a more
atomiclike or more crystalline CP-depending on the
involved degree of the short-range order.

The effects of structural changes on the CP dis-
cussed above have been experimentally verified for
the anisotropic semiconductor Se.'"" For exam-
ple, the exper'imental J(0) value of the studied am-
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orphous phase is about 5% larger than that of the
polycrystalline trigonal phase. Also the difference
of the CP's between the amorphous and polycrystal-
line phases as a function of q behaves qualitatively
similar as in the present case.

Consider finally the approximate LCAO methods
discussed in Sec. IV. The crystalline results for
a realistic density of atoms (5= 1) in Figs. 7 and 8
show that, with a suitable choice of the atomic
function, the simple LCAQ fit describes quali-
tatively correctly both the absolute values and the
anistropy. Effects of self-consistency are of im-
portance for nearest-neighbor [100]bonding direc-
tions and also for the nonbonding directions, such
as the [110]direction shown in the inset of Fig. 'I;
however, considering that there is only one para-
meter involved the fit is good. Therefore, even
for ordinary densities of atoms, the LCAO ap-
proach seems to work reasonably for wave-func-
tion dependent properties of the electronic ground
state, such as the MD and the CP. Qf course,
LCAO results may also be used together with ex-
perimental CP's in order to deduce the realistic
form of the effective atomic functions and of the in-
teratomic interactions, but usually there is more
than one state per atom and then the situation is
more complicated.

As an extension of the above statements, con-
cerning the quality of wave-function dependent
LCAO results, some more general remarks may
be made. If one uses the LCAQ approximation in
order to calculate MD's and CP's, care must be
exercised to include, in addition to the correct ma-
trix elements of the Hamiltonian and the overlap
matrix elements, wave functions of the correct
shape, as has been done, e.g. , in the case of the
simple ionic crystal LiF.' However, although such
a procedure guarantees realistic MD's and CP's,
it does not need to result in correct anistropies or
difference profiles between different phases of
more complicated systems. A second point is that
convergence criteria depending exclusively on en-
ergy spectra are completely insufficient. For ex-
ample, for the simple cubic crystalline phase with
6 = O. j. , a relative convergence threshold of 0.001
for the poles of the exact one-particle Green's
function lead to stochastic steps in the MD, which
were roughly by a factor of 1.000 larger than those in
the energy bands. A systematic investigation of the
convergence of wave- function dependent properties
in the LCAO approach is, however, in practice im-
possible.

From the LCAO results one may also learn that
to a good approximation the interactions between
the excited and occupied states may be neglected
when considering ground-state properties of solids.
It should be noted that this conclusion is based on

wave-function dependent ground- state properties
and not on energy spectra. From this, the associ-
ated well-known statement for the ground-state en-
ergy spectra, namely, that the LCAO approach
provides a good description of valence-band energy
spectra, follows directly. Qn the other hand, the
LCAG results also show that the interatomic inter-
actions of occupied states are important for
ground-state yroperties, since f'(p) deviates from
a constant for all model systems considered. In
particular, one realizes that for the disordered ar-
ray f'(p) remains essentially constant for momenta
above P = 2v/a, where a is the mean atomic separ-
ation. This indicates that the interatomic inter-
actions described by A(x) (Eq. 18) are large only
for distances @ca. For the crystal f'(p) is not
strictly a periodic function of p as it is in the pre-
sent LCAG approximation. The decomposition of
the MD in the LCAQ approximation into a purely
structure-dependent part and an atomic part is in-
teresting from another point too. Equations (16),
(18), and (19) provide the first step for investi-
gating the structure dependence of the CP for more
complicated systems with more than one atom per
unit cell and, what is more important, with short-
range order.

VI. CONCLUSIONS

A number of new conclusions maybe drawn from the
present work constituting the first systematic con-
tribution to the structure dependence of the Comp-
ton profile of ordered and disordered solids. The
most importance of these are the following. First,
the anisotropy of the CP of the crystalline
phases appears to react most sensitively to
changes in the geometrical structure, or, in the
chemical bonding, only in those directions for
which these changes take place. This behavior
suggests a quantitative explanation of the experi-
mental data on C, Si, and Ge. Second, contrary to
the DOS, the widths of the MD and the CP decrease
from the crystalline phase to the random array of
atoms. This conclusion is confirmed by experi-
mental data on Se. Third, although the LCAQ ap-
proximation results in qualitatively correct CP's,
it does not always guarantee correct anistropies
until effects of self-consistency and convergence
are properly included.
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cording to Eq. (5) is

N(p) = 8zKO/(K,'+pf)f. (As)

APPENDIX A: ISOLATED ATOM

The atom potential is defined in the plane-wave ba-
sis by N(p) = 8)t/(I +p')'. (A6)

In reduced units z =E/K,', P =P/Ko, H=Kof N, and
2=K, J'. Equation (A5) may be written as

v k, k')= -4./... ik-k'I=k.
.0 otherwise.

(Al)
From Eq. (10) it follows for the CP

~ (q) = (I/)t') [1/(1+q')] (A7)

The scattering matrix fulfills the integral equation

t(kk', z), = v(k, k')+g v(k, k")

normalized as

f &(s)A=(. (A8)

x t(k, k', z),z— (A2) APPENDIX B: CRYSTALLINE ARRAY OF +TOMS

where z is a complex energy variable. Combining
(Al) and (A2) one obtains for iz i «())ko)' a t(k, k',
z), which is independent of k and k'. For real z =E

For an arbitrary crystal lattice fR&J with one atom
per unit cell the crystal potential is given by (N
atoms in volume 0)

t E)=
vo+4vF(E) '

((k,k')= ge'1' ""~tv(k, k'). (Bl)

F(E) = lim
1

t)~ 0 jw ig~jff) «ry E+Aj k

——k .
2w

(AS)

The electronic self-energy satisfies the integral
equation

S(k, k', z) = V(k, k')+ Q V(k, k")
k"xk

Since t(E) has a pole at E= —K,' with K, =2k, —v„
there is a bound state for v with this energy. The
Green's function is diagonal in the momentum p

x S(k', k",z).
z

Using the lattice relation

(B2)

G (p, E) = Go(p, E)+ Go(p, E)4r/Ko+ i v E

G. ,(p, E) = 1/(E P'). - (A4)

The associated MD in a volume A normalized ac-
( I

pe g(a &)i5-y-
Sl

where G is a reciprocal-lattice vector, and Eq.
(Al), one obtains

S(k, k', z)=d —— Q 5„- „; 6 + fS(k —G,k', z) .
; 5 ' —Ik-G I' (B4)

Here d =N/0 denotes the density of atoms. Iter-
ation yields for the diagonal part of S

4w
N(p) =-

I
I —6S/s&

I

6 = 6 (p)&6&

(B7)

S(k, k, z) =
Ko —12ko+ 4)fdF (k, z) I

F(k, z) =
mto f I G~ I «r kp Z —I k —G~ i

Above the limit

(B5)
S(p, c) =5

l-f(p, &)

The energy spectrum is given by the roots of

(B8)

f(k, z) = lim [2k, +4vdF(k, z) j (B6) & —p —S(p, z) = 0. (B8)

is finite. In reduced units (see Appendix A) and
with 6 = 4)td/K,' for the reduced density of atoms,
the MD may be written as

N(P) is normalized according to

,', f d ( f(pq (. = (B10)
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APPENDIX C: RANDOM ARRAY OF ATOMS

In the CPA approximation, the self-energy for a structurally disordered system is given by the non-
linear integral equation"

a k» —k'
S(k, k', z) =dv (k, k')+d g v(k, k') ' S(k",k~, z) .

z k S(k yk tz)
(C 1)

Using the model potential (Al) and a, (q) = 1 (random distribution), one obtains

"0 &'»i, I f-k- i «»ao z —k"' —S (k», k",z)
(c2)

As in Appendix A S(k, k', z) =S(z) for k, -~. For
a real energy

(C 3)

o' —o'(~ + 1) + 2o6 —o' = 0, (C4)

where o =S/k', . Eq. (C4) defines o(a) and thus the

In reduced units Eq. (C3) is equivalent to the cubic
equation

MD is

4 6p 1
N(P) = —— de Im

e -p' —o(e)
The Fermi energy is fixed by

f den(c) =1
~00

t
with n(e) =E',n(E) for the DOS.

(c 6)

(C 6)
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