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We present a microscopic derivation of the equations of motion in a magnetic field for the drift velocity of
a charge-density wave (CDW) and the electron drift velocity for a three-dimensional system containing an

unpinned, incommensurate CDW. We derive an expression for the effective mass of the CDW and show that
the effective mass for acceleratio~' by a magnetic field is the same as that for acceleration by an electric
field. We examine the eAects of the drifting CDW on the magnetotransport properties in the case of a
simply-connected Fermi surface. We also discuss the theory of the induced-torque for a spherical sample

containing a single CDW which is free to drift.

I. INTRODUCTION

In a previous paper, ' hereaftex referxed to as
I, we presented a set of equations descxibing elec-
tric transport in a three-dimensional system in
the presence of an incommensurate unpinned
charge-density wave (CDW). We discussed the
dynamic effects of an applied electric field ln
accelerating the CDW and the electrons and de-
rived an expression for the effective mass of the
CDW. Oux' pux'pose ln this papex' ls to GontiGue

the microscopic derivation of the equations pre-
sented in Paper I with a discuhsion of the dynamic
effects of an applied magnetic field.

One of the primary goals of this work has been
to discover the effect of a drifting CD% on elec-
trical transport in a magnetic field. There are
two types of effects which a CD% can have on mag-
netotx ansport: those associated with the drift of
the CD% and those associated with thetopologyof
the Fermi surface. This work is limited in that
we choose not to include the possible topological
effects (e.g. , open orbits) in the discussion. Thus,
in order to discover those effects associated with
the drift of the CD%, we choose a model system
in which the Fermi surface is simply-connected.
%e also choose to ignore any periodicities which
would be associated with a real crystal lattice and
will discuss the magnetotransport of a CD% in
three-dimensional jellium. In particular, we dis-
cuss the effect of a dx'ifting CD% on the magnetore-
sistance and Hall coefficient. The theory of the in-
duced-torque experiment is discussed for a sphex'i-
cal sample of jellimn containing a single CD%
throughout.

II. EQUATIONS OF MOTION

In Paper I, we presented a set of equations de-
scribing the drift velocity of the CD% and the elec-
tron drift velocity for a three-dimensional jellium
model. containing a CD%. In this paper we will

discuss the effect of an applied uniform magnetic
field H. In order that the goal of our arguments
can be kept in mind throughout, we state the re-
sulting equation of motion for the CD% velocity
D in the absence of scattering for the case where
the CDW wave vector Q is in the x direction and

H is in the 2 direction

where D is along Q. The electronic charge is -e.
m* is the effective mass associated with the ac-
celeration of the CDW. K is a quasivelocity of
the electrons and is related to the average wave
vector &k),„of the electron distribution by

K= s&k}„/m,

where m is the electron mass.
The equations of motion for the components of

the electron quasivelocity parallel (K„) and per-
pendicular (R„,Z, ) to Q are

V is the average group velocity for the electron
distribution, i.e.,

0-=&v,}„=&p/I}„, (4)

and is related to K and D by

V = (I —y)K„+ yD, V„=R, Vg K~. ——(5

The total electronic current is J' = -neV where n
is the number of electrons per unit volume. y is.
a constant discussed in Papex' I.

Equation (5) was discussed in Paper L In this
paper we will discuss Eqs. (I) and (3). It may
seem surprising that a CD% could be accelerated
by a magnetic field. Not only does this result
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from a microscopic derivation, but if Eq. (1) did
not have exactly this form, it would be easy to
imagine an experiment (as in the Appendix) which
violates the second law of thermodynamics.

Since jellium is isotropie, it may seem arbitrary
that we have chosen to fix the direction of Q and to
ignore any torques which, might act to change the
direction of Q in the presence of applied fields
and currents. However, in a real metal the direc-
tion of Q would be some specific crystal direction
and thus could not rotate. %e therefore impose
this property (artificially) while using the jellium
model.

K= (p+ eA/c)'/2m+ V(r) —ep, (S)

where A is the vector potential and p is the scalar
potential. 'The complication which always arises
in problems dealing with a magnetic field is in
choosing a gauge to describe the magnetic field
H. Extreme care must always be exercised in

the choice of a gauge because the physical signi-
ficance of a wave function depends on the particular
vector potential A(r) that is used. ' Consider the
expression for the quantum mechanical probability
current j~. In the presence of a nonzero vector
potential, j~ is given by

III. EFFECTS OF AN APPLIED MAGNETIC FIELD
j = . d'x[4 *&+-(v4')4]

2m'

In the presence of a CD%', the total self-con-
sistent potential in the one-electron Hamiltonian
for our jellium model is

(V(r)=G cosQ r.
As in Paper I, we choose to ignore the velocity
dependence of 0 for the sake of simplifying the
discussion. This periodic potential leads to a per-
iodic variation in electron density which also has
a cosQ r dependence. There is an accompanying
modulation of the positive ion background to pre-
serve charge neutrality. In Paper I, it was demon-
strated that an applied electric field has two effects
on electrons in a periodic potential. First, it
causes electrons to move in k-space according
to the equation of motion dk/dt = -e~/K. Second,
the electric field polarizes the electron density in
a manner analogous to the polarization of atomic
wave functions by an electric field. This polariza-
tion of the electrons results in an electron density
which is out of phase with that of the positive ion
background. Sincb in jellium the ions are free
to move under th8 nonzero net forces, the CD%
will accelerate in the presence of an applied elec-
tric field.

The effects of an applied magnetic field are very
similar. The magnetic field causes electrons to
move in k space according to the Jones and Zener
equation of motion'

'where v, is the group velocity of the electron with
wave vector k. In addition, the magnetic field
will, in general, polarize the electron density.
The ions will move in response to the nonzero for-
ces acting on them due to the polarized electron
density, and the CD% will accelerate.

'The one-electron Hamiltonian in the presence
of an applied magnetic field and a periodic poten-
tial V(r) is

d'z4*A4 .

Thus, the current associated with an electron in
state 4 is dependent upon the particular choice of
vector potential X.

In the absence of a magnetic field the group ve-
locity, v, associated with an electron with energy
&(k) is

v =&~E(k)/K. (10

%hen we turn on a magnetic field, we want our
(approximate) wave function to retain this physical
property. Otherwise the question we hope to
answer by perturbation theory would not be rele-
vant to the physically characterized electron we
had in mind. ' In order that Eq. (10) be maintained,
it is necessary to pick A such that the second term
in Eq. (9) is identically equal to zero at all times.
This means that we must pick a gauge such that the
null point of A(r) travels with the center of the
wave packet describing our chosen electron. This
is the Jones and Zener gauge'

A =H x —,(r —v, t),
y = (I/2e) (H x v, ) r . (11)

The scalar potential y is required so that the elec-
tric field -&p —c 'sA/sf is zero. We have chosen
without loss of generality that (+

~

r
~

4) = 0 at I = 0.
It is only in the Jones and Zener gauge that Eq.
('l) is valid for Bloch electrons in a magnetic field.

The Hamiltonian, Eq. (8) with the' field on is
explicitly time dependent. If we choose H in the 2
direction, then for t=0 we have

p eH eA
3C= + V(r)+ (xp„-yp„) —ey +

m 2mc 2m,c
(12)

To discuss the effects of the magnetic field terms
for electrons in a periodic potential, we shall use
the Bloch or crystal momentum representation as
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in Paper I. First consider the problem of one elec-
tron in a periodic potential V(r). The periodicity
of V(r) allows the Hamiltonian in zero magnetic
field to have eigenfunctions of the Bloch form

4g(r) e'"'M„-„(r),

- - 84~- , -
nn

= - «8 8k

(l „)„„,=- f d 'r@„-(-ill
8y

(19)

(20)

where u„„-(r) is periodic in r and n is the band in-
4x. If a general wave function% canbe written

deaf)

"=
d~ Q f d'k a„(r)r' 'r„.(r)

in th» coordinate representation, then 4 is

4(k) = [a,(k) a, (k) a, (k) ]

in the @loch representation. 4'(k) is an (infinite)
column vector. In this representation the x com-
pon»nt of r is'

(15)

x jI s +X,(k), (16)

where I is an infinite unit matrix, and

X .(k)='i f d'rrr-(r)
X

(17)

(18)

where

Similarly, the operator xp„ in the Bloch represen-
tation can be written'

I et us consider an electron described by a wave
packet in one band E,(k). The wave function de-
scribing this electron is

4(k)=[a, (k) 0 0 ], (21)

where we assume a, (k) to be nonzero only in a
Small region of k space. We can then find the
equation of motion in a magnetic field for the elec-
tron described by Eq. (21) by determining a, (k)
such that 4'(r) satisfies the Schrodinger equation
of motion for the Hamiltonian with Eq. (11) for
the vector and scalar potentials. Using Eqs. (16)
and (18) the terms with S/Sk, lead to an equation
of motion for ia, i

which is satisfied by a general
function F(k+ ev, x Ht/Rc), where v, is the group
velocity and is related to the energy by Eq. (10).
Thus, the wave packet moves in k space such that
Eq. (7) is satisfied. When this result is averaged
over a distribution of electrons, Eq. (3) is ob-
tained.

As in Paper I, the additional terms in Eqs. (16)
and (18) introduce off-diagonal terms into the Ham-
iltonian matrix X„„,. These can be eliminated to
first order by using a new set of basis functions
given by first-order perturbation theory

8k» 8x

The second term on the right-hand side in Eq. (22)
comes from. the scalar potential p and the third
term il due to the A p term in the Hamiltonian.
T'he &' term does not contribute to the out-of-phase
part of the electron density, and we shall not con-
sider it further.

As discussed in Paper I, the one-electron states
below and above the energy gaps, respectively,
in the presence of the CDW potential, Eq. (6), are

4-= cos( e'"'- sin( e""~"-=e'"'u-,t r (28)
+- =- sin) e'k'+ cos( e'~" &&'=—e'k'm

k k

4i and 4'~ are the states which result from a per-
turbation treatment of the part of the potential

I

and the coefficients obey the relation

sin2$ = G/(E, —E )
—= G/W. (25)

For simplicity let us take Q in the x direction.
In terms of the states in Eq. (23), the perturbed
wave function 4k' in a magnetic field is

1

which produces the energy gap at k= g. The other
part of the potential, which produces the gap at
k= -g, can be treated separately as the effects
are additive for our purposes as long as G is not
too large compared with the Fermi energy. 'The

energies for the states above and below the gap are

E,=-,'(c-„+e; n) a-,'[(c~ —e; @)'+G']' ', (24)

-Z ~ y y3 )k r f f k k (26)
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The change in electron density &n~ induced by
the magnetic field for a state 4g below the gap is

+ni= Ic'I —I@'
I

=
gr

IseHGQy„
(2V)

Both terms in the bracketed expression in Eq. (26)
give the same contribution. The corresponding
change in electron density for a state above the
gap is opposite in sign. Note that the induced elec-
tron density is 90' out-of-phase with the cosQ r
dependence of the unperturbed electron density.
In general, the out-of-phase electron density de-
pends on the product H ' Q x k so that only the com-
ponents of H and k perpendicular to Q are effective
in inducing the out-of-phase electron density.

The total out-of-phase part of the electron den-
sity &N„sinQ r induced by the magnetic field is
found by summing up all the contributions such as
Eq. (2V) weighted by the appropriate Fermi-Dirac
distribution function. At zero temperature only
states below the gaps are filled (since we have
chosen to discuss the case of a simply-connected
Fermi surface). From Eq. (2V) it is easy to see
that &n~ is an odd function of k, . Thus, unless the
electrons have a net quasivelocity in the y direc-
tion, the total &X~ mill be zero. I et us take the
electrons to have a net quasivelocity K„ in the y
direction, where K, is defined in Eq. (2). The net
contribution to 4N~ comes from a shell of thick-
ness m&„k„/Sk~ at the Fermi surface. The total
out-of-phase electron density is then conveniently
written in cylindrical coordinates with k„ the axis
of the cylinder,

2~8'eHGQK, dk„
me 4m S'

and magnetic fields we restate the effective mass
m for acceleration by an electric field found in
Paper I

= 1+MPe, /8ve'O'G g (31)
m

where the sum is over states below the Fermi
surface. For Q in the x direction we write the
sum as an integral in cylindrical coordinates
where the volume element is 2', dk, dk„ for an
axially symmetric function. The integration over
k, is trivial since W is a function only of k„.
Therefore,

(32)

and m)= m$. These arguments are easily extended
to finite temperatures where states above the Fer-
mi energy are occupied as well.

In this section, we wish to discuss the Hall coef-
ficient and the magnetoresistance for jellium"
containing an incommensurate CD%. %e continue
to assume that the Fermi surface is simply con-
nected.

As shown in Fig. 1, let us imagine the Hall ex-
periment with an applied electric field F&, along
the x' direction of the sample. We take Q to be
along the x direction and the magnetic field H to
point in the z direction. The angle between Q and
x' is ~.

From Paper I, the equations describing the drift
velocity D of the CD% and the electron quasive1. o-
city K in the presence of electric and magnetic
fields and scattering pxocesses are

k~ is the radius of a cross section of the cylindri-
cally symmetric Fermi surface measured from the
k„axis.

Having found 4N» a treatment similar to that
in Sec. VI of Paper I leads to the expression for
the acceleration dD/df of the CDW in a magnetic
fi.eld

dD

( eH~)

dK„ 1
@

eH K„

(33)

mH~ =1+1lfPe,/8~&9S'G dk„ rk~
4m' (3o)

OH
p if the fractional modulation of the electxon den-
sity by the CD% and c, is the electron-gas dielec-
tric function for wave vector Q which results from
including electron-electx on interactions self -con-
sistently and is discussed in Paper I. M is the
mass of an ion.

To demonstrate that m* is the same for electric

FIG. l. Sketch of the Hall experiment described in
text. The appbed electric field@„, is along the x'
direction. Q is along x and makes an angle g with j' .
The magnetic field II points along g and out of the plane
of the figure.
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&z, ~„and &„ are relaxation times for the CD%
velocity and the components of the electron drift
velocity parallel (r„) and perpendicular (&,) to Q.
o.'is a constant which arises from scattering be-
cause the moving CD% tries to pull along the elec-
trons in a manner analogous to the acoustoelee-
tric effect. Similarly the PE„ term tries to pull the
CD% along with the drifting electrons. The dis-
cussion of scattering effects and expressions for
O', P, and the relaxation times will be given in a
subsequent paper. V is the mean group velocity of
the electrons as defined in Eqs. (4) and (5), and the
total current is J= -neV, where n is the number
of electrons per unit volume.

It is convenient tg work in the x-y coordinate
system. In terms of the applied electric field
„. x' and the Hall field h„.y', me have h„=8+eos8
+ 8,,sine and 8„=-I~sin~+ &,, cos6). In equili-
brium the equations of motion become, using Eq.
(5),

(34)

gi
+ " (-h„, sin8+b, .cos&)+K, =O.

m

In addition, there is the condition that no trans-
verse current ean flow, i.e., V„.=O, which be-
comes

yD sine+ (1 —y)K„sin8+K, cos8 = 0. (35)

Equation (34) and (35) are four equations which
are readily solved for the unknowns A'„, K, D,
and 8„.. The current along x' is J'„.= -neV„. , and

&„.= (1 —y)K„cos &+ yD cos8 -K, sine.

The resulting expression for 4„.is

Z,, = ne'r„b, &,/m&,

(36)

(37)

' (1 —c.P) cos'&+ &, sin'&
m

(38)

&,= {&„/ )m{ 1 yPy+)+ (&n-/m*)(a+y —ay). (39)

The transverse electric field , . is

s, ' (1 sp)) sissssssstss„s,
m

(40)

whe~e ~ = eff/mc Note that there. is a transverse

D —PK„+ ~ (8„,cos&+h, . sine)+ ~ K„=O,m* m*c

QV @HE„-»+K„+ * (6„.cos~+8„, sin&)+ ' K, =O,

electric field b~. even in the absence of a magnetic
field since the drifting CD% will, in general con-
tribute to the curx ent in the y' direction. In zero
field the sign of b„. is dependent on the quadrant
in whch Q lies. Thus, a plot of the transverse
electric field versus ~& would give a straight line
with an intercept which is positive or negative de-
pending on the quadrant in which Q lies. The Hall
coefficient Rs is found from Eqs. (3V) and (40) with
the result in all fields

R» = —1/n8c .

The magnetoresistance p„,„,=8„./8„, is

(41)

p~„.= milne'&, &, (42)

and is independent of magnetic field for all field
strengths.

It is interesting to note the result of ignoring the
acceleration of the CD% by the magnetic field or
of taking a different effective mass for accelera-
tion by electric and magnetic fields. In this case,
the high-field magnetoresistance is linearly de-
pendent on II and changes sign with II and with the
quadrant of Q, which leads to a violation of the
second law of thermodynamics. This is discussed
in greater detail in the Appendix in the form of a
theorem which states that the effective mass for
acceleration of a CD% by a magnetic field must
be equal to that for acceleration of the CD% by an
electric field.

V. THEORY OF THE INDUCED TORQUE

One of the frequently used tools for studying
the topology of the Fermi surface in metals is
the induced-torque experiment. ' It is useful be-
cause the theory for a single-crystal sphere pre-
dicts that the high-field behavior of the torque
gives a dramatic and unambiguous determination
of the presence of open orbits. In this section, me
discuss the results to be expected for a spherical
sample of jellium containing a single CD% which
is free to drift.

In an induced-torque experiment the spherical
sample is suspended by a rod. along the y axis in
a magnetic field. The magnetic field, which is held
constant in strength, rotates in the x-z plane at a
constant frequency (typically about 0.01 sec '). The
changing magnetic field induces a current in the
sample. The y component of the torque on the
sample, which results from the interaction of the
induced current and the magnetic field, is then
measured. In general, the torque depends in a
fairly complicated way upon the components of the
conductivity tensor.

The problem of interest here is the torque to be
expected for a spherical sample of jellium contain-



ing a single CD% which is free to drift. In the
usual derivation of the induced torque, it is as-
sumed that the electric field and the current are
related through a local conductivity tensor. How-
ever, in case of a sample containing a single CD%,
this local relationship cannot be valid since the
CD% can have only one drift velocity throughout
the sample since planes of constant phase cannot be
bunched together. A local relationship between
the electric field and the CD% drift velocity im-
plies that the CDW can have a different velocity
at each point in the sample. In general, it is by no
means necessary that a sample be characterized
by a single Q throughout. There could be a do-
main structure with different Q's in different
domains. The CDW drift velocity in each domain
could then be different. At this time we choose to
discuss only the case of a sample with a single
Q. In order that planes of constant phase not be
bunched together, we take the CDW drift velocity
to be a function of the spatial average of the elec-
tric and magnetic fields. For the sake of brevity
we do not include the details of the solution to the
equations of motion, Eq. (33), of the CDW and the
appropriate boundary conditions and Maxwell's
equations. If an initial value for D is assumed,
it is found that D decays in time due to a buildup
of charge at the surface of the sample. Thus the
steady state value for D is zero. In addition, any
currents associated with the drifting CD% and the
electric fields produced by the charge on the sur-
face are uniform (since we take D the same every-
where in the sphere). Since there is no torque on
a uniform current, the drifting CD% causes no

torque on the sample while it has a nonzero velo-
city. Thus, the induced torque for a spherical
sample of jellium with one CD% throughout is
given by the usual result of Visscher and Falicov. ~

of magnetic field strength and changes sign with

the quadrant of the CDW wave vector Q. Thus, a
plot of transverse electric field versus magnetic
field mould give a straight line with an intercept,
the sign of which depends on the quadrant of Q.
%e also discussed the theory of the induced torque
experiment for a spherical sample of jellium with
one CD% throughout which mas free to drift and

found that the torque did not depend on the CD%
drift and that the steady-state CD% drift velocity
w'as zero.

Because the CD% model has been successful at
quantitatively explaining several of the highly
anomalous properties of potassium including the
Mayer-El Naby optical absorption, e the conduction-
electron spin-resonance measurements, ' and the
anisotropic residual resistance anomaly, ' one of the
motivating factors behind thip work was the ques-
tion whether the CD% model could explain the lin-
ear magnetoresistance' and the anomaly of the high-
field induced-torque anisotropy. '0 It is clear that
the results presented in this paper concerning the
effects associated with the drift of the CD% in the
case of a simply connected Fermi surface cannot
offer an explanation of these phenomena. The
present discussion has not, however, included a
study of the possible topological effects of the Fer-
mi surface on the magnetotransport properties.
Although for the discussion here we have taken the
Fermi surface to be simply connected in order to
examine the effects associated with the drift of the
CD%, the actual Fermi surface in jellium in the
presence of a CD% is not known and effects as-
sociated with the topology of Fermi surface must
be investigated. Thus, it remains an open question
whether the CD% hypothesis can offer hn explana-
tion of the magnetoresistance and high-field in-
duced-torque anisotropy in potassium.

VI. CONCLUSIONS

In this paper, we have microscopically derived
the equations of motion in a magnetic field for the
drift velocity of an unpinned incommensurate CD%
and the electron drift velocity for a three-dimen-
sional jellium model. The effective mass char-
acterizing the acceleration of the CD% by the mag-
netic field was shown to be equal to that for the
electric-'field case previously considered in Paper
I. %e examined the magnetotransport effects as-
sociated with the drift of the CD%' for the case of
a simply-connected Fermi surface. The magne-
toresistance was found to be independent of mag-
netic-field strength and the Hall coefficient mas
equal to the free-electron value for all values of
the magnetic field. The transverse electric field
was found to contain a term which is independent

In the text it was stated that the effective mass
of a CD% characterizing the acceleration by an
electric field must be the same as that for acceler-
ation by a magnetic field. The purpose of this
appendix is to present a proof of this theorem
based on thermodynamic arguments. In Sec. III.
of the text, a microscopic proof was presented
for the case where the CD% potential was taken
to be a local non-velocity-dependent function. Be-
cause the very existence of CD%'s depends cru-
cially on the velocity dependence of electron-elec-
tron interactions, the proof on the basis of general
thermodynamic arguments is very useful since a
microscopic treatment of velocity dependent ef-
fects would by highly intricate.

As in Sec. IV, we imagine the Hall experiment
shown in Fig. 1. I.et us assume that the effective
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mass of the CDW for acceleration by an electric
field m& is different from that for acceleration by
a magnetic field m~.

Then the first of the equations in (34) becomes

D —I8K, + ~ (h . cos8+8„.sin8}+ ~ K„=O.TD eHTD

mac
(Al)

Solving as in Sec. IV for the magnetoresistance
p„... obtains

p~„, = m(&+ &s)/ne'r„&» (A2}

where & and 4, are given by Eqs. (38} and (39}with

m* replaced by m and

&„=tub ~r„(a+ y —ay) sin8 cos8(l/m~z —1/m„"),

(A3)

where &o
—= eH/mc.

Thus, for m& 4 m~~ the magnetoresistance is a
linear function of magnetic field. Note, however,
that depending on the direction of H and the quad-
rant of angle 8, the high-field magnetoresistance
can be negative. This clearly violates the Onsager
relations and the'second law of thermodynamics.
Thus, it must be that m~=m.
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