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The observed low-temperature charge-density-wave (CDW) transitions in tetrathiafulvalene-
tetracyanoquinodimethane (TTF-TCNQ) are analyzed in the framework of the Landau theory of second-
order phase transitions. A careful treatment of the symmetry requirements is given. It is found that the
(commensurate) transition at 54 K involves CDW distortions on both TCNQ and TTF chains. The
possibilities for the subsequent (noncommensurate) transition near 49 K are analyzed. A continuous transition
involving a phase modulation of the first transition may happen for a range of values of the Landau
parameters. The next (commensurate) transition, at 38 K is discontinuous. The formulation requires a
thorough group-theoretical analysis: We discuss the validity of the usual practice of using only a simple basis
set for an irreducible representation associated with a transition. A discussion of the absence or presence of
commensurability energies of the various transitions is also given.

I. INTRODUCTION

The discovery of high and strongly anisotropic
conductivity and strong one-dimensional fluctua-
tions in tetrathiafulvalene-tetracyanoquinodi-
methane (TTF-TCNQ) and related compounds
have prompted intensive study of these materials.
In particular, neutron-scattering experiments'
have revealed that the charge-density waves
(CDW's) which appear as a consequence of the one-
dimensional fluctuations are stabilized at about
54 K, where three-dimensional ordering sets in.
The same experiments show that in the direction
of alternating sheets of TTF and TCNQ molecules,
there is a definite relative phase between the
CD%'s which run along the chains. From one TTF
(or TCNQ) sheet to the next TTF (or TCNQ) sheet
the phase difference is m' at and somewhat below
54 K. Below 38 K the phase difference is —,'m. Ac-
cording to recent interpretations of the data, as
the temperature is lowered below about 49 K, the
phase difference varies continuously away from n

toward ~m, but there is a small discontinuous jump
locking the phase to m at 38 K.

All theories dealing with TTF- TCNQ are based
on the assumption that the material consists of
more or less independent chains which have one-
dimensional metallic character. The CD' sus-
ceptibility of such a system exhibits a T =0 diver-
gence at wave vector 2k~ and it is generally ac-
cepted that the 54-K transition is driven by these
one-dimensional CD% fluctuations which are sta-
bilized at finite temperature through the residual
three- dimensional Coulomb interactions between
chains. In this way, a new phase with a periodic

Lattice distortion and an associated electronic
CD% develops' ' with wave-vector component along
the chains equal to 2k„. The other wave-vector
component transverse to the chain direction is de-
termined by the crystal structure and the inter-
chain interactions and appears to vary as de-
scribed by the relative phase changes given in the
previous paragraph.

Saub, Barisil, and Friedel' mentioned an explan-
ation of the phase sliding below 54 K. This effect
was discussed by Bek and Emery' who elaborated
a similar explanation and developed a Landau-type
theory to explain the phase transitions. Bak and
Emery pointed out that in addition to the commen-
surate transitions at 54 K (lattice doubling trans-
verse to the chain direction) and at 38 K (lattice
quadrupling) there appeared to be an intermediate
transition near 49 K below which the phase sliding
sets in.""

In the calculation of Bak and Emery, ~ the conclu-
sions are as follows: (i) At 54 K there is a second-
order phase transition involving CD%'s on only
one set'of chains (either TTF or TCNQ) with the
phase difference m. (ii) Another second-order
transition occurs near 49 K. Here, CD%'s on the
second set of chains order and the phase differ-
ences begin to shift toward &n'. (iii) There is a
first-order transition at 38 K at w'hich a discon-
tinuous locking of the phase at m+ occurs. Recent
experimental work+ appears to confirm this pic-
ture.

In this paper we present a calculation from a
similar point of view. %e use the Landau theory
of second-order phase transitions to analyze the
possible symmetry changes and the order of the
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transitions. . This theory, as is well known, ne-
glects fluctuations and hence gives the wrong criti-
cal exponents. In addition, fluctuations may drive
a Landau second-order transition to a first-order
one. These caveats are especially significant when
the transitions are dominated by fluctuations as in
the present case where there is evidence of quasi-
one-dimensional behavior. However, the Landau
theory is useful as a guide and can elucidate the
symmetry changes which are allowed.

Our conclusions partly agree with those of Bak
and Emery'" but differ in certain respects. We
find, for example, that there is no reason to sup-
pose that only one set of chains orders at 54 K.
It is, however, possible that the CD%'s have a
large amplitude on the TCNQ chains and a much
smaller amplitude on the TTF's. This seems
likely in view of the experimental situation. "&"
Our description of the transition proposed by Bak
and Emery at 49 K differs from theirs as well and
includes a discussion of commensurability ef-
fects." Finally, we describe the 38-K transition
in a manner consistent with that of Bjelis and
Barisic" and Bak.'0

In order to give a full description we present a
rigorous treatment in the framework of the Lan-
dau theory. " In Sec. II, we recapitulate the crys-
tal symmetry, the details of which are basic in-
gredients in the analysis. In Sec. III, we review
the Landau theory" and apply it to the phase tran-
sition at 54 K. In Sec. IV, we consider the next
transition, near 49 K and the 38-K transition is
described in Sec. V. We discuss our own results
in Sec. VI and compare them to earlier work.

II. CRYSTAL SYMMETRY OF TTF-TCNQ

The elementary cell of TTF- TCNQ is shown in
Fig. l.'7 The TTF and TCNQ molecules are ar-
ranged in chains along the b direction and these

chains form sheets in the bc plane. The TTF and

TCNQ sheets alternate in the a direction. There
are two sublattices of chains: As one goes along
the e direction, for example, adjacent chains have
molecules displaced by one-haU a lattice constant
along b and they are tilted in the opposite direction.
This is indicated in Fig. 1 and is the reason why
the relevant. space group is nonsymmorphic (con-
tains screw axis and glide plane).

The symmetry elements of the space group (and

hence of the high-temperature phase) of the crys-
tal are the translations, the identity E, the inver-
sion I, a twofold screw axis C*, around 5: C2~

=l-,'A+ re lC, ), and a glide plane (the ac plane):
o'*=C,*I= l&b+2c le'f. The notation for the'mixed
elements is due to Seitzis and is of the form (t lR j,
where R indicates a pure rotation or reflection and

t denotes the fractional lattice translation associ-
ated with it. The rule for combining such elements
is &f2 lft21&f, lft,)=(t,+ft,t, lag, l. The symmetry is
monoclinic with space group C25„(P2,/b).

It is known from the experiments' ' that at 54 K,
the wave vector of the CD% distortion is ko= —,'a*
+ pb*, where a*, b* are the reciprocal-'lattice
vectors (times 2m). That is, we have lattice doubl-

ing along a and a CD% distortion locked to the
Fermi wave vector p, =2k~ along b*. Below 38 K,
the wave vector is k, = 4a*+ pb*; between, denote
the wave vector by b = ( —,

' —q)n" + )ib* and q varies
from 0 to 4.

In what follows, we consider the wave vector to
be given by the experiment and we study the pos-
sible CD%'s with that wave vector, the symmetry
change at the formation of the CD% distortion, and

the order of the transition. As we shall see, we

need then to enumerate the irreducible represen-
tations (IR's) of the space group associated with

the given wave vector.

III. PHASE TRANSITION AT 54 K

b

O = TTF

o = TCNQ

TTF
= TCNQ

FIG. 1. Viewers along 5 anda directions in the TTF-
TCNQ showering the tilted molecules. The shaded mole-
cules are displaced out of the gc plane and are cen-
tered at zb. The {dotted) TCNQ molecules are dis-
placed out of the bc plane and are centered at z e.

The starting point of a Landau treatment is the
choice of order parameter and the expansion of the
free energy interms of it. In the present case it
is the charge density. The structure of the order
parameter, the number of its components, is de-
termined by the symmetry of the system. Follow-
ing the well-known procedure, "'"we expand the
change 6p in the actual charge density as one
moves away fromthephase-transition line in terms
of basis functions of the IR's of the space group of
the high-temperature phase. The IR's may be
characterized by their behavior under translations:
To each IR is associated a certain star E of wave
vectors. We have
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where 4 r";(x} is the ith basis function (belongs to
the ith row) of the nth IR belonging to the star A.
The expansion coefficients are functions of pres-
sure and temperature eventually to be determined
by minimizing the free energy. If the transition is
second order, or weakly first order, then 5p and

hence the c's are small near the transition and the
, free energy may be expanded in terms of the c's.

The e's are then taken as order parameters. Only
those combinations of the c 's which are invariant
under the symmetxy operations of the space group
Ray enter. These combinations are easily con-
structed from the known transformation propex'ties
of the corresponding basis functions of the IR's.
The coefficients of the various invariants in this
expansion consist of spatial integx'als over certain
products of the basis functions. Since 6p depends
on P, T the precise form of the basis functions
depends on P, 7.', and so do the coefficients in the
free-energy expansion. The values of the c's are
determined by minimizing the expression for the
free energy and these values determine the sym-
metry of 6p in the low-temperature phase. In gen-
eral. , the phase transition occurs when the coeffi-
cient of the bilinear invariant'involving a particular
IR passes through zero. The number of compo-
nents of the order parameter is equal to the dimen-
sionality of the IR which is involved in the transi-
tion.

The usual assumption is that in the expansion
(3.1) each IR appears only once and that, as re-
marked, the basis functions are P and T depen-
dent. This comes about as follows. When one
first expands the charge density, a complete set of
functions must be used. A given IR has an infinite
set of orthogonal basis functions' so that each IR
appears infinitely many times and another index
("band index" ) appears in the sum (3.1). This ex-
tremely complicated situation may in principle be
resolved by a further minimization which will pick
out, for each row of the IR in question, that (J'
and T-dependept) linear combination of the com-
plete set of functions for that rom which minimizes
the energy at the given P, T. The number of times
the IR in question enters the 5p expansion depends
on the form of the resulting lineax combinations
and in the case that the ratios of the coefficients
of the different rows axe the same for all occur-
ences of the IR then it is possible to use a single
P-, and T-dependent basis for the IR. For the
cases we consider, it has been shown by one of us
(FW) that it is possible to use a single basis for
each IR. The details of the argument will be given
elsewhere. In any case, the use of a single basis
gives complete information about the symmetry,
but not the details of the charge distribution.

The IR's associated with the star to which 4'0

= ~a*+p, b* belongs are easily constructed. The
stax' contains only ko and -ko since C, transforms
k'0 into ko- a* which is equivalent to ko, and o'

transforms ko into -ho+a*, equivalent to Iko=-ko.
The gx'oup of the wave vector contains only E,C2
and has therefore only two one-dimensional small
representations. The relevant IR's of the space
group are constructed in the usual manner. """
There are two two-dimensional IR's T, and T
belonging to this star and the matrices may be
written as follows:

(01 0 e
(3.2}

The basis functions of these IR's are of Bloch type

g,'=e' "[u,(r}+e ™~'ru,(C*, '~)] „

02=e &'[u, ( r)~e-" 'u, (-C,* 'r)],
(3.3)

V'(r)=+e " ' V'(Cf 'r). (3.5)

This form of the basis functions will be used in

Sec. IV.
As we have remarked above, the transition will

be associated with a particular IR, either T, or
T . Therefore the CD% within a unit cell is
either even (T,) or odd (T } under Cg. The am-
plitudes will be determined by the precise form
of V'(v}, but only two symmetries are possible.
In what f ollows, to analyze the s ymmetry, we

only need consider one T, and one T and their
associated Q'; functions.

The expansion of the charge density (3.1) has
the form

~~ =j. 4&+&2 g +&a 4x +2 42 ~ (3.6)

Since the @&;= Q& transform among themselves
for given E, e under the opex ations of the space
group in the high temperature phase, the c's may
be considered as basis functions for the matrices
of the IR's instead of the Q's. The c's, being
small near the transition, are the ordex param-
eters in terms of which the free energy E is ex-

where u, (r) and u (r) are functions periodic in the
lattice with u, (r) =g~(-r) (in order that 5p be real),
but otherwise arbitrary. Whatever the u„how-
ever, in every case the expressions (3.3) may be
x'eplac ed by

4 -& O' V (&) 4 —e- O''V ( r) (3 4}

where the V' (r) are periodic in the lattice and

have the pxoperty
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panded. The invariant combinations which appear are easily found. We have

F = F, +A,c,'c,'+A c, c, +B,(c,'c,')'+ B (c, c, )'+Cc,'c,'c,c, +D(c,'c, +c,c,'. )'+. . . , (3.7)

F =F0-A+ /4Bi,
(3.8)

where all terms through fourth order are indi-
cated explicitly. It is customary to assume that
above T, all coefficientsA, I3, C, D. . . are posi-
tive. In fact, for stability in the absence of higher-
order terms, one needs A, , B, all positive and

4B,B & C' if D &0 and for D & 0, 4B,B & (C
—4|D~)'. Then F is minimal for all c's=0. The
phase transition takes place when A, or A be-
comes negative. Assume it is A, . Then the. con-
dition that E be at an extremum yields

with cy 2 & The phase 0 is undetermined as a
consequence of the incommensurability along b.
If it is A which goes negative, the result is like
(3.8) with the obvious notational change. In any
case, only one of the two IR's, T, or T, is acti-
vated and only the even or odd (under C,*) CDW is
established. It may be shown that, for a certain
behavior of theA, B, C, D coefficients, this
solution becomes unstable at a lower temperature
and a new CDW appears in which both IR's are
activated. We do not discuss this possibil. ity since
the CDW wave vector is unchanged. "

Having found the c's, we may write the charge
density for the two possibilities from (3.8):

&p,(r) =c(e'" [u,(r) + e '~'~u, ( C,
* 'r)]e ' 0'+e ''+ [u (-r) we u*'u, (-C,* 'r)]e no'Q (3.9)

It is now possible to find the values of &p on the various chains. In the elementary cell (I,m, o), there are
two inequivalent TTF sites f=(l, m, o) and f'=(I, m+ —,', o+-,') and two TCNQ sites q =(I+ —,', m, o) and q'
=(l+-2, m+-,', o+-,'). Here, I, m, and o are integers. We write the charge density &p at the positions of
the various molecules. For the T, transitions, we have

&p,(f) = 2(-1)'c, cos(8, +2wm p)[u, (f) +u, (f')], bp, (f') = + 2(-1)'c,cos[8, + 2w(m + —,') p][u,(f ) au, (f')],
bp (q) = -2(-1)'c,sin(8, + 2wm p)[u, (q) au, (q')], bp (q') = +2(-1)'c, sin[8 + 2w(m + 2) p] [u& (q) v u~(q')] . (3.10)

b b
f

TCNQ (TTF) TTF (TCNQ)

FIG. 2. Schematic illustration of CDW's for each type
of molecule when the T, (T ) representation is ac-
tivated at 54 K. For simplicity, unit amplitude is
chosen on both sets of chains.

In deriving these results we have used the fact that
C,* shifts from f or q sites to f' or q', respectively.
We illustrate these CDW's schematically in Fig. 2
where we have taken u, constant along b.

The symmetry makes no requirements on the
values of u, at the sites f, f', q, q' and therefore,

from (3.10) there is no symmetry reason to sup-
pose that &p vanishes on any of the chains. This
can be understood also from consideration of the
Coulomb interaction between the chains if we take
proper account of the symmetry. It is important
to note that the molecules do not lie in the ac
plane, but are tilted out of it. If we ignore this,
the net Coulomb potential on a TTF molecule f
coming from its neighboring TCNQ molecules is
zero." In this case the symmetry would be C,'„
and the TTF's will be decoupled from their TCNQ
neighbors. With the actual C,'„symmetry, on the
other hand, the tilted TCNQ molecules always give
a nonzero potential at TTF sites and the two sets
of chains order at the same temperature. How-
ever, the amplitude of the TTF CD% may Qe much
smaller than that of the TCNQ CDW.

From (3.10) and Fig. 2 we see that the CDW dis-
tortion on the two inequivalent TTF chains in the
elementary cell have the same sign ("in-phase")
for the T, transition, while on the TCNQ mole-
cules the CDW's are "out of phase. " The phase
shift w y. in (3.10) comes from the difference in the
b coordinate of the f and f' sites. For the T tran-
sition, the situation is reversed. There is no so-
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lution for which both types of molecules have the
same phase relation between their inequivalent
chains. Since the Coulomb forces favox the "out-
of-phase" situation, the CD% amplitude on the "in-
phase" chains is probably small.

IV. PHASE TRANSION AT 49 K

The experiments indicate that the T, or T CD%
described in Sec. IG persists from 54 K down to
about 49 K where, as pointed out by Bak and Em-
ery, ' the wave vector changes from ko= &u*
+ gb~ to b =(—,'-q)a" + pb~ and q varies continuously
from zero. %e are going to apply the Landau the-
ory in this situation. There is an important dif-
ference between the phase txansitions of 54 K and
49 K. In the former case, a lower-symmetry
structure (the CDW) is superimposed on the high-
symmetry structure of the high-temperature
phase; therefore the free energy had to be invar-
iant with respect to the space group of the high-
temperature phase. However, at 49 K, the situa-
tion is different. The CD% of wave vector k is
not superimposed on that of wave vector k, . It is
not appropriate then to analyze the situation at 49
K in the same way as before, i.e., to construct a
free energy which is invariant under the symmetry
elements of the structure just above the transition
point. It is possible, however, to work with the
symmetry of the phase above 54 K and to study thy
shift in the CDW wave vector. It must be kept in
mind that the ordex parameter, the CD%' ampli-
tude, is not necessarily small at the 49-K tx ansi-
tion and therefore a low-order expansion may not
be sufficient. However, the higher-order invar-
iants will not change the results qualitatively
since, due to the low symmetry, the higher-order
invariants can all be obtained from products of the
low-order ones.

%'e repeat the steps of Sec. GI, but for a general
0&q&4. 'The group of the wave vector contains
only the unit element and the star contains four
vectors

&, =(-,' —q)g" + pb*, b, = -(-,' —q)e* —gb*=Ib, ,

b, =-(-', —q)a" + pb~=C, b, ,

b, =(-,' —q)a*- pb*=eb, .
The space group C25~ has only one four-dimensional
IR for this star whose basis functions and matrices
are easily found

g, =N, (r}e'"~ ~,

X, = T(1)X, =u, (-r)e'"2'", (4.2)

X = T(C*)X =u (C 'r)e ""e"3'

X =~(o*)X =~ (-C*'~)e""e'""l q

where u, (x) is an arbitrary lattice-periodic function
and

0 0 0

0 1 0 0

0010
0 0 0 1

Q Q @2ffP Q

0 Q Q g~t$0

T'(C*, ) =
I

0

Q 1 0

0 0
T(I) =

0001"
yf g)— 0 010

01 00
1000

The charge-density change associated with this
IH is

~p = dye] ~

-"1
(4.4)

The invax'iant combinations of the d,. are easily
found and the free-energy change has the form

AF, =A, (d,d, +d,d, )+&,(d,d, +d,d, )'

+C,(d,d,d,d, ) . (4.5)

If 4F (0, then finite values of the d& minimize
hF. If we carry out the minimization, we find
two types of solutions:

d) =dp =d8

or

d, =d.=0, d, =d,*=de", d'=-X/2a,
(4.61)

d, =d,*=de'~, d'= A,/(4B, +C,-) . .

In the two cases, the minimum values of the free
enex'gy are:

(4.Va)
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In either approach, me assume that the change
in free energy when &p(r) appears can be expanded
as follows:

nF = d'r, d'r, F"'(r,r, )&p(r, )&p(r, )

+ d'r, d'r, d'r, F'"(r,r,r, ) &p, &p, &p, +. . . ,

(4.8)

where E'"' is the nth functional derivative of AF
with respect to &p. The E'"& are assumed to be
symmetric in their n arguments and invariant un-

der the operations of the space group applied to all
arguments simultaneously. As we shall see, the
Landau coefficients A, B, C. .. may be found from
the integrals which appear in (4.8).

A. Complete set of basis functions

FIG. 3. Qlustration of CDW's on TCNQ (or TTF)
chains when q & 0 for case (a) phase sliding and case
Q) amplitude modulation.

(b) AF, = A', /(4B,-+C,) . (4.7b)

In case (a), only two elements of the star are acti-
vated and 5p, (r) has only two wave vectors, either
k„k, or k„k,. In case (b), all four wave vectors
appear in 5p, (r). The two cases correspond to dif-
ferent charge distributions as seen in Fig. 3."
In case (a), the phase of the CDW's on the chains
of the same type of molecule varies along the u

direction; it slides with respect to the q =0 solu-
tion of Sec. III. In case (b), the phase is constant,
but the amplitude is modulated.

In the above calculation, we have used only one
set of basis functions. Our conclusions concerning
the possible symmetries which can occur if one of
the free energies of (4.7) becomes lower than that
of (3.8) are correct, but we have no information
about the actual charge distribution or the contin-
uity properties of the tx ansition. As we have em-
phasized earlier, we must either use a complete
set of basis functions for the IR in question or
choose the single basis, if possible, which mini-
mizes the free energy. If me want to look in more
detail at the nature of the transition to q 40, we
need to proceed by one of these methods. Our main
object is to find whether the transition to q cO is
continuous or not and mhich of the two cases is
realized. These questions depend on the nature of
the A, B, C coefficients, hence on the basis func-
tions. In addition, me shall be able to describe the
relation of the basis functions or small q to those
for q=0.

If we choose to proceed using a complete set of
basis functions, we choose them as follows: In the

q = 0 case (Sec. III) we took even and odd bases with
V' and V [cf. (3.4) and (3.5)] for the IR's T, and
T„. There is a complete orthogonal set of V"s
and one of V 's. We can choose the u, functions in
(4.2) in such a way that as q 0 they tend contin-
uously to the functions V'(r). If we use the proper-
ty (3.5), we see from (4.2) that such a choice of the

u, leads to basis functions X~&, which, when q 0,
go over to basis functions for T,(3.4), as follows:

}(a +&-freya +&frsys
(4.9)

~p d]X

)+ding)

(4.10)

where these X', are those basis functions which go
over, as q-O, to the lowest band bases for T,.
If we insert (4.10} into (4.8) we find a variety of

If me use this complete set there mill be infin-
itely many coefficients d, in the expansion of the
charge density (4.4} and the problem is too com-
plex. Let us illustrate the procedure with two sets
of basis functions. We suppose that we know the
forms of V' mhich give the lowest free energy.
The other orthogonal V' functions of the complete
sets belong to "higher bands. " We disca, rd the
higher band functions and restrict our u functions
to those that go, as q-0, to the lowest band V'
functions for the q =0 IH's T . With these simplifi-
cations we are ready to establish relations between
the Landau coefficients', B, C, . . .forq 40andq =0.

The next step is to insert the charge-density ex-
pansions into the free-energy expansion (4.8).
When q =0, we use (3.6} and when q x0 we use, in-
stead of one basis as in (4.4}, two basis sets:
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terms involving the various invariants which may be formed from the d;. Instead of (4.5), valid for one

basis set, we now obtain a free energy of the form

AF, =&;(d; d; + d;d) +A, ( dd + d d )+A'(d'd + d d'+d'd +d d') +8'(d'd'+d'd'}' +8 (d d +d d )'

+H, (d;d, +d,d;+d;d, +d,d;)'+C;(d;d;d;d;)+C, (d,d,d,d;)+D, (d;d;+d;d;)(d, d, +d,d, )

+H'(d;d2+d;d4)(d;d, +d,d2+d;d4+d, d4)+H (d,d2+d, d~)(d;d, +d,d;+d;d ~+d,d', )

+P (dgd2d3dg+ dqd2d3dg) + 'Q (dgd2d3d4+ dgd2Vpd4) +R (dgd2d3dg +dgd2dgd4)

+Fq(dgtPgd3CPg+dgCPgdjd4+CVgd2dsd4+dgCPgd3dg++ (CPgd2dgd4+dgd2djdg+dgd2dpd4+CPgd2d3dg) (4.11)

where, for example, from (4.8) we find

{4.12)

and the other Landau coefficients are found simi-
larly.

As q-0, according to (4.12) and (4.9) we have

A~ =2 d~g d'y E~" y g ' *=A
(4.13)

where A, is the Landau coefficient for q = 0 appear-
ing in (3.7). Note that, from (3.2}, C,*Q;=e
C,*Q, = -e""P, so that Q;Q, changes sign, while
E"' is of course invariant. Therefore, when q =0,
A,' as given by {4.13) vanishes. Similar arguments
for other mixed coefficients give the results

A,', H'„E', all 0 as q-0. {4.14)

At the same time, we can find the relations be-
tween the other Landau coefficients as q 0 and
those of (3.7) for q =0. The latter may be found by
inserting (3.6) into (4.8). We compare the results
with the limit as q - 0 of expressions like (4.12),
using (4.9). We find

H D, P 2D, D, C, )asq-0.
Q, -6D, 8, —(C+4D),

(4.15)

The an»ysis of the free energy (4.11) is prohi-
bitively complicated. However, it is clear from
(4.14) that the mixing of two basis sets is small
for small q. The mixed invariants with coefficients
J3„D„I'„Q„R, do not modify this conclusion be-
cause, unlike the terms withA, ', H, , E,, in the
minimization of hF, for finite d„ they do not nec-
essarily produce a finite d, . Then, if we neglect

the mixing and use the continuity properties {4.15),
we are led to consider, for small q, a free energy
which is the sum of two terms of the form (4.5):
one with superscript + on the A„B„C,and d&, and
one with superscript —.Suppose that at 54 K, A,
vanished with A &0. Then we need to minimize
only the terms with superscript "+."

We can now decide between alternatives (a) and

(b) for the minimum free energy [cf. (4.6), (4.7)].
We can find the limit of AF, when q - 0 by using the
relations (4.15). We find case (a) has lower energy
(by a factor —', ) when q =0 and hence also for small
q. Thus the transition to finite q involves phase
slippage along the chains.

In our argument, supposing that T, is activated
at 54 K, we have finally kept only the band which
goes over to the actual distortion as q-0 (lowest
band for Tg. The basis for this assumption is that
if only the lowest band counts for q =0, the mixing
must be small for small q and should not change
the qualitative results. We have seen explicitly
how the mixing of the higher band represented by
the d,. vanishes in the q-0 limit.

B. Single set bf basis functions

Vfe now discuss the second approach for finding
the charge distributions in the transition to q -0.
We use the single basis set (4.2} and choose it to
minimize the free energy. This is carried out as
follows: We insert the charge density (4.4) into
the free-energy expansion (4.8) in order to find
the Landau coefficients A, , B,, C of (4.5) in terms
of the basis functions (4.2). We then examine the
limit q 0 and compare to the case q =0. We ex-
pect that the free energies for q 0 and q =0 do not
necessarily agree since the latter case (commen-
surable in the a direction) admits umklapp terms
in the free energy, i.e., terms involving invariant
combinations of order parameters in which the
wave vectors add up to a reciprocal lattice vec-
tor." For example, when q =0, in the star of
k[cf.(4.1)], k, (k, ) and k, (P,) become equivalent (dif-
fer by a reciprocal-lattice vector) and new invariants
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U(d d 8""+dd 8 ")+ V(d d +dd, )(d,d,&""+d2d3& "")+ W[(d «"")+ (dada' ) ] (4.16)

c, =d +e "d3, c2 =d2he "d4, (4.17)

then from the sum of (4.5) and (4.16) we recover
the free energy of (3.7) with the following identifi-
cation of the Landau coefficients:

A, +U-2A, 48, +C, +4V+2W-168

8, —W- 2(C + 2D), C,+ 2W- 16D .
The coefficients in (4.5) and (4.16) are given by
expressions like (4.12) in terms of our single ba-
sis X ~:

~"'X,X„U=2 ~"'X,X,e "",

C, +2B =24 XgX2X3X4 y

(g)

~"'X,X,X,X„ (4.19)

need to be added to the free energy. Thus, we
first look at the possibilities for having a contin-
uous free energy as q leaves zero. We shall find
that for certain properties of the Landau coeffi-
cients there is the possibility of a continuous tran-
sition, that these properties are a. consequence of
a particular choice of basis (4.2), and that any
other choice leads to a higher free energy.

The first step is to calculate the free energy for
a particular choice of basis functions. Supposing
againthat T, isactivated for q=0 at 54 K, we
choose a basis X,. for q W 0 which goes over, as
q 0, to the T, basis Q;, as in (4.9). The free-
energy expression valid for both q40 and q=0 is
the sum of (4.5) and (4.16), the latter contributing
for q = 0 only.

If we let q 0 in (4.5) and perform the transfor-
mation

for T, remain and A and B, go continuously over to
A. and B,.

Having established the form of the free energy
and its q -0 behavior, we need to minimize it for
qe0. Thus, we are going to minimize (4.5). We
can use the results (4.6) and (4.7). For the present
choice of basis, 24 C, ,& 0 and case (a) has lower
free energy for small q and since A, and B, go con-
tinuously to A, and 8„ the free energy (4.7a) of
this solution goes continuously to the q =0 free en-
ergy of (3.6). Thus we have shown that there is a
possible choice of basis for which q shifts continu-
ously from q =0 and that the corresponding charge
density corresponds to phase sliding with respect
to the q = 0 case.

We now show that any other choice of basis yields
higher free energy for qc0. We consider first the
case that C &0 for small q. Then the solution case
(b) of (4.6, 4.7) obtains. If we carry this solution
continuously to q = 0 and use it in the free energy,
then the umklapp terms (4.16) appear and make a
negative contribution to the free energy which
means that the free energy E, -o is always less than
the free energy E, , as given by (4.7b}. Another

way of seeing this is by an examina, tion of how the
bg,sis functions enter the Landau coefficients A, ,
8, , C of (4.5) and U, V, W of (4.16). One finds
that there is no choice of basis which allows I"
of case (b) to go over continuously to E, 0 of the
r, or V tra sition.

The situation is different when C, &0. Now case
(a) obtains for small q and d, = d, =0. It may pay,
however, to introduce some d„d, at q = 0 if one
can lower the energy via, umklapp by doing so. If
we set d, =d,*=de'~, then the linea. r umklapp terms
in d„d, will vanish if U=-Vd' [cf.(4.16)]. The
quadratic terms of (4.5) and (4.16) are of the form

t/'= l2

w= fSf

+"'X,X, X,X,e "",

+"'X,X,X,X.e '"".

A, + (8, +C,)d']dsd,

+ Wd'(d', exp[2i(&- v p)]+d', exp[-2f(9-. ~)]j ~

(4.22)
We determine the q 0 va, lues of these coeffi-

cients by replacing the }t, by Q,+, as in (4.9). We
find

B,=B, B =0,
C=O, D=O.

(4.21}

Thus only the terms corresponding to the basis

A, O=U, C,~ 28, 0=48 ~=2V=4W. (4.20)

We put these relations into (4.17) and find

A.=A,~, A =0,

If we can have these always positive and U =-Vd'
with the solution d'=-A, /28, of (4.6), then at q =0
the lowest energy still has d, =d, =0. On the other
hand, if (4.22) gives a negative contribution, or if
UP -Vd', then finite values of d» d4 can lower the
free energy at q=0 compared to q 0. Thus, for
E,~ not to be lower than E,„,we require, as q-0

C &0, A, &0, U=VA, /28, .
2(W[ C„28,W V'-B,C, . (4.23}

We have added a fifth condition; it insures that the
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where A„B,are the Landau coefficients of Sec.
III and depend on the Q;, . In the case C,&0 we

know that for small q, it remains true and the solu-
tion (4.6a) obtains. The charge density is

6p~, = ( A, /2-B )'"(e"X,+e ")I,) . (4.25}

If now we pick for our basis set p, the one satisfy-
ing (4.9), then since (4.23) is satisfied the umklapp

does not contribute to the free energy which is
therefore continuous as q leaves zero. Further-
more, the Landau coefficients A, , B, go over, as

q 0, to A„B„j sut as in (4.15), from which it
follows that the charge density is also continuous

since (4.25) goes to (4.24} as q 0. Finally we

note that since the basis Q;, has been chosen to

give an absolute minimum E, „we have shown

that the choice (4.9} leads to an F, which tends to

a minimum as q-0. Any other choice of basis
would yield a higher E,. In any case, if the con-
ditions (4.23) are violated, then F~&F, ,

We have discussed the continuity of charge den-
sity and free energy near q =0 by two methods.
Let us now elucidate the possible behavior for the
transition away from q =0. We shall plot the free
energy as a function of q. Note that the Landau co-
efficients are even in q,"since the wave vectors
k, = (& —q)a~+ pb* and k'=( —,'+q)a*+ pb* belong to
the same star and hence the same IR. This is be-
cause k' is equivalent to k, (see 4.1); it differs
from it by the reciprocal-lattice vector a*. There-
fore A, and E, are even in q and since the CDW at
54 K has q = 0 it follows that both A and E, have a
minimum at q =0. From continuity arguments it
follows that below 54 K the minimum of E is still
at q =0 and the relative phase of the CDW's on suc-
cessive TTF or TCNQ sheets is unchanged. It
may happen, however, that at a certain tempera-
ture below 54 K, this minimum starts to shift sym-
metrically from q =0. Another possibility is that a
new minimum develops at a finite q value. We
show the possibilities in Fig. 4. In the first case
[Fig. 4(b)], the wave vector of the CDW begins at
T2 to vary continuously away from q =0, while in
the second case [Fig. 4(c)], the new structure ap-
pears, abruptly at T, with a discontinuous change in

minimum of F,~ is an absolute minimum. If (4.17)
obtains, then the same solution (4.6a) minimizes
both E, and E, , and the charge density is contin-
uous in q. These conditions are satisfied by our
particular choice of basis, as can be seen from
(4.20). In this case there is no commensurability
energy.

Let us summarize our conclusion. We suppose

T, is activated at 54 K. According to (3.9) and

(3.3), the charge density has the form

(4.24}

the wave vector from zero to a finite value. Still
another possibility [Fig. 4(d)] occurs if a CDW cor-
responding to [4.6(b)] is activated; it has a higher
free energy for small q but mayhavea lower one at
some temperature for a larger q. In the case
shown in Fig. 4(b), the transition is continuous in

q and second order, while in the other two cases
there is an abrupt change in wave vector and a
first-order transition. We conjecture that the ex-
perimental results"' at 49 K reflect the behavior
shown in Fig. 4(b).

We have pointed out earlier" that once the wave

vector moves away from q =0, there is no symme-

try reason to suppose that CDW wave vector has
no component along c*. In the absence of experi-
mental evidence of a c*-component of q, we have

not included that possibility. However, it would

make no substantive changes anywhere in our dis-
cussion. From symmetry considerations, Muka-
mel" has reached the conclusion that a c* compo-
nent should be present and Horowitz and Mukamel"
have estimated the ratio q,/q, = 0.1.

We have shown in, the above analysis that in spite
of the fact that the transition from q=0 is from a
commensurate to a noncommensurate (in the a
direction) state, it does not follow that a finite
commensurability energy is involved. To analyze
this question in the general case one can follow

the procedure we have used, namely, to compare
the commensurate to the nearby noncommensurate
state via the expansion (4.8) and the subsequent
analysis of the Landau coefficients. In this respect,
the argument of Ref. 13 is incomplete. We will
find a finite commensurability energy for the 38-K
transition in Sec. V.

5F

2
h, F= —Aq/4Bq

ELF = —A q /(4Bq+ C )
2

FIG. 4. Plots of free energy iltustrating possible
phase transitions associated with change of wave
vector q.
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V. PHASE TRANSITION AT 38 K

When q = —,
' the CD% distortion is again commen-

surate in the a direction, with a lattice spgcjng
four tirpes the original. It can be expected then
that a commensurability energy may be involved
in the transition from q& to q= —,

' at 38 K. To see
how this enters we follow the same line of reason-
ing we used in Sec. IV. The star of k consists now
of the four vectors

or

f1=f.=o f2=f:=f'"
f' = A,-/, /2B, /, ,

(")f, -f:-fe", f.=f.*=fe"
=-A,

/ /(4B, /4+C, /4
—2 ~G ~),

cos2(8- jt'+ jj jj) = sgnG .

(5.$a)

(5.5b)

k~ = ~a+ (lb +, k = -—a - pQ +

k, =-4a + gb*, k, = —,'a- pb*, (5 I)

P, =v(C,* 'r)e jI2 ~e "
—v( C4 lr)e jf4 1ejtl4'

(5.2)

The matrices of the IR are the same as (4.3). We
may expand the charge density in terms of these
functions with coefficients f, . Treating the f, as
basis functions in the usual way, we find the fol-
lowing second- and fourth-order invariants

(f,f.+f2', (f1f2+f2f.)' (fjf2f2f4)

(e jIIf2f2+ejlIf2f2) (5.3)

The last, umklapp, one is new, it only appears for
q =4 and arises, as q —,', continuously from the
following mixed fourth-order invariants for q 4 —,':

e "'"d,d,d,'d,'+ e'""d,d,d,'d,',

e" j[( d1d'4)+(did )]+ e"'"f (d2d2' )+(d2d2)']

(5.4)

and there is again a four-dimensional IR with ba-
s1s

p, =v(r)e j"1'~
ijI2 =v(-r)e~2'~,

In the two cases, the minimum value of the free
energy is

(5.7a)(I) F, /. =F0 1/4/ 1/4

(ii) E,/, =E,—A', /, /(4B, /, + C, /, —2
~
G

~
) . (5.7b)

Case (i) corresponds to a phase modulation as in

Sec. IV (cf. Fig. 3) and is just the continuation of
the solution found there to q = —,'. It is continuous in

q, there is no transition as q shifts through the
value q = —,'. In case (ii), we have amplitude modu-
lation and, due to the umklapp term G, a discon-
tinuous transition from general q to q = —,'. Whether
or not the transition is continuous at q = —, depends
on the value of G.

Our description of the 38-K transition is al fol-
lows: Below 49 K, we assert that a CD% of the
form (4.6a) exists since experimentally, the 49-K
transition is continuous. As the temperature is
lowered the q shifts toward —,

' and the free energy
varies with q according to (4.7a). At 38 K, the
free energy (5.7b) becomes lower and a discontin-
uous transition takes place with an abrupt change
in q. This is ilhstrated in Fig. 5. Our descrilj
tion is similar to that of BjeliC and Sari0id. "

Finally, we remark that in the solutions ef calo
(i), the umklapp terms play no role. This would be
true also at other commensurability points (e~.,

where d&, d& are the basis functions for IR's with

q = ~+p, q' = ~ -p, respectively. In a free-energy
expansion, the sum of the Landau coefficients of
the invariants in (5.4) would go continuously, as
p 0, to the coefficient of the new invariant for
q = 4 in (5.3). We have not included (5.4) in our
discussion of general q since it mixes two stars
with different wave vectors. In the absence of any
experimental evidence of a structure having two
different wave vectors one can neglect the mixed
terms. "

We now write the free energy using (5.3):

-i/4
I

44' F
IL

I/4
I q

—i/4
I

fiF
lI

I/4
I q

—i/4
I

44' F
n

i/4
q

F =F0+A, /4(f, f2+f 2f4)+B, /, (f f2+f+4)2
+ C, / (f f fJ' )+G (e "'"f,'f'+e"'"f;f;) .

T& 38K T= 38K
2

QF = —Aq /4Bq
2

j/iF = — Aq/(4Bq+Cq )

Tc 38K

(5.5)
Minimizing the free energy again leads to two types
of solutions (i) and (ii):

(1) f, =f.*=fe", f.=f.=o

commensurability energy

jump in q

FIG. 5. Plots of free energy illustrating phase lock-
in at 38 K.
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q = —,, 6, etc. ) and the CDW form and the free en-

ergy would be continuous as is observed. If the
solution of (4.6b) took over at any intermediate
temperature, then as q varied, the commensur-
ability energies present in case (ii) would cause
discontinuous transitions between commensurate
states. Thus the experiment shows that case (i)
is appropriate from q =0 at 49 K to the sudden

jump to q = —,
' at 38 K.

VI. DISCUSSION

We have described the possible successive phase
transitions in TTF- TCNQ in terms of the Landau
theory of second-order phase transitions. The
theory can be applied not only to the first transi-
tion which is of second order, but also to the other
transitions where the CDW amplitude is not small.
In the latter cases, it is probably not, sufficient to
terminate the free-energy expansion at the fourth-
order invariants. However, due to the low sym-
metry, the higher-order invariants can all be ob-
tained from products of the low-order ones.
Therefore higher-order terms will have quantita-
tive effects, but will not change the qualitative
features which we have elucidated since these are
based on symmetry alone.

We now summarize our results. The 54-K tran-
sition is a continuous one with simultaneous order-
ing of both TTF and TCNQ chains. Two possibili-
ties for the 'structure are allowed by the symme-
try. Either the CDW's on the inequ~valent TTF
chains have similar amplitude and%, re essentially
in phase while the CDW's on the TCNQ chains are
essentially out of phase, or the relative phase re-
lations are reversed [cf. (3.10) and Fig. 2J. It may
be seen in a classical calculation that the coupling
causing the simultaneous ordering of both TTF and
TCNQ is a, consequence of the tilting of the mole-
cules out of the ac plane and of the mono-clinic
structure. In quantitative terms, the coupling may
be small and the CDW ordering may be predomin-
antly on the TCNQ chains.

In our description, the second transition, near
49 K, can be either a continuous shif t in q away
from q =0 or a discontinuous jump to a finite value
of q. There is no way to tell which occurs without
a quantitative treatment of the Landau coefficients.
The various possibilities are shown in Fig. 4. The

free energy is continuous in and symmetric in q
and has a local minimum at and below 54 K at q =0.
This minimum can become a local maximum in the
case of a continuous change in q [Fig. 4(b}] from

q = 0 and the experiments indicate that this gbssi-
bility is what occurs. It then follows that the CDW
for finite q has the form of case (a) in Sec. IV and

the change in q represents phase sliding as shown

in Fig. 3(a).
Our description differs from previous theo-

ries " both in the mathematical formulation and
the physical basis of the onset of phase sliding.
In contrast to earlier work, our analysis shows
that although the first transition, at 54 K, may be
primarily on TCNQ, the small amplitude CDW

which must be present on TTF already removes
the T =0 divergence of the TTF susceptibility,
which therefore cannot drive the 49-K transition.
However, if the TCNQ-TTF coupling is sma. ll,
then the CDW susceptibility on TTF may remain
large enough for it to be favorable for the system
to develop an additional CDW, predominantly on

TTF, whose phase structure is favorable for TTF
and unfavorable for TCNQ. 'The two CDW's do not
couple at q =0, but coupling between them which
can lower the free energy will develop if the phase
slides to finite q. Thus, we conclude that if the
TCNQ- TTF coupling is not small enough, then the
TTF susceptibility will not be large enough for
this mechanism to develop. This may be the rea-
son why other systems having the same structure
(e.g. , TSeF- TCNQ) do not behave in the same way.

The transition at 38 K interrupts the phase slid-
ing due to the commensurability energy associated
with the umklapp invariant which enters for q = &.
The physical basis of this transition is the same
as that of Bjelis and Barisic,"but the formulation
is somewhat more general since we do not restrict
the couplings which enter the calculation.
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