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A method is proposed for cs.lculating the formation energy of localized defects in crystalline solids with pair

forces of arbitrary range. The theory is most useful in the cases of small mass or high temperature for

which, in addition to the usual static relaxation, changes in the lattice vibrations make a significant

contribution. Defect migration is not described however. A self-consistent Einstein approach is used, each

particle in the crystal oscillating with its own frequency about an average position. The total free energy is

minimized with respect to aII of these frequencies and positions. This minimization is made tractable by the

assumption that large changes in frequency and position occur only for a finite number of particles near the

defect; the changes for all the other particles are treated linearly. The result is very similar to Kanzaki's k-

space "lattice statics" formalism. However, instead of being 3 x 3 the lattice Green's function becomes a 4 X 4

matrix, thereby encompassing changes in Einstein frequencies as well as particle positions. The method is

applied to calculate the free energy of vacancy formation in metallic hydrogen.

I. INTRODUCTION

This yayer describes a self-consistent Einstein
method for calculating formation energies of local-
ized' crystal defects within a 0-space formalism.
Changes in zero-point and/or thermal lattice vib-
rations are taken into account, together with static
lattice relaxation. The analysis, however, is
hardly more involved than that required to calcu-
late the static relaxation alone by conventional
Kanzaki' or Green's- functions techniques. One
therefore has the chance to handle quite compli-
cated particle interactions. As an example, the
case of a vacancy in metallic hydrogen will be
comyuted using a screened proton-proton inter-
action which is long ranged and oscillatory. The
technique is sen-const. stent and is expected to be
valid well into the high-temyerature or small-mass
regimes where relaxation of lattice vibrations is
imyortant; this will be referred to as "dynamic re-
laxation. "

To begin with, a brief account is given of some
previous work relevant to this yroblem and nec-
essary to place the present work in yersyeetive.

A. Defects in "classical" crystals

These are crystals in which the thermal and/or
zero-point particle vibrations are very small. An
important phenomenon associated with such a clas-
sical defect is the static relaxation of the lattice to
accommodate the defect. This affects every par-
ticle in the crystal; the displacements typically
fall off only as the inverse square of the distance
from the defect. Descriytions of this phenomenon
based on the "linear lattice statics" method have
been discussed by Tewary. ' In this method, one

derives a 3 x 3 matrix G(H) known as the "static
lattice Green's function. " [Its Fourier transform
G(q) for q e 0 is essentially the inverse of the well-
known dynamical matrix D(q) which governs phonon
motion. ] The defect exerts a "Kanzaki force" F(R) on
the lattice yarticles, and quantities such as the
particle displacements and total strain field energy
can be calculated by integrating combinations of
G(Q) and F(Q} with respect to wave number Q over a
Brillouin zone. In the small q limit, this theory
reduces to the "elastic-continuum" model in which
a handful of elastic constants comyletely specify
the yroblem. The theory as described so far allows
only for small relaxations of the lattice, but if one
has very-short-ranged forces one can also treat
large disylacements of a few particles near the de-
fect (as is done, for example, in the work of Bene-
dek and Ho'). Here, it is desired to treat forces
whose range may be many lattice spacings, so a
modified version of Benedek and Ho's method will
be given. (This appears to be a new departure,
even in the context of "classical" crystals which
are not, however, the main concern of this paper. }

A second interesting feature associated with lo-
calized defect formation is a change in the phonon
spectrum. All modes are shifted slightly in fre-
quency, and spatially localized modes may appear
with frequencies discretely separated from the
rest. Theories of these effects have been given by
Maradudin and co-workers, ' and independently by
Lifshitz and collaborators. ' At finite temperatures
the change in yhonon modes wiQ contribute to the
defect formation energy, but the effect is small for
"classical" crystals (in the sense defined above. )
In the "nonclassical" regime of higher temper-
atures, however, the phonon modes may be
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strongly modified in a complicated fashion so that
a self-consistent theory is needed. Aksenov' has
considered such a theory but omitted the static lat-
tice relaxation around the defects; his method is
therefore not suitable for examining defect for-
mation energies, since relaxation may contribute
a large fraction of the total formation energy.

B. Localized defects in quantum crystals

A quantum crystal' is one in which particle mas-
ses and interparticle forces are small, so that
large zero-point excursions occur. Static relax-
ation of average particle positions and modification
of the particle motion are both important here. The
latter effect is related to changes in the phonon
spectrum caused by the presence of the defect.
Caron' has considered an- average t-matrix ap-
proach for calculation of the phonon spectrum in
the presence of such defects taken as randomly
distributed; his method does not appear to include
the static deformations so important in calculating
the formation energy. In an earlier paper, "Caron
used an Einstein model in calculating defect for-
mation energies in metallic hydrogen at T = 0 'K.
He treated the static relaxation of only a few par-
ticles near the defect and omitted the change in
Einstein frequencies as negligible. A theory per-
mitting a change in Einstein frequency for one shell
of neighbors round a metallic defect was also re-
ported recently. " The present work generalizes
these ideas and permits relaxation of @El positions
and frequencies in a tractable formalism. More
complex theories permitting such universal static
and dynamic relaxation have been proposed by Var-
ma" and Jacobi and Zmuidzinas" in terms of self-
consistent phonons. '~ For quantum crystals the de-
fect causes significant changes in all the phonon
modes, making perturbation theory invalid. A fully
self-consistent phonon scheme is, of course, very
difficult to implement here, because the defect
breaks the translational symmetry so that the
spatial dependence of the phonon modes should be
determined variationally along with the frequen-
cies. Varma overcomes this problem by using a
trial state in which the spatial variation of the pho-
non modes is obtained from a classical non self-
consistent theory'~'; only the fxequenci, es are de-
termined self-consistently. While this enormously
simplifies the algebra, the method as it stands sti11
requires iteration of some very complicated self-
consistent equations, much more involved than the
ones used for self-consistent phonons in a perfect
crystal. " In fact, Varma" resorted to a Debye ap-
proximation in order to obtain a practical compu-
tation procedure (Jacobi and Zmuidzinas did not in-
dicate how one would actually solve their equa-

tions). Neither method appears to deal with the
difficulty that the static relaxation of the average
particle positions should be calculated self-consis-
tenfly with the changes in vibrational motion; the
static relaxation is simply added after the dynamic
relaxation has already been given. The Einstein
theory to be given here is quite explicit and tract-
able in both these respects, and has been applied to
the vacancy problem in metallic hydrogen. For this
case, one requires a complicated long-ranged os-
cillatory proton-proton interaction which would
render the self-consistent phonon theories"s" quite
unworkable without further approximation.

C. Defect migration

For sufficiently high temperature or low mass,
the defect can diffuse or tunnel from site to site.
The tunneling at low temperature in a quantum cry-
stal seems to have been proposed first by Hether-
ington. " Such tunneling states or "defectons" have
subsequently received some theoretical attention, "
though there does not seem to be any firm experi-
mental evidence for them. Indeed, jt appears that
such tunneling phenomena will be important only
for kigMy quantal crystals, if at all. Defecton mo-
tion was not considered in Hefs. '7, 9, 10, 11, 12,
or 13, nor will it be considered here (except briefly
in Sec. VI). The diffusive migration of defects near
the melting temperature is probably important,
however, and although this phenomenon is not at-
tacked directly here, some suggestions are made
for use of the present work as input to a better cal-
culation.

Set now in the context of previous work the paper
is organized as follows: In Sec. II, the self-consis-
tent Einstein picture is presented for T = 0 K, and
its validity is discussed. In Sec. III, a generalized
"lattice statics" is derived from the T =0 K Ein-
stein model. Relaxation of the zero-point motion
around a defect is included on a par with static re-
laxation, by introducting a 4 && 4 "lattice Green's
function" instead of the usual 3x 3 one. In Sec.
IV, the generalization to nonmigratory defects at
TA 0 K is shown to be almost trivial if one uses the
Gibbs- Bogoliubov inequality. In Sec. V the method
is applied to calculate the free energy of vacancy
formation in fcc metallic hydrogen for 0.6 —r, ~ 1.5
and0~ T& 5000'K. Sec. VI contains further discus-
sion, while Sec. VII gives conclusions.

II. SELF-CONSISTENT EINSTEIN MODEL AT T= 0 K

The model is a very simple variational one, per-
mitting a description of an imperfect quantum cry-
stal at zero temperature. One minimizes the total
energy over a trial N-particle crystal wave function
4' of the Hartree type,
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4'(r„.. ., r~) = (p, (r, —x,)

x (t), (r, x2). . .(t)„(r„x ). (1)

Here r„.. ., r„are the particle coordinates, and

x„.. .,x„are the average particle positions. For
a crystal without defects, the {x,.}lie on a perfect
lattice, while for h crystal vrith defects they lie on
a distorted lattice exhibiting a strain field as dis-
cussed in See. I. The localized functions {(P,) rep-
resent the zero-point motion of the particles about
their average positions {xJ; in general there will
be a different function Q, for each site i, except in
the case of a yerfect monatomic crystal.

An obvious deficiency of the Einstein trial state
(1) is that it fails to correlate the zero-point mo-
tion of particles on different sites. Corres-
yondingly, it does not describe any properties re-
lating to the long-vravelength phonon modes. Ho@&-

ever, these modes contribute least of all to the to-
tal energy, so (1) should be a reasonable ansatz
for calculating the total energy of defect formation.
Indeed, the total energy will be esyecially well
given comyared rvith other quantities, since it is
precisely the. cine which is stationary in the best
trial state. (This point has already been noted by
Varma, "who was concerned with thermal conduct-
ivities and syin relaxation rates for which an Ein-
stein theory is less likely to be accurate. } One
would seem to be justified in using (1}to obtain the
total energy in situations for @which a more compli-
cated theory would yrove intractable.

For simplicity of exposition in this payer the
Hamiltonian operator H mill be assumed to include
only two-body forces

U{(P„x,: (t)„x,J= d'y, d'y,
~

P(, (y,) ~'

x
f @,(y2) f'V(x, +y, —x, —y,). (5)

One can regard U as an effective smeared" pair
potential acting between point particles at xy and

x,. If the {U)do not fall off rapidly with particle
separation ~x,.—x&

~

it may be convenient to convert
to a k-space representation. Defining Fourier-
transformed pair potentials V(k) and particle-den-
sity distributions f by the relations

V(r) = —P V(k)e'"',

)@,(x) ['= —gf, (k)e'"'*,

one obtains from (5),

U{Q,, xq . (t) ~) x~j = —Qf, (k)f,.(k) V(-k)

Ik

)& ~1k+ (xy-x])

Here A is the volume and the sum Q-„becomes an
infinite 'integral A(2v) 'f d'0 in the thermodynamic
limit.

For a perfect monatomic crystal, the local wave
functions Q, are all the same and the average pos-
itions x,. are the perfect lattice sites 8, Thus, us-
ing the identity

2

=j.
(2)

e-ik ~; N5 .S(g)
~

~

k, g
=1

where r", and P& are position and momentum oper-
ators for the ith particle. For metals, it may be
necessary to include effective volume-dependent
and many-body forces acting between the ions
whose coordinates appear explicity in (2). The the-
or y can be generalized in surprisingly compact form
to include n-body forces; this vrork vrill be de-
scribed shortly. '7

The expectation value of the Hamiltonian (2) in
the trial state (1) is

&&) =&1)+&V&

-t)= dsg V

one obtains from (8) the result for the total po-
tential energy in (3),

d'k f '(k) V(k)2v'

Here the {g)are the reciprocal-lattice vectors and

S(g} is the structure factor of the unit cell [S(g) =1
for primitive Bravais lattices].

So far nothing has been said about the form of the
local functions (t),(x}. For classical solids (those
with very little particle motion} a good choice for

Q is a Gaussian. In fact, the standard Einstein
model of a yerfect crystal is obtained by choosing

Q, to be the (Gaussian) harmonic oscillator func-
tion vrhieh solves the one-particle Schrodinger
equation in the spherically averaged harmonic po-
tential set up at each site i by the other (N 1)par--
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where M, is the particle mass. If the 3 x 3 fre-
quency matrix (d, is of the form

(d( = diag(&d(, (d(, (d(), (12)

ticles perfectly localized on their lattice sites.
The present work is intended for moderately non-
classical crystals for which a Gaussian should re-
main a reasonable trial function'; however, in
contrast to the classical Einstein model described
above, this will be a "self cons-istent" harmonic
Einstein model in which the total energy is mini-
mized with respect to all the harmonic frequencies.
The localized trial wave functions are then general-
ized Gaussians

3~4 -My y y
Q((y) = ' (det(d()'t ' exp ' —', (ll)

tesian components of xj,

Xq, =xq„((1= 1,2, 3). (17)

On the other hand, for an anisotropic crystal one
may need to have y( = diag(y», y», y») in which
case Xj has dimension 6 with

Xj4(s 6) = —2 yjl(2 3) (19)

The remaining components of X.are chosen ac-
cording to the degree of generality that has been
built into the trial Einstein function. For example,
if isotroPic Einstein states are expected to give an
adequate trial function then the mean-square am-
plitude matrix is specified by a single number yj,
y&= diag(y&, y&, y&); thus, Xz has dimension 4 with

(16)

(d (
= diag ((d ((, v (2 ~

(d (s ). (13)

Regardless of crystal symmetry, it may be nec-
essary, in the case of very strong lattice distor-
tions, to allow some frequency matrices v to have
principal axes in directions other than the Carte-
sian axes, and (11) is general enough to cover this
case also.

The Fourier-transformed density corresponding
to (11) is

then one has an isotropic Einstein trial state. For
anistropic crystals, it may be necessary to choose
different frequencies for the zero-point motion
along the three Cartesian axes, so that v, is of the
form

In the most general case, Xj can be taken as a
nine-component column with the last six com-
ponents

l
j4 5 6 7 8 9 2 (yjll) yj22 yj33p yj23

+yy32 y»S "y(3( yy 2+yy 1).

The total energy can now be written

(H ) = E(X„.. ., Xs)
h2

Try('+ — U(X(,X(),

(20)

(21)

where the smeared pair potential U can be found
from (5) and (11) but is more compactly expressed
in k space by using (8) with (14)

f, (k) =exp(--,'k y, k)

[see Eq. (7)]. Here,

(14) U(X(,X~) = 3 d'k V(k)exp[-2 k (y, +y&) k

—ik (x, —xz)]

y,. = (k/2lVS()(d( ', (15)

and the trace of the matrix y, is the mean-square
displacement of the ith particle about its average
position x&. For much of the rest of this paper, y
will be used in place of ~~ to specify the Einstein
states.

d'k V(k) exp[-iK (X; —X&~)].

(22)

Here a higher-dimensional wave number, symbol-
ically

III. GENERALIZED KANZAKI METHOD AT T=O K

In this section, a modified lattice "statics" is de-
scribed which allows for changes in the zero-point
motion as well as relaxation of particle positions.
It is convenient to specify both the average position
xj and mean-square Einstein amplitude matrix yj
of the jth particle in terms of a single complex"
column vector Xj, to be termed the "coordinate"
of particle j. Symbolically,

or

or

K= (k„,k„k„k'„k'„k',)

K= (k„k„k„k'„,k'„k'„k„k„k,k„k,k„),

K= (k,kk)

has been introduced. To be specific, its com-
ponents are

K= (k„,k, k„k')

(23)

(24)

Xq = (x~, ——,
'

iyq) (16)

Thus, the first three components of Xj are the Car-
in the three cases previously outlined in defining
X. (A caution: k=k1+k2 does not imply K =K1+K,).
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The essence of the proposed method is that in an
inhomogeneous situation one can exPlicitly mini-
mize the energy (21) with respect to all the particle
"coordinates" fX,.},provided that the deviations
from the perfect-crystal "coordinates" X', = (R„
——,

'
iy, ) can be treated linearly excejt at a finite

number of sites. These few nonlinear sites near
the defect constitute the "core" (c) of the defect;
the remaining sites wi11 be termed the "bulk" sites.
The calculation yroceeds in several steps:

(a) The Einstein frequency ~, = hy, '/2M is found
which minimizes the energy for a perfect crystal.

(b) The core sites are assigned "coordinates"
fX, :icc), which are later treated as explicit vari-
ational parameters. The energy cost of cxeating
the core is computed with the bulk 'coordinates"
@',.:idc) held at the perfect crystal values (Xg.

(c) The bulk "coordinates" are given linear in-
crements X; X';+ $„ i K c; the $; are chosen to
minimize the total energy subject to the given core
"coordinates. " Ibis minimization is achieved ex-
plicitly in k space by a generalization of the
Gx een's-function method of lattice statics'.
changes in the zexo-point motion are computed
self-consistently with static relaxation, by making
the lattice Green's function a 4X4 (or 6&6, or 9
&9) matrix instead of a 3&3 one as in conventional
lattice statics. "

(d) The relaxed crystal energy is now known as
a function of the core "coordinates. " Finally,
these core "coordinates" are chosen to give an
overall minimum energy.

These four steps will now be discussed in detail.

Step {a); The perfect crysta1

In the perfect crystal all sites have the same
Einstein oscillator width y„and the particle co-
ox dinates are

X,'= (R„--.' fyn) . (25)

Using (21), (22), and (25) and defining an equilib-
rium form U of the smeared potential,

U (R) =U(Xn, X,), (26)

6M»(y. ')+
2 E U'(R).

R &o

(27)

With the aid of (9) this can also be expressed in
reciprocal space

1 1
with X,=(0, -2iyn) and X,= (R, -&fyn), one obtains
the total energy per particle as a sum over direct
lattice vectors H,

E(0)l k ( 1) ' ' ' )X)}()
(Y()) =

E,'(y()) = Tr(y() ')+
2

—Q S(g)U'(g)

—(kw) 'f kk'()(k') . ()8}

Here U'(k) is the Fourier transform of the smeared
equilibrium pair potential,

U'(k) = V(k) exp(-k. y, ~ k) . (29)

This step of the calculation is completed by choos-
ing yn to minimize (27) or (26), ,whichever is more
convenient.

+ ), d'e U'(k) . (31)

The considerations given so far in this step were

Step {1):Formation of the core

The details of this step depend on the type of
local defect being considered. In the case of va-
cancy or interstitial formation at constant' parti-
cle number N, a particle px esumably has to be
transferred to or from the surface. To begin with,
this process will be considered without any relax-
ation of the coordinates X, of the other (N —1) par-
ticles. There appears to be some ambiguity con-
cerning the energy involved in this process, and
it has been the subject of some dispute. " This
controversy will not be entered into here, since it
arises in any calculation involving vacancies or
interstitials, and has nothing specifically to do with
the new features of the model under consideration.
For definiteness, the results of Caron" for vacan-
cy and interstitial formation without relaxation will
be adopted; they have the advantage of being cal-
culated in the framemork of the Einstein model and
so are compatible with the present work. The con-
stant-volume method will be adopted. It is certain-
ly more convenient in the ease of metals, since
the "volume-dependent forces" are not brought into
play; at any rate, Caron" has shown that the over-
all results at constant pressure must be the same.
For reference, his result for vacancies will be
quoted in the notation of the present work

BU R

R~o

in the same notation as (2V), where the two terms
come from compression of the Lattice at constant
volume to create new sites, followed by removal
of particles from those sites. This result can also
be expressed in k space after an integration by
parts

1 Nv, dU(g)
+@o(vacancy) 6 fl ~ S(g)g
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special to vacancies and interstitials whose forma-
tion involved transfer of a particle to or from the
surface. The second half of the present step in-
volves a deformation of the core region (X', -X;,

inc); this applies equally to all kinds of local de-
fects including for example mass defects and va-
cancy interstitial pairs" a,s well as the above types
considered. The core deformation costs an energy

2

nE „=g Tr(y&
' —y~ ')+ g [U(X;,X, ) —U. (X,,X,)]+—g [U(X;,X,) —U(X, ,X&)],

i Ec k inc;f (Ec j&f Cc
(32)

with U given by (22). The second sum in (32) is an unrestricted sum on j over the direct lattice, with the
core sites excluded. With the aid of (9), it can be reduced to a finite direct lattice sum, plus a reciprocal-
lattice sum:

[U(x„x,') -U(x'„x,'. )]= P [U(x„x',) -U(x', ,x,')]
i c c;f(Ec iCc;f Ec

i

+ ~ Q QS(g)V(g)[exp(=,'g ~ (y, +y;) g —ig x;) —exp( —g'po ~ g —gg'R, )].
iEc 0'

(33)

(Here the perfect lattice sites in the core are de-
noted c ~.)

Step (c): Linear relaxation including zero-point motion

The major results of the present work are. con-
tained in this step. The bulk particles are now
taken to undergo small "coordinate" changes

(, =x, -x', (34)

D (R, R)pv f
BX&pBXf+v

(36)

The energy E(X„.. . ,X„) is defined in (21) and
the subscript 0 means that the X; are set to the
perfect lattice values X';= (R, , -&iy, ) after differ-
entiation. No linear term is present in (35) since

sE(X„.. . ,X„)
BX~I, 0

(37)

The first three components of $& give the deviations
of the average positions x; from the perfect lattice
sites R, (i.e., they specify the conventional strain
field) while the higher components ((,„,g &3) mea-
sure the changes in the mean-square displace-
ments y& around the average positions.

If the defect were not present, the energy re-
quired to produce the bulk distortions ($„inc}
could be expanded to second order in the ($;]'

2 p, v= 1 f,f (EC

& (;„P,+ o(&') (35)

(Summation on g and v will henceforth be implicit
for repeated indices. ) In (35), D is the Taylor-
series expansion coefficient

For p = 1, 2, 3, (37) is just the statement that the
perfect crystal is in equilibrium under the pair
forces at the chosen volume or pressure; this is
automatic for systems with inversion symmetry.
For g &3, (37) is not automatic but is satisfied
because y, has been chosen in step (a) to guarantee
precisely this stationarity of the energy.

The zone Fourier transform of (36) is defined by
the direct lattice sum

D„„(q)=g D„„(R)e ' ~ ",
R

with inversion formula

(38)

Dq„(R) = ~ Q -D~v(Q)e'
qEZ

(39}

where g is the Brillouin zone. The matrix D„„(q)
is a 4 x 4 (or 6 x 6, or 9 x 9) generalization of the
ordinary 3&&3 dynamical matrix which appears in
the classic theories of lattice statics and dyna-
mics."' The upper 3&3 block of D is just the
ordinary dynamical matrix evaluated using the
"smeared" particle interaction U [Eq. (26) or (29)]
in place of the pa.ir potential V [Eq. (2) or (6)]. The
remaining components of II (those with g & 3 or v &3)
have no counterpart in the classic theory: they ex-
press the response of the Einstein zero-point mo-
tion to disturbances in the crystal. '

Explicit expressions for the generalized dyna-
mical matrix can be obtained by application of the
definition (36) and direct differentiation of the en-
ergy formula (21). For simplicity only the iso-
tropic case will be written, so that D is 4&4 and

yo = diag(y„y„yo). The result can be written in
terms of direct lattice sums on the smeared po-
tential U' of Eq. (26),
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82
D„,(q)= p (1 —e '~'

) U'(R) (g, v~3),
R&0 p p

( ) g BU(X~,X ()
ex~„

0
X,=Xq

D„.(q) =D.„(q)
92

=-2$ e '~' O' R p ~3
BA~BypR~0

and (40) while

BU(X~, Xq)+~
f E-C+ III X~=X& &

82
D „(q)= 4 g (1+e ' "), U'(R) +

Gyp M yp

With the aid of Eq (9)., these results can also be
written in k space, with p, v running from 1 to 3,

D„„(q)=
g g~(g)[(g+q).(g+q).U'[g+q]

—g»g, U'(g)],

F„(R,) =0 for i Ec". (44)

(c' again refers to the perfect lattice sites inside
the core region: for a vacancy, c~ has one more
site than c.) The neglect of terms higher than the
first order in (42) is a standard approximation of
lattice statics known as the "first Kanzaki approx-
imation. "' The total energy associated with the
bulk distortions f$, : i ec} is now

D„(q)=D,„(q)= —Q S(g)(g+ q)' D»„(R( —Ry))g»$~»-Q F„(Rq)$;» . (45)

x (g+ q).U'(8+ q),

352
D„(q)=, +— s(g)[ lg+ql'U'(g+q)+g'U'(g)]44 My,'

—2(2&) d'k k'U (k). (41)

(42)

The last expression exhibits D(q) as a real sym-
metric matrix.

Equation (35) was derived for small distortions
in the bulk of an otherwise perfect crystal. In the
presence of a defect core, these bulk distortions
will cost an extra energy

N

—g F„(R,.)(,.„+O(('),

This is minimized when the ($;}satisfy

QD „(Rq —R~)$~„=F„(R(), i ~c.
jfpc

(46)

If the ($,.}satisfy (46) then (45) can be simplified
to give the minimum energy

&E,„„=——l+F„(R,)g» = ——QF»(R))h(». (47)

Z (q)& (q) ~ (48)

The restriction i(Ee has been dropped in the sum
(47) since F is defined in (44) to be zero for iFc*.
This is very convenient since (47) can now be di-
rectly transcribed into k space as

where the "generalized Kanzaki force" F„ is given
fori 6 c by

The Fourier-transformed Kanzaki force is obtained
from (43) and (44) with the help of (9) and (22);

F (q) =g F„(R,)e ~'"~ =—g iQP(g)V(g+q) g exp( —iQ X&) —+exp( —ig Xz )

Es»(x;, x,) E arr(x;, x;))
BXg~ y~ C+ BX]

(49)

[The four-columns Q =(g+q, (g+q)'), X~ =(R&,
—iy ), and X;"=(xz, ——'i(y +y, )) are introduced
for brevity. ]

It remains to find the bulk distortions ($;}, which
are the solutions of (46). If it were not for the re-
striction j~ c on the left-hand side, Eq. (46) would
be solved trivially by Fourier transformation. Al-
though the translational invariance is spoiled by
this restriction, an exact k-space solution is still

possible at expense of solving a small matrix (of
order 4n, where n is the number of sites in the
core). If the pa. ir forces determining D(R) are
very short-ranged the solution of (46) can be per-
formed by the matrix partitioning method of Ben-
edek and Ho. 4 An alternative approach is given
here, since the assumption of short-ranged forces
is not being made.

The solution proceeds by first augmenting (46)
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with a set of equations on the core sites

g D»(R& —R&)),„=f&(R,), iEc*,
j|EC

(50)

where f„ is &o be determined E.quations (46) and
(50) can next be combined to give a single equation
on the entire perfect lattice

(5'I) into (47}:

Ebu2( 2 2(g22 g21gllg12) 2 (58)

Noting from (44) that F„(R,) vanishes for inc~
[and that the Fourier transform F (k), Eq. (49), is
computed with this in mind] one can extend (58) to
a full matrix equation on the whole space

Q D„„(R;—R ):",=6:„(R,) (alii),
all j

where

j+c*
~jv

j&c*
and

(-) If, (R, ), (ac',
F2(R;), i(Ec ~ .

(51)

(52)

and

(0 0)

t F2)

AZb„a = 2F2'(-G-Gg 'G)F,

where
(

(59)

Since (51) has a translationally invariant kernel
and is valid on all sites, its solution (with per-
iodic boundary conditions} is trivial in k space;

:"„(k)= D2„'(k }$, (k) (k220), (53)

where D ' means the 4&4 reciproc'al matrix. If
one defines the generalized lattice Green's
function G by

This can be transcribed into k space as

AE )k=-—— F~p k D~' k ~
beak 2 Ng. z "

—Zf „'(R,)1'„(2,)),
(AC+

where

(60)

G„„(R)= —Q D„.'(k)e'"',
A=Z

then (53) becomes, in real space,

„(Rl) = Q G22(R( —Rf)6:u(R;} .
aQj

(54)

(55)

g„'(R&) = —Ze ' "'D„'„(k)F„(k),

and f' is the solution of a small equation

G „,(R; —Rf)f„'(R, ) = $'„(R&) for iEc* . (61)
C

This is more conveniently represented in a 4N
x 4N matrix notation as

yol, yf, l yg„g,.l yf, i
(F2'f ( g2, g22 j ( F2)

(56)

where the matrices have been partitioned so that,
for example, ggy is a 4nx4n submatrix; it is the
restriction of Q to the core sites, i~c*. Expan-
sion of the matrix product in (56) gives two equa-
tions, the first of which, namely

The energy associated with the linear relaxation
of all the "bulk" particles is now found by putting

gllf1 ~gl2 2

gives the unknown "force"f„
-1f, =-g„g2F, .

The second part of (56) now gives the desired so-
lution

g21f1 ~+22 2 ( g21g llg12 g22} 2

Equations (59) or (60) completely solve the prob-
lem of minimizing the bulk distortion energy (45).
To evaluate (59)'or (60), one need only compute
the generalized dynamical matrix D[k] from (40)
or (41), the Green's function G(R) from (54), and

the Kanzaki force F„ from (43) or (49). Then the

problem reduces to solution of the small matrix
equation (61), equivalent to finding g '. In prac-
tice, this solution is often dramatically simplified
by point symmetry at the defect site.

The solution(60) becomes especially simple in the
case of completely linear vacancy relaxation. Here
the strongly distorted core c is a null set, so that
bZ „=0, while (in the case of a vacancy) c* con-
sists of the single site from which a particle is
missing. This site can be taken as the origin. It
is evident from symmetry that the on-site general-
ized Green's function G„(O}is zero when v=1, 2,
3; this can be verified formally by inspection of
(54) and (41). Further, the first three components
of the distortion vector $2(O) also vanish be-
cause of point symmetry at the defect site. Hence,
from (61), f „'(0)=0 except for tl =4. Specifically,
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g(O)/G (0), p = 4,
f'„(O)=

0, p. =1, 2, 3 .
(62)

F„(R,.) = (63)

and

F„(q)=—„~iQ„~(g)U'(g+q)

The expression for the Kanzaki force F„can also
be simplified when there is no strongly distorted
core. Equations (43) and (49) become

sU(X', ,X,)
y Rf 4 0

!
SP Xf»g0

' 0, Rf=0

will be necessary to treat hE „and LE„~ to-
gether when searching for the optimal core "co-
ordinates" LX„iac}. On the other hand, if b,Eb„„
is formally regarded as a small quantity then only
QE need be varied explicitly, and LEb„j„can be
evaluated afterwards using the core coordinates
Xf so determined; changes caused by varying the
two together are formally of second order. Wheth-
er or not the full procedure is necessary can only
be decided in specific cases, according to the
accuracy required.

In either case, the appropriately computed mini-
mum of (68) is the final answer for the defect for-
mation energy at T =0 'K within the Einstein-
Kanzaki model.

"4, d3u u'Uo(k),
(2v)' (64)

with Q „defined as in (49).
Now, noting that the operation (1/N)P is

AEZ
just the Brillouin zone ave-rage ( ), we reduce
(60) to the form

l&C(k)), I'
d.Eb~ = ~z (F~(k))q(k)) —

((
',

) (~)44 SZ
(65)

AEibsia= —,'(F~(k)(D~" —) a(k)Fa (k)), (67)

where ~ and p are summed from 1 to 3 and D~ is
the usual 3x 3 dynamical matrix evaluated with
the smeared pair potential Uo. [D~S is the upper
3x3 block of the 4x4 dynamical matrix D defined
in (40} or (41).]

Step (d): Final minimization

The total energy required to form the defect
with a core configuration $X,: i Ec} is

~(jX,:i ec})= ~, +~ +nEb a, (68)'
where the individual terms are given by (30}and

(31) (for the case of a vacancy 4), (32)-(33), and
(59}-(60). If aE,„a is a substantial fraction of the
formation energy (which it can be even though the
bulk distortions

~$
were treated linearly) then it

with

$'(k) =D '(k)F(k) . (66)

Equation (65} is now the total distortion energy
including changes in vibrational energy. Only the
undistorted formation energy (30}or (31) need be
added to obtain the total vacancy formation energy
in this fully linear approximation.

It is also worth noting that in the absence of any
relaxation of the Einstein frequencies one would
have the usual 3x3 lattice statics formalism. The
result for the linear distortion energy would then
be

IV. EXTENSION TO FINITE TEMPERATURE

N A A

+Q ™=Vo+T.
f l 2Mf

(7o)

Here, as in Sec. III, the variational parameters
fx,}and ~~ are average particle positions and
Einstein frequency matrices. The idea is to
choose these parameters to minimize F,„.~.

Since the kinetic energy term is common to H
and Ho, (69) can be rewritten

F & F, ,
= F —(V~)o +(V)o

The terms of (Vl) can be evaluated explicitly by
using standard harmonic- oscillator results. ' As
before it is convenient to define a "coordinate"
X& = (x&, ——,'iyz) where the mean-square excursion
matrix y is now eva)uated at finite temperature:

y, =((r", —x,)(r, —x,))"

(71)

~~-'coth
i B

(72)

The trial free energy is

If the migration of defects Between lattice sites
is ignored, the generalization of Sec. III to T0'K
is straightforward. The procedure is essentially
to minimize the free energy F over an Einstein
trial state. This imprecise notion can be forma-
lized by using the Gibbs-Bogoliubov inequality"

F ~F„~ =F'+(H —H,), . (69)

Here H is the actual Hamiltonian [i.e., (2)], H, is
an exactly soluble trial Hamiltonian, and ( ), is
an exact quantum thermal average over Ho. In
(69},'F' is the exact free energy for H, .

The trial Hamiltonian appropriate to an Einstein
picture is

N

H, (r, , . . . ,r„)= g -,'M,.(i, —x,).~uP
~ (r", —x, )

f=l
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F . (ZCgi iX

=PTr i T in28inh ~,)1 ~Br

(73)

with U(X, , X,.) defined, in terms of the gy, }and Px, },
by (22). Equation (73) is typical of the way in
which the theory generalizes to finite temperature.
The potential energy terms U depend only on the
probability distribution of an Einstein particle,
and hence have the same dependence on mean-
square displacement y as the corresponding T = 0 'K
terms. [Note, however that y is now related to
th«requency &u by (72)]. On the other hand, the
kinetic energy terms do change when one goes to
finite temperature, as summarized in Table I.
The quantity g appearing in the last column of the
table is the "kinetic" energy (free energy minus
potential energy) of an Einstein oscillator, and
is given by

f(~) =k~T Tr[ln(2sinh y) —2 y cothy]

with

y = (k/2ksT)(u .

(74)

(75)

V. EXAMPLE: VACANCY IN METALLIC HYDROGEN

As an example of the method developed in Secs.
I-IV, the free energy of vacancy formation in fcc
metallic hydrogen will now be calculated. The
problem is of interest because of the possible role
of localized defects in the decay of metastable me-
tallic hydrogen. This system may exhibit high-
temperature superconductivity" (or other forms
or electronic or nuclear order) and also has astro-
physical s~'nif seance. '

Although pressures in excess of a megabar are

apparently required to form ]the metal, " it has
been conjectured that it may be metastable rela-
tive to the molecular phase when the pressure is
decreased to more easily maintained values, per-
haps on the order of tens of kilobars or less. Sur-
face decay of the metal' can probably be controlled
by a suitable coating, and in the absence of un-

stable phonon modes down to moderate pressures"
it appears that the principal decay modes will in-
volve some kind of crystal defect. A likely decay
mode is the' formation of hydrogen atomy or mole-
cules inside voids or aggregates of vacancies. The
prototype of this configuration is the monovacancy,
which will be studied here. If this can be under-
stood properly, one can hope to proceed to more
complicated defects. A vexy low ox negative va-
cancy formation energy would be suggestive of an

instability; it will be shown here that no such in-
stability towards monovacancies occurs in low-
temperature fcc metallic hydrogen.

The zero-temperature vacancy formation energy
in fcc metallic hydrogen has already been esti-
mated by charon, ' who used an Einstein model for
the proton zero-point motion. As noted above he
permitted relaxation of the positions of a few pro-
tons near the vacancy, but took as negligible any
changes in the zero-point motion during defect
formation. Howevex, Straus and Ashcroft" re-
cently showed that the proton zero-point motion
is crucial in determining the structure of a per-
fect crystal of metallic hydrogen. One might there-
fore suspect that changes in the zero-point motion,
not necessarily localized near the defect, would

be important in the vacancy formation process.
The motivation for the present calculation, then

is twofold: (a) one would like to know if there are
any slight but poorly localized changes in zero-
point motion which might significantly affect' the
free energy of formation, both at zero temperature
and above; and (b) such a calculation will demon-
strate that the present Einstein-Kanzaki method

TABLE I. Modifications for T & 0 K. [See Eqs. (74) and (75) for definitions of t(m) and y. ]
All equations in Sec. III remain unchanged when one goes to finite temperature, except those
listed here.

T = 0 quantity T & 0 quantity T= 0 kinetic term T& 0 kinetic term

Z, Eq. (21) F~~a& TIP ~Smg

Z~", Eqs. (27), (2S) F (0)
SM

ZZ, „Eq. (32)

D44[q], Kqs. (40), (41)

+Fcore

D44~q]

yr (
-1 «i)

3S
My 3o

-1
24k M ~3 cothy +0 sinhyo
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can be carried out in practice for a complicated
long-ranged oscillatory pair potential.

The model used for metallic hydrogen was an fcc
lattice of vibrating protons" interacting via an
electronically screened pair potential, given in
& space by

4 we'/k'e (k/2k ),
V(k) =

0, k=5. (76)

Here & is the linear dielectric function of the elec-
tron gas, and the vanishing of the screened poten-
tial for k =t) reflects the overall charge neutrality
of the system. A screened pair-potential model of
this kind neglects two phenomena:

(i) Even in the linear screening regime the energy
depends on the total volume (i.e., there are "vol-
ume-dependent forces"). Here the formation ener-
gy at constant volume will be considered, so that
this effect does not enter into the calculation.

(ii) Nonlinear distortions in the electron gas,
caused by the protons, will give rise to m«y-P«-
ton forces as well as pair forces. While the pre-
sent formalism can in fact be generalized to cover
many-particle potentials, "the proton motion can
be expected to wash out such three-body and higher
effective forces to a large degree. (This pheno-
menon is discussed by Straus" in connection with
the perfect metallic hydrogen crystal. ) Here only
pair potentials were considered, as was the case
in Caron's' work.

The linear electron-gas dielectric function was
taken to be the Hubbard" version, as modified by
Geldart and Vosko" so as to satisfy the compres-
sibility sum rule. Thus

e(x) =1+A (x)g(x)or, /vxm (77)

(78)

a(x)Ax = 1—r +(2/ar, k*) (79)

The above form of the dielectric function has the

Here &, is the usual Wigner-Seitz radius measured
in Bohr radii, and a = (4/9v)'~'. In (79), rx -K/
(K-&0) is determined by the ratio of the true
electron gas compressibility & to the compres-
sibility Ko of the noninteracting electron gas. The
value of &~ was taken as that obtained by differen-
tiating the Vashishta-Singwi electron-gas energy
formula. '4'" Thus,

y 1 K n 0.0335
ma&Z ~r, 2 S

0.02r~r. 0.1+2~,
2 (0.1+~, )'

(80)

3-
(81)

Since the interest here is principally in any
slight but long-ranged disturbance to the proton
motion, the completely linear relaxation is suf-
ficient. There is thus no strongly perturbed
"core, " and the set of sites c* is just the vacant
site at the origin. The free energy &F of vacancy
formation was found by working through Sec. III
step by step, using the electronically screened
and motionally smeared proton-proton potential

JP4se'e "0'
Uo(k) km@ (k/2k&)

'

0, k=5

(82)

The necessary steps are now listed for reference,
together with some relevant details of numerical
methods.

(a) The perfect crystal free energy Et"(r, ) was
found from Eq. (28), modified as in Table I when
T&0 K. yo was chosen to minimize F

(b) The free energy EF, required to form the
vacancy without any lattice distortion was found
from Eq. (81): The "core distortion" energy AF„„
is, of course, zero.

(c) The total free energy of linear distortion
&Fb„~, including relaxation of lattice vibrations,
was found from (65). For comparison, the cor-
responding result &E~„~ zeithout relaxation of lat-
tice vibrations was found from (67). The Brillouin-
zone averages specified in (65) and (67) were per-
formed using the ten-term "special point" pre-
scription given for fcc lattices by Chadi and
Cohen. ' The quantities needed in these zone
averages were the generalized dynamical matrix
D(k) [found from Eqs. (41) with a T + 0 'K modifi-
cation as in Table I for D«] and the Kanzaki force
vector E(k) [found from Eq. (64)].

(d) The total free energy of formation was found
as

advantage of being analytic while yielding a good
"compressibility limit"" as ~-0. It is important
to treat & accurately near & =2&„, since the be-
havior there is responsible for the long-ranged
Friedel oscillations of the real-space screened
potential. However, for values k/2k„& 1.5, which
are safely away from the 2k~ singularity, it is
convenient to know the large-wave-number asymp-
totic expansion of (76)-(79),

e '(x) ~„1— 'x 4 'x 'QX Qt
3n' 15m
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aF =~F, +SF, (88)

there being no need for a separate variation of
nonlinear core parameters in this purely linear
distortion calculation.

Steps (a), (b), and (c) involved numerical eval-
uation of reciprocal lattice sums of the form

Q Lg+qi "e ' +
e "p'~'t"

2kF
g&O

and integrals of the form

d3k k ff( 1 e Tok

2kF

(84)

(85)

where n is a small positive integer. Since a '-1
and yp) 0, (84) and (85) are formally convergent
at large wave number. However, the value of y,
is small enough that convergence was too slow for
direct numerical evaluation in practice. This dif-
ficulty was circumvented by using the five-term
asymptotic expansion (81) for k/2k~) X, where X
-1.5. (The final results were independent of X

over a considerable range, of course. ) The ad-
vantage of this is that one now has finite sums and
integrals, plus infinite sums and integrals of the
form

i g ~ g
~

Pe-wp('0+4&

'kk ~e "0

(86)

for several positive values of p. The integrals can
be reduced to known special functions and com-
bined with terms which arise when the sums are
converted using modified Ewald methods. (See
the work of Cohen and Keffer" for details of the
Ewald methods). The outcome is that one has a
number of fairly complicated but rapidly conver-
gent sums. The results of the calculations are
shown in Tables II and III and in Fig. 1.

0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

0.13)
0.13,
0.135
0.135
0.135
0.136
0.137
0.14p
0 ~ 142
0.145

+ 0.57'
+ 0.42,
+ 0.324
+ 0.25p
+ 0.195
+ 0.153
+ 0.12p
+ 0.094
+ 0.073
+ 0.05,

—0.273
—0.19g
—0.14g
-0 ~ 114

0.08s
—0.07p
—0.056
-0.045

O.O3,
-0.03(

-0.275
—0.20p

0 15p
0.115

—0.09p
-0.07)
—0.057

o.o4,
O.O3s

-0.03'

+ 0.29&

+ 0.226
+ 0.174
+ 0.135
+ 0.105
+ 0.082
+ 0.06&

+ O ~ O4s

+ 0.035
+ 0.025

Table II shows that the vacancy formation energy
is not significantly altered by relaxation of the
proton motion at T = 0 'K in the range of densities
1.0 (r, ( 1.5 relevant to metastable metallic hy-
drogen. This is seen by comparing columns 4 and
5 of Table II, which give the relaxation energy,
first without, then with relaxation of zero-point
motion (EEb'„",„and AEb„,„).

Figure I shows that, in the same range of den-
sities, the present results do not differ appreciably
from Caron's" values. This is actually a valuable
check on both calculations, since Caron used a
real-space method in which only a few neighbors
were relaxed nonlinearly, while the present re-
sults came from a linear k-space method which

TABLE II. Calculated vacancy formation energy, ~
(rydbergs), in metallic hydrogen at T=o'K and constant
volume 0= 3 &N(r, ap) . The quantities listed are, from
left to right, the Wigner-Seitz radius r„ the rms proton
excursion in units of the nearest-neighbor separation,
the energy ~p v~ required to form a vacancy without
any lattice relaxation, the linear lattice relaxation ener-
gy ~b, lk ignoring changes in Einstein frequencies, the
linear lattice relaxation energy ~bulk including changes
in the Einstein frequencies, the total vacancy formation
energy QE in the linear approximation. All energies are
in rydbergs.

rs (3'Yp) / dnn ~p vac ~bulk AEbulk

TABLE III. Temperature dependence of free energy of vacancy formation, QI (rydbergs),
in fcc metallic hydrogen at rs=1.36. The quantities listed are, from left to right, the temper-
ature T K, the rms proton excursions as a fraction of nearest-neighbor distance, the free
energy EI p v~ required to form the vacancy without lattice relaxation, the linear lattice relax-
ation energy ~b„&k ignoring changes in proton motion, the linear lattice relaxation energy
~b„lk including changes in proton motion, the total free energy LU required to form a vacan-
cy, the concentration exp(—~/k&T) of vacancies in an independent random vacancy model.

T( K) (3)~bulk -~/ AT
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10 000
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+ 0.120p
+ 0.154p
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+ 0.1024

0
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0.06)
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—Present calculation

that in computer experiments on quantum crystals
with soft-cored pair potentials, Chester" et al.
found values of r~ significantly above —,

' at melting.

VI. FURTHER POSSIBILITIES

0.0
0.4 0.6 O.B

I

I.O I.2
I

I.4 l.6

FIG. 1. Vacancy formation energy 6E in fcc metallic
hydrogen at T = 0 'K. Present calculation is compared
with the results of charon, obtained from Table VI and
Figs. 12 of Ref. 10.

included static and dynamic relaxation of every
proton in the crystal.

Table III shows the effect of raising the temper-
ature. The quantities given are now Helmholtz
free energies hF for the formation of an isolated
vacancy, ignoring the entropy of vacancy location.
In the model of randomly placed noninteracting
vacancies, the equilibrium vacancy concentration
is then

C(T) = exp[ —hF(T)/ksT], (87)

which is tabulated in the last column of Table III.
Two trends are noticeable in Table III.

(i) The free energy of formation increases with

temperature, so that the concentration of vacan-
cies does not rise as fast as exponentially when

the temperature increases. For example, if the
crystal still exists at 5000 'K, the present model
gives a concentration C(T) =9/p of vacancies,
whereas the usual model involving the T = 0 'K,
formation energy 4F(0) would give

C,(T) = exp[ —4F(0)/ksT] —= 29/o

of vacancies, a very substantial difference.
(ii) With increased temperature the dynamic

relaxation becomes more important, so that at
5000 'K the dynamic relaxation energy is 10% of
the total relaxation energy.

Actually it is likely that the crystal has melted
by 5000 'K In addition to the 9/p vacancy concen-
tration shown in column 7 of Table III, the notion
of melting by a few thousand degrees is also sup-
ported by column 2 which gives the I,indemann"
ratio r„; (This is the ratio of rms particle ex-
cursion to nearest-neighbor distance: in classical
crystals r~ is about —,

' at melting. ) In hydrogen at
x, =1.36, x~ is already" —,

' at T =0 'K
y and doubles

by 5000 K It should be borne in mind, however,

Existence of the "generalized lattice statics"
approach suggests that an even simpler theory
might be available; the q- 0 limit of the present
work should yield a "jiggling elastic continuum"
model, related to the present microscopic ap~
proach in the same way that the usual elastic con-
tinuum model is related to the conventional"' lat-
tice statics. This is currently under investigation.

An effect which was not directly considered in

Sec. I-IV (and is missing also from Refs. 9-18)
is the migration of point defects. This will be im-
portant in classical crystals near melting, ' and

may occur in quantum crystals with small enough
mass to permit significant tunneling. ""In the
classical case, a crude way to remedy the omis-
sion is simply to assume that the total defect free
energy (at low defect concentration C =n/N) is

F/N = C 4F + TS/N, (88)

where S-k ln~C„ is the configurational entropy
associated with the possible sites occupied by n
defects, and hF is the free energy of defect for-
mation as calculated in Sec. III-IV. Minimization
of (88) leads to the equilbrium defect concentration
C(T) given in Eq. (87), and tabulated for metallic
hydrogen in Table III. A more complete approach
would be to use a lattice gas picture of the defect
crystal. ' Here AF will play the role of a temper-
ature-dependent chemical potential foe defects and
in this context one could also use the generalized
lattice statics to calculate an effective interaction
between defects, ' as mediated by their static and
dynamic strain fields.

In the case of quantal defect tunneling, the re-
laxation described in the present work can sig-
nifically lower the tunneling probability or even
cause self-trapping. ' To describe this case one
can invoke a tight-binding Hubbard model for de-
fect motion, in which the hopping matrix element
t i s to be computed from an overlap integral between
two of the Einstein states (as used in this paper),
one with the defect on a neighboring site relative
to the other. The formation energy AF computed
above will then play the role of a site occupation
energy E,.

'Thus, the present model may be useful even near
melting or for highly quantal crystals, in the sense
that it provides an explicit method of computing
the input parameters to more sophisticated theo-
ries.
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VII. CONCLUSIONS

It has been shown in detail how to use the Ein-
stein model to calculate formation energies of
crystalline defects, including relaxation of zero-
point and thermal lattice motions as well as the
usual static lattice deformation. Relaxation of
every site in the crystal was explicitly calculated
by a generalization of the Kanzaki method; static
and dynamic contributions appeared self-consis-
tently in the same 4 && 4 matrix formalism.

The method is substantially easier to carry out
in full than the self-consistent phonon ap-
proaches, ""which require specific use of local-
ized phonon modes as well as a separate mini-
mization for static relaxation. On the other hand,
the method is more complete than previous Ein-

stein theories of defects'"" in which only a few
particles are usually relaxed.

Application to metallic hydrogen shows that the
method is a practical means of calculating static
and dynamic relaxation in the case of complicated
long-ranged pair forces. For hydrogen in the den-
sity range 0.6~r, ~1.5, it was possible to show
that dynamical relaxation does not upset the sta-
bility of the system to vacancy formation as might
perhaps have been supposed.
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