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Self-consistent treatment of the wake potential for fast ion pairs in metals
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The wake potential due to the exchange of virtual plasmons between two fast ions is calculated in a self-
consistent manner by carrying out two canonical transformations. We show that the wake potential between
two ions depends on each velocity in special way, and a deviation from the sine-type standing wave appears.
1t is also shown that: the potential has a finite value along the ion path.

1. INTRODUCTION

Recently, the energy and angular distributions
of ions transmitted through thin solids by the bomb-
ardment with molecular-ion beams have been mea-
sured® and interpreted in terms of the wake po-
tential. The theoretical calculations of the wake
potential have been performed according to a di-
electric-response-function method by many auth-
ors,?"® in which only the wake field created by a
leading ion is taken into account.

However, it is evident that a self-consistent
treatment has to be developed for the calculation
of the wake problem between two ions which have
different masses and charges, and also different
velocities (different speeds and directions). In
this paper, we develop a theory of the wake poten-
tial in some systematic fashion (or self-consis-
tent manner) between two ions, by carrying out
the first and second canonical transformations.

In Sec. II, we develop the canonical calculations
to get the wake potential due to an exchange of vir-
tual plasmons between two fast ions. The wake
potential is calculated in detail for different points
and different velocities in Sec. III.

II. EFFECTIVE INTERACTION
DUE TO AN EXCHANGE OF VIRTUAL PLASMONS
BETWEEN TWO FAST IONS

We consider an effective interaction due to the
exchange of virtual plasmons between two fast ions
of charges Z,e,Z,e and momentum {,,D,, which
are passing through a many-electron system. We
regard the two ions as external charges, and de-
fine the charge densities of the ions and their
Fourier components
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where T; denotes the coordinate of the jth ion and
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V the volume of our macrobox.
According to the Bohm-Pines method,® we write
a Hamiltonian of our system,
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where H, denotes the kinetic energies of ions and
the Coulomb interaction between them. In Eq.
(2b), M, is the mass of the jth ion. The Hamilton-
ian H, describes the energy of the plasmon field
with a frequency w,, in which the dispersion rela-
tion is taken into account. The field operators m,
and ¢, are the momentum variable and the coordin-
ate variable which are conjugate to each other.
In Eq. (2¢), the term which corresponds to the
Coulomb interaction of an electron with itself,
2me?/k?, is omitted, where n is the electron den-
sity. H’ is the characteristic term in such a Ham-
iltonian, which represents the coupling of the plas-
mon field to the density fluctuation of the ion. The
value k, is the cut-off wave number of the plasmon.
Now, by carrying out a canonical transforma-
tion, we rewrite our Hamiltonian in the form that
an ion-plasmon interaction appears explicitly.

Such a canonical transformation, e *S/"H e /" is
worked by the following Hermitian operator S,
which is defined as
47V 1/2 ->.
s=- 3 (A7) 0®. 3)
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Using the commutation relations, and perform-
ing the above canonical transformation, we obtain
a new Hamiltonian (we drop the subscripts “new”)

Hp=H,+H, +H,,+H,,, (4a)

5321



5322 M. KITAGAWA AND Y. H. OHTSUKI 16

41TZl Zae “ (;l_;z) ’ (4b)

EOFAPIEE
B—( L)

i Ze(2mE\*?,,, gz
Hlnt=_m[ Z _j;_<—> (5 aet™

H, J , (4c)

Rk, 4 Wp
e‘;';la',,t‘;)] ,
(4d)
21722 ko K s e
Hy= o 22#£ B X iipet@FrE (de)

RER <Rg, VM, kE'

In Eq. (4d), we expressed g, in terms of the plas-
mon creation and annihilation operators, a}, and a,,
by use of the relation

qp=(1/2w,) /z(ak+atk) . (5)

for preparing the second canonical transformation,
and also defined

ti=(p, K)/M,+1k?/2M, . (6)

In the above equations, the second term in H, de-
notes the screened interaction between the ions.
In Eq. (4c), the frequency of the plasmon field is
slightly corrected due to the ions, but is almost
equal to w,, because the number of ions (external
charges) is negligible in comparison with the num-
ber of electrons in our system, although, in fact,
if we consider a many-ion system (ion gas), the
term, Z 47rZ2 2/VM,, gives an ion-plasma fre-
quency. Hj,, represents the ion-plasmon 1nterac-
t10n in which the ion is scattered from a state p
to p- 7k (p +7K) through the emission (absorption)
of a plasmon of the momentum k. H,, represents
the two-plasmon process. In the following, we
omit H,, because we do not discuss the two-plas-
mon process. In Eq. (4c), the term which corres-
ponds to the Coulomb interactions of ions with
themselves, E,ZﬂZ?eZ/sz, is also omitted.

Next we consider the effective interaction due to
the exchange of virtual plasmons between ions in-
troduced by H,,,. We can obtain such a type of the
effective interaction by carrying out a second ca-
nonical transformation which eliminates the ion-
plasmon coupling term in the transformed Hamil-
tonian. In carrying out the second canomcal trans-
formation, we get a new set of operators, R,, P,,
Tjand A,, At (or I,, Q,), which correspond to r;,
p,, t* and a,, d, (or 7,, g,), respectively. The
canomcal transformation discussed here is defined
in the following form for T;, for example, under
the representation of the new set of operators,

'I’.j=e-islﬁﬁjeislﬁ, (7)

where
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This transformation corresponds to one of the
types of the intermediate coupling method which
was first developed in the meson theory.” The re-
sult within the lowest order of the second canoni-
cal transformation on the Hamiltonian is expressed
as follows (the method of the detailed calculations
is cited in the work by Bohm and Pines®):

HP' =Hq+ Hyy + By + Hg (10a)
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where H,; denotes the independent plasmon field in
the form of the new operator representation, in
which we neglected the contribution from ions to
the dispersion relation of plasmon frequency for the
same reason mentioned before. H, represents the
term which gives a correction of the ion mass (ef-
fective mass), resulting from the fact that the ions
carry a plasmon cloud along with them. But, in
our system, the contribution from H, is negligibly
small. The Hamiltonian H,,, denotes the effective
interaction due to the exchange of virtual plasmons
between ions, in which the dynamical effect be-
tween ions is included. The invariance of H,,, for
the space reflection, R;=R,,, is easily confirmed
in Eq. (10e). Here we can express our Hamiltonian
in the form in which the ion-plasmon coupling term
is eliminated and the effective interaction through
virtual plasmons appears explicitly within the low-
est-order approximation. This is our purpose

in this chapter.

III. WAKE EFFECT

In this chapter, using the Hamiltonian given by
Eq. (10a), we write down the Schridinger equation,
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and investigate the correspondence to the usual
dielectric function method for the wake effect. Us-
ing the relation

U% Ty T Riehi) o omibRu-Rppay (j2j)  (11)
and replacing k—--Kat symmetrical terms for the

summation kK, we rewrite Eq. (10e) in the following
form:
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As is seen in Eq. (12), the dynamical effect in
the effective interaction is introduced through mo-
mentum operators of ions in T3, if we adopt the
R representation on our Hamiltonian.

In considering the problem of the wake bound
state, we introduce the wave function of two ions
in the following form:

(Hy+Hyo+ Hyp)9 =E9 (13a)
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where operator§ are symbohzed in terms of the
caret, that is, D;=-iVy,, H,z- 22, (7%/2M )V%
and H, ,isgiven by Eq. (12) for P H_ denotes the
screened interaction between 1ons appearing in
Eq. (10b), and we neglect H,, and H, in Eq. (10a)
because they have no important contributions to
our problem.

The term I}m((pouo) is divided into the linear and
nonlinear parts for u,,

int(¢0u0) Hxnt¢ou +[ 1nt(¢ou )] ’ (14)

where the Hamiltonian H;,, in the first term is the
velocity-dependent interaction derived from the
contribution of the eigenstate for ﬁj(¢>0), and the
second term is the nonlinear part for u,.
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Here, we note that, in the usual dielectric func-
tion method, the momentum of the external charge
is treated as a ¢ number through a transition fre-
quency. This means that the dynamical effect of
the effective interaction is introduced through the
contribution from the plane wave only. Therefore,
it can be seen that the equation corresponding to
the usual one for the wake bound problem3-°

<_ﬁ V2-+Ve“(ﬁ)>u(ﬁ)=(E—E u(®R) (15)
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is obtained by using the free-particle approxima-
tion for the dynamical effect of the effective inter-
action. In the above, V*(R)=H (R)+H,,(R), u(R)
—e“/"’”‘vl"’z’ Ry, and u, is taken as a function of
R= R R2 V, and w=M, M,/(M,+M,) are the
velocity of the jth ion and the reduced mass, re-
spectively. E,=(B, +P,)?/2(M, +M,).

In Eq. (15), it is worth noting that the velocity
correlation of two ions is included in V¢!, In the
dielectric-function method, the velocity correla-
tion was not taken into account. Only the velocity
dependence of the field created by the leading ion
was taken into account.

Next, we calculate H; , in detail. In calculating
it, we take into account that the recoil term nk?/
2M in 7§ can be neglected when P is large com-
pared to Jk and the contribution of the dispersion
relation in the plasmon frequency is small.’
Therefore, we may approximate

T:=(k/M,)+(P;+3nk)~V, &k,
(1.),2z wp N (16)
where w, is the usual plasmon frequency.
Furthermore, according to the experiments for
the molecular-ion beams by Gemmell ef al.,' we
consider the case that the velocity directions of

‘two ions are parallel in the direction Z;

V,=(0,0,V,), V,=(0,0,V,). (17)

Replacing (1/V)2 ., by [1/(211)3]fk<kcd-ﬁ, and per-
forming the rearrangement of k,~ -k, at symmet-
rical terms in the integration of 2,, we obtain
H,,(R):

=25J,(k R,
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FIG. 1. Wake potential V°ff along the ion path (R, =0)
in units of Z,Z,e’k./w. The solid curve gives the re-
" sults for the case that V=5V and V,=0.8V,. The
dashed curve denotes the results for the case of V=V,
=5Vp.

where J(f) is the Bessel function of the zeroth or-
der, and Si(#) is the sine-integral function which is
. defined as

si(= [ f SI0Z g, (18")

The first term in Eq. (18) denotes the long-range
part of the Coulomb interaction between ions. The
second term represents the oscillatory part of the
effective interaction, which depends on V, -V,
and V,V,. The self-consistent contribution from
the partner ion is included in this term. Through
such a velocity-correlation of ions, the deviation
from the sine-type standing wave appears (see
Fig. 1).

For the case that one ion moves with the velocity
V, and the other is almost stationary in comparison
with V,, the integral part reduces to -2Si(k.R)/
kR, and H,,, becomes zero. In this case, there
appears no wake field between ions. This is one
of the differences between the self-consistent and
non-self-consistent (the dielectric function method)
treatments. '

2j 33eV (A1)

FIG. 2. Wake potential V°T along the ion path (R, =0)
in units of Z,Z,e’k,/w for the case of V;=V,. The values
for Al and Au correspond to the case that two ions are
proton.

For the case of V,=V,, Eq. (18) reduces to

ek, [2 Si(k 2
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In the above, Ci(f) is the cosine-integral function
which is defined as

ci(t)=-j E%sﬁdz. (20%)
t

In Eq. (19), there appear the amplitude and the
additional phase factor in the oscillatory part,
which depend on the internuclear distance between
ions (R, and Z). The deviation from the standing
wave due to this dependence appears when the vel-
ocity of ion (V,) is near the Fermi velocity, V.
= w,/k,, (see Fig. 2).

When R, =0, A and B reduce to

A(0,2)= f “’Tt[sn(kcn ©,/V)Z)
0

+Si((k t - w,/V,)Z)],
1t (21)
B(0,2)= f FCU(kt+ w,/V,)2)

- Cil(kyt - ,/V))2)).

It is easily seen that the values of A and B

become finite, although there is the singularity

at t=w,/V,k, in Ci((kt - w,/V,)Z). Therefore, the
amplitude of the oscillatory part in Eq. (19) has a
finite value. If 2, becomes: infinite, A becomes
infinite and B becomes zero. Then, in this case,
the amplitude and the additional phase factor of
the oscillatory part in Eq. (19) become infinite
and zero, respectively, and the wake potential
along the ion path (R, =0) becomes infinite. This
corresponds to the result obtained by Neelavathi
et al ® qualitatively. The peak heights of the oscil-
latory part along the ion path become several eV
for Au and Al in the case that the projectiles are
proton (see Fig. 2). It is considered that this in-
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FIG. 3. Wake potential v as a function of R, and
Z for the case of V; =V,=2V . The unit of the vertical
axis is taken as Z, Z,e’k /.

fluences the values of the binding energies of the
trapped ion (or electron) in the wake bound state.
Figures 3 and 4 show the numerical results of
V (R) for the cases of V,(=V,) =2V and 5V, re-
spectively. The amplitude of the oscillatory part
decreases with increasing R, of the order of 7/k,.
For the case of V, =2V, the phase shift appears
at the small amplitude of the oscillatory part,
although the phase shift is negligible for the case
of V,=5V,.

IV. CONCLUDING REMARKS

We have calculated the wake potential due to the
exchange of virtual plasmons between two fast
jons in a self-consistent manner by carrying out
two canonical transformations. It is worthy of
note that, within the free-particle approximation
about the dynamical effect of the effective inter-
action, the wake potential depends on the veloci-
ties of the two ions in a special way, and a de-
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FIG. 4. Wake potential V' as a function of R, and
Z for the case of V{=V,=5V. The unit of the vertical
axis is taken as Z;Z,ek /.

viation from the sine-type standing wave derived
by the non-self-consistent methods (the dielectric-
function methods) appears through the velocity
correlation of two ions. For the case that the vel-
ocities of two ions are same, the deviation from
the sine-type standing wave also appears when
the velocity of the ions is near the Fermi velocity.
Such a deviation was represented in the form of the
amplitude function and the additional phase function.
We could also show that the wake potential is not
infinite along the line of the ion path.

From the above results for the wake potential,
we may calculate in detail the explosion motion
of the molecular beams with random orientations
and vibrations. We can also calculate the binding
energy in our method, in which, strictly speaking,
the higher-order contribution from A 1at 18 included
in the nonlinear part for »,. But such a calculation
will be the same in principle as the Green’s-
function method recently discussed by Ritchie
et al ®
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