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Hartree-Fock formalism for solids. II. Ayylication to the nearly-free-electron gas
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In this paper, Gaussian basis functions and Fourier transforms of both the Coulomb and exchange terms
are employed to simplify numerical procedures in Hartree-Fock calculations for solids. A very simple set of
working equations is presented, and the advantages of this particular formalism for solids are discussed. As a
test of the method the nearly-free-electron gas is solved in the Hartree and Hartree-Fock approximations. In
both cases excellent agreement is obtained with the well-known exact solutions if a suitable set of Gaussian
basis functions is employed. On the basis of this study it is concluded that the formalism is not only practical
for real solids, but yields accurate results when properly applied.

I. INTRODUCTION II. HARTREE-FOCK FORMALISM

In the first paper of this series (hereafter re-
ferred to as I), the exchange term in the Hartree-
Fock (HF) equations for solids was Fourier trans-
fox'med to take advantage of periodic properties of
a perfect crystaL' The complicated (HF) equa-
tions %'lHch occux' %'hen R locRllzed set of bR818
functions 18 6IQployed were substantially 81IQpll-
fied, with all direct lattice sums either disappear-
ing or being replaced by reciprocal-lattice sums
w'hich are easier to handle. The Fourier transform
simplifies the iterative proceduxe as well, Rnd

makes the time required for calculation proportion-
al to N' instead of N'(where N is the number of or-
bitals employed). Thus it becomes feasibIe to con-
sider solids composed of atoms with many elec-
tx'Ons. To get the reciprocal-lattice sums in a
usable forrQ it is necessary to evaluate the Fourier
transforIQ of the exchRnge tex'IQ by employlIlg GRus-
siRD bRsls functions. Expllclt expl esslons fox' the
Fourier transfoxms of the exchange term are
glveD ln I.

In this paper we present the full formalism for
HF calculations in solids and discuss the steps nec-
essary to implement the formalism. As a test of
the fox Inalism and the accuracy obtainable, the
nearly-free-electron (NFE) gas is solved in the
HRx'tl ee Rnd HRx'tx'ee- Fock Rpproxlmatlons.

The organization of this paper is as follows. In
Sec. II the present version of the HF equations is
pxesented and discussed using the results of I.
Section III applies this formalism to the NFE gas,
showing how it reduces to the exact result when
plane-wave basis functions are employed. Gaus-
sian basis functions are used to solve the NFE gas
ln the HRx'tx'66 Rppl oximation 1D Sec. IV Rnd ln the
HF RpproxiIQation in Sec. V. Implications for real
crystRls are drawn ln Sec. VI.

The HF equations presented here are extensions
of the method developed by these authors and others
over the last few years to treat the Hartxee and
Hartree-Fock-Slater (HFS) equations in solids us-
iklg linear-combknatkon-of-a'tonkkc —orbktais (LCAO)
basis functions. ' ' In this procedure the key ele-
ment is Fouriex expansion of the crystal potential

V( )=g V(K)"~' (2.1)

where K„ is x'estricted to a reciprocal- lattice vec-
tor. Matrix elements of the potential using locab-
Eed orbitals, P,.(r}, to form the I CAO are

V,,(k) =Q V(K„}Sk)(k,K„), (2.2)

S„{k,K„)=g e"' "k
~ g, (r}e*'"n'p~{r - R, ) dr.

Hex'6 R& ls R dll ect 1Rttlce vectox' Rnd R monatomic
lRttlce hRs beeD RssUIQed. These equRtlons Rl6 dis-
cussed in Ref. 3. The advantage of the Fourier
series is that V(K„) can be related to S,&(k, K„) at
each stage of the self-consistent iterati. ons, and

S;&(k, K„) is a matrix which can be computed once
and stored. With P,.(r) a Gaussian orbital, the cal-
culation of 8&& is rapid, since simple analytic ex-
px'esslons Rx'6 obtained. The reclprocRl SUIQ Rs
written in (2.2) is not rapidly convergent, but pro-
cedures to handle it efficiently are available. '

In most studies in the past it has been necessary
to treat the exchange term in the HF equations ap-
proximately by introducing a local exchange-cor-
relation potential, e.g. , the Xo,'potential. ' A lax'ge

literature on this type of approximation exists.
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References may be found in Callaway's text' or a
recent paper such as Ref. 9. Local exchange-cor-
relation potentials may be handled by Eqs. (2.1)
and (2.2).

In this paper we show how to treat the exchange
term exactly in solids. Correlation corrections
may then be included by some suitable technique
based upon knowledge of the HF solutions. ""
Prom I the exchange term may be written in a
form like (2.1), except a Fourier integral also ap-
pears:

V.,(r„r,)=g [ V„(q,q+K,}

x exp Ifq ~ r, -f(q+ K,) ~ r, ]dq,

(2.4)

where K, is a reciprocal-lattice vector. The cor-
responding matrix element is, from I,

V)I(k)= Q V (K+K„,k+K )

x P~(k+K„)&f)~(k+K ),

which is a double reciprocal lattice sum. P,(k+ K„)
is defined by

and V,„(k+K„,k+K }. Equation(2. 7) is the basic
working equation of this procedure. The only dif-
ficulty in its application is obtaining convergence
of the reciprocal lattice sums. The Ewald pro-
cedure has been used to obtain rapid convergence
of the Coulomb term"'"" and, with the exchange
term, a similar procedure may be used, although
the product fib, and fI))& in some cases could give
rapid enough convergence of the double sum as it
is written. This is discussed in I and below.

The relation of this method to other HF pro-
cedures for solids has been discussed in I. The
methods which are closest in spirit to this paper
are those of Harris et aE."and of Mauger and
Lannoo. " The Latter authors, who recently pub-
Lished the HP band structure of diamond, have

employed essentially the same procedures origin-
ally proposed by Harris which are based upon the
use of Fourier transforms. The procedures used
in this paper differ in the choice of basis func-
tions and in the choice of which terms in the HF
equations to Fourier transform. The choice made
here leads to a very considerable simplification of
the iterative procedures and greatly simplifies
the Fourier series, so that convergence difficulties
encountered in other methods are eliminated. "

(2.6)

The functions P,(q} may be evaluated once and

stored. During self -consistent iterations
V (k+ K„,k+ K ) changes; but it may be related
to f„p& and an error function of complex argu-
ment as shown in I, if a Gaussian basis set is
used. Thus an iterative cycle is established si-
milar to the one used extensively in Hartree and
HFS LCAO calculations. ' An important property
in the practical application of this equation is the
fact that only the first few terms in the reciprocal
lattice expansion change during the self-consistent
iterations. The complete Hamiltonian matrix ele-
ment, including kinetic (E), potential (V,), and

exchange (V } terms may be written in terms of
reciprocal lattice sums as

HU(k) =K,q(k)+ Q V,(K„)S)~(k,K„)

+ g V„(k+K„,k+ ~}

III. NFE GAS: EXACT SOLUTION

Equation (2.7) is valid for a suitable choice of

g,(r), possibilities being Slater orbitals, Gaussian
orbitals, or some other Localized orbitals. %ith

'S;& and P, properly defined it is valid even for a
plane wave basis. In this section it is demonstra-
ted that the latter choice in Eq. (2.7) yields the
familiar HF energies for the NPE gas.

The NFE gas is defined as a collection of N elec-
trons in a volume V in which a uniform positive
background charge is assumed and a periodic po-
tential is defined by the use of infinitesimal charg-
es at each bravais lattice site. The latter serve to
define the direct lattice vectors R, and the associ-
ated reciprocal lattice vectors K„. As a. result of
the lattice structure, energy becomes periodic in
the reciprocal lattice. Bloch's theorem must be
satisfied for a finite lattice translation, and multi-
ple energy bands appear, usually described in the
reduced zone scheme. -" The Fourier transform
of the total Coulomb interaction for an electron is
simply

x y*, (k+ K„)y~(k+ K ). (2.7)
V(K„)= V 5"

While no assumption has been made about form of
the basis functions, rather simple expressions for
K&&, 8,&, and P, occue if Gaussian orbitals are used
as the local orbitals in the LCAO. In this case
analytic expressions also are obtained for V,(k)

where V, may be taken to be zero. The Fourier
transform of the exchange term is not so simple.
With a plane-wave basis it may be computed di-
rectly from the density matrix (see I)
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2m) „ I r~ —r2

-8 Lk1 ~ (~ I'2)

(2m)' V 2 „' 11', -r, l

'jf, ace

& e"~&''~'~2''2dr dr 2$

(3.2)

whexe V is the volume of the crystal. Shifting the
origin for the r, integration to r„

is a reciprocal-lattice vector, Eq. (2.7) becomes,
ln Rtomlc unitsq

a„= ~E+K, [
-*" s '"' ') a„, (s.x&)r k~

which is the exact result for the NFE gas: The
Hamlltonian ls dlRgoDRl with this choice of basis
functions. This was to be expected, and is a sim-
ple test of the HP formalism. Surprisingly, this
test has not been used on other HP procedures. In
the next sections this test is appbed to Eq. (2.7)
using Gaussian basis functions.

rV. NFF GAS: GAUSSIAN-HARTREE SOLUTIOX

+r &f(a2- g~) ~ r&

&(q„g,) ~ 4w

% Occe

The sum over k may be computed by converting
it to an integral. The result is"

(3.3)

(3.4)

whex'6 kg 18 the magnitude of the Fermi wRve vec-
tor and

E( ) -=1+ [(1-x')/ ]I ((1+ )/{1 — )(. (3.5)

(3.6)

In general V {j„g,) is defined by

V' (q„q,) ='Q V (q„q,)&(j,-q, -K,),
R2

(3.7)

so that in the case of the NPE gas,

2%) N' tn

(3.8)

p-(r) = (1/V' 'N' ')e'" '
y-(k+ K ) = ( V'&/iV'f2) I}-

Using the above results and replacing k by k+ K„
whel 6 k ls flow 1'estr1cted to the first zone Rnd K~

(3.9)

(3.10)

To evaluate the Hamiltonian matrix elements in
(2.7) for the NFE gas, one writes the g 's as plane
wave8, with N the number of unit cells in the crys-
tal~

A more interesting application of Eg. (2.7) occurs
when a Gaussian basis set is chosen. In a x eal
crystal the plane-wave set, although mathematical-
ly complete, does not form a very useful set be-
cause of the rate of convergence of the plane-wave
expansion. Even in a metal, wave functions of an
electron contain x"apid variations which cannot be
reproduced by a tractable number of plane waves.
While thex'e is no proof of completeness for Gaus-
sian LCAO bR818 fuQctlons there 18 sufflcleDt evi-
dence to suggest that a manageable number can be
used, in insulators, or metals, to obtain energy
bands in agreement with other techniques and in
reasonable agx cement with experiment. "" Ex-
perience with HP equations in atoms and molecules
shows that Gaussian orbital, s may be used in varia-
tloDRl px'ocedul'68 to obtRln Rccul Rte 6Dergies fox'

bound states, but in solids this question has not
been settled completely for the conduction states.

In this section a typical Gaussian LCAO basis is
tested by Rpplylng lt to compute the energy bands of
the NPE gas in the Hartree approximation. The
exact solution is just the first term in Eq. (3.11).
Using GRusslRQS RIll the HRrtl ee approximation
only the first term in Eg. (2.7) appears. A face-
centered-cubic lattice is assumed here with a lat-
tice constant of 7.592 a.u. The Gaussian orbitals
and contractions are listed in Table I. These wave
functions and lattice constant may be simultaneous-
ly scaled by an arbitrary amount to obtain any de-
sired lattice constant without affecting the results
here.

Kinetic energy integrals with the basis in TaMe I
were already available from a previous calculation
fox' a I iF crystal. '~ The basis contains not only
orbitals localized on lattice sites (Li origin), but
also off-lattice-site orbitals (F sites in this ease),
and it results in 34 & 34 Hamiltonian and overlap
matrices. No orbitals of d symmetry were included
Rt this time.

The results of this calculation ax'e shown in
Tables II and III. Except for the highest conduction
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TABLE I. Gaussian orbitals. The contraction coefficients C multiply the normalized Gaus-
sian orbitals, N;e ",where & is the orbital exponent in reciprocal atomic units in column 2,
and N; is the normalization factor. Orbitals labeled "Li"are placed on lattice sites, while
orbitals labeled "F"are placed at fluorine sites in a LiF fcc lattice.

Orbital type Orbital exponent

Li s

Li p

F s

FP

3 184.467 10
480.512 66
108.863 25
30.289 479
9.641 514
3.391556
1.272 029
0.5
0.2

2.0
1.0
0.5
0.2

37 736.000
5 867.079 1
1332.467 9

369.858 66
117.12969
40.302 86
14.898 01
5.877 74
1.62676
0.61
0.23

1 024.080 2
23.794 387
7.495 459
2.763 871
1.099 056
0.45
0.20

0.001 482
0.011447
0.059 942
0.245 798
0.758 958
0.0
0.0
0.0
0.0

1.0

0.000 221
0.001 640
0.008 735
0.036 662
0.123 661
0.31K 407
0.443 441
0.222 868
0.0
0.0
0.0

0.011242
0.080 741
0.311642
0.706 619
0.0
0.0
0.0

1.0

1.0

-0.000 140
-0.001 065
-0.005 719
-0.023 829
-0.086 204
-0.233 185
-0.477 358
-0.303 661

0.0
0.0
0.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

TABLE II. Hartree-NFE energy levels in units of (27tja) . Column 1 gives the k vector
along the g axis. Column 2 gives exact energies. The remaining columns are eigenvalues
obtained with various combinations of the Gaussian basis of Table I. Column 3 includes all
basis contractions, column 4 excludes the last orbital of each symmetry in Table I, column
5 excludes all but the two longest ranged orbitals of each type and column 6 includes only
lithium site orbitals, keeping only the two longest-ranged orbitals of s and p symmetry.

g/2 ~)'g
(4 /~)k Exact 34 x34 26x26 16 x16 8x8

(o, o, o)
(1,0, 0)
(2, 0, 0)
(3, 0, 0)
(4, o, o)
(s, o, o)
(6, o, o)
(7, 0, 0)
(8, 0, 0)

0.000 00
0.015 63
0.062 50
0.140 63
0.250 00
0.390 63
0.562 50
0.765 63
1.000 00

0.002 93
0.018 28
0.065 02
0.143 23
0.252 70
0.393 31
0.565 06
0.768 07
1.002 24

0.99997
0.99124
0.977 14
0.982 29
1.024 48
1.109 75
1.$36 69
1.400 16
1.551 68

0.008 19
0.230 80
0.069 18
0.147 04
0.256 28
0.396 73
0.568 35
0.771 22
1.004 76

0.032 39
0.045 74
0.088 38
0.165 04
0.278 54
0.429 49
0.616 76
0.834 23
1.006 27
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TABLE III. Comparison of exact and Gaussian-Hartree-NFE energy bands at points along
the 6 axis. k vectors are given in units of 7t/4a.
(2~/a)~.

The first five levels are given in units of

(0, 0, 0)
Exact GH

(2, 0, 0)
Exact GH

(6, 0, 0)
Exact GH

(8, 0, 0)
Exact GH

I i 0.0000 0.0029
I'i- 3.0000 3.0009
I' 3.0000 2.9999
I'&5 4.0000 3.9997
I'g 4.0000 4.2888

I 0.0625
2.5625
2.5625
3.0625
4.0625

0.0650
2.5630
2.6514
3.0873
4.0665

0.5623
1.5625
2.0625
2.0625
4.5623

0.5651
1.5642
2.0627
2.0676
4.6749

X4

h
X5

Xf

X4

1.0000 1.0022
1.0000 1.0029
2.0000 2.0013
2.0000 2.0021
5.0000 4.9980

bands listed, where the finite size of the LCAO
basis becomes important, the largest errors oc-
curred in b, , bands which contain important con-
tributions from d-like orbitals. Otherwise the en-
ergies are accurate to about 3 parts in 1000. The
errors are systematic, so that energy differences
are accurate to another significant figure. Table
II shows energies obtained for the lowest NFE band
for several different basis sets constructed by de-
leting selected orbitals from Table I. Results
worth commenting upon are: (i) the corelike or-
bitals made small, but significant contributions to
the energy eigenvalues, (ii) the off-lattice-site or
bitals were significant in improving the energies
for the fcc NFE gas, and (iii) the 26 x 26 matrix
which eliminated all the longest-ranged Gaussian
orbitals of each symmetry gave poor results. For
the 34 x 34 matrix comparable accuracy was ob-
tained for the first four NFE bands. Beyond that
the limited size of the basis became important.
However, it is clear that the Gaussian LCAO meth-
od is capable of yielding energies for conduction-
like electrons to the accuracy desired for modern
band calculations (or for comparison with experi-
ment) if an appropriate set of Gaussian basis func-
tions is employed. Since Gaussians work well for
both localized (atomic) states and free-electron
states in solids, it appears that they form an ideal
set for real crystals which contain both. It is im-
portant, then, to see if this same conclusion may
be made when the solid state exchange term is in-
cluded.

V. NFE GAS: GAUSSIAN HF SOLUTION

The formalism of Sec. II provides the means of
checking Gaussians in solid state HF calculations.
Equation (2.7) is the relation needed. Two a.p-
proaches to implementing this equation are pos-
sible.

One method would be to assume some starting
Gaussian LCAO expansion for the occupied states,
perhaps an OAP approximation (see I}, compute

V (k„k,) from I using Gaussians and iterate to
self-consistency. This would provide a useful test
of the stability of the self-consistent cycles.

Another, easier method was employed here. The
exact result for V,„(k„k,) obtained in Sec. III was
inserted into Eq. (2.7), but otherwise Gaussians
were used. In this case there was no need to iter-
ate, since the starting potential was self-consistent.
Properties of the NFE gas simplify Eq. (2.7), re-
ducing the exchange term to a single reciprocal lat-
tice sum. This sum was performed using the exact
value of V,„(k+K„,k+K„) given by (2.13) and using
the Gaussians to compute g,.(k+K„). The latter are
tabulated in the Appendix. This sum converged
readily for the Gaussian basis functions employed
here. Unlike the Coulomb term, this sum was slow
to converge only for core-core orbital contribu-
tions, which were not significant in the NFE gas.
In particular, core-conduction terms, which are
so troublesome in the Coulomb sum, converged
rapidly here because they involvedgroducts

P,*(k+ K„)p&(k+ K„) instead of S,~(k, K„). Only 180
reciprocal-lattice vectors were summed to obtain
the exchange term. The kinetic-energy matrix ele-
ments were summed to as many as 75 stars of di-
rect lattice vectors for some elements for each '

point k used in the yacc Brillouin zone. A compara-
ble amount of work was required for each term in
the NFE Hamiltonian.

Figure 1 shows the Hartree-Fock band structure
obtained with the basis of 34 Gaussian orbitals. A

Fermi sphere radius was chosen corresponding to
one electron per lattice site, 0.6469 reciprocal
atomic units in this case. With this choice of Fer-
mi radius, the Fermi surface lies entirely within
the first band: there is no contact with the Bril-
louin zone boundary. The Gaussian-Hartree-Fock
(GHF} band structure compares favorably with the
exact Hartree-Fock bands, except, as before,
where d-orbital symmetries become important.
These orbitals can be included without difficulty in
this formalism, but were not part of our starting
basis set. Table IV contains some of the GHF en-
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3.0 .

1.0

0.0

k X

FIG. 1. fcc NFE-Hartree-Fock energy bands. Solid
curves are the exact bands; the points plotted were ob-
tained by the Gaussian procedure discussed in Sec. II.
The inset shows the first band near the Fermi vector
on the scale expanded 5:1.

ergies compared to exact HF energies, showing
an accuracy comparable to the Gaussian-Hartree
results. It is thus concluded that Gaussian orbitals
may also be employed to treat accurately the ex-
change term in the HF equations.

A property of the NFE gas which is of special in-
terest is the behavior of the energy and density of
states in the vicinity of the Fermi surface. To
find how well the GHF method reproduces this be-
havior, additional points along the 6 axis in the vi-
cinity of kz were obtained. No loss of accuracy oc-
curred near k~ with the Gaussian basis. These
points are shown in the inset in Fig. 1 which is
magnified 5:1. The point at which V'„E becomes
singular can be estimated from the curves in both
exact and GHF bands. This behavior is responsible
for the vanishing of the density of states at the
Fermi energy. According to reasoning by Her-
ring, "this will occur in a real solid in the HF ap-
proximation if the Fermi surface is spherical.
This fact is often used in an argument against the
use of uncorrelated HF theory in metallic solids.
For nonspherical energy surfaces it is not clear to
these authors that the argument still follows. It is
interesting to find what a numerical calculation of

the density of states for the NFE gay using the GHF
method yields, since this will give insight into a
similar study for a real metal, where the Fermi
surface is not so simple.

Figures 2 and 3 show the Hartree and Hartree-
Fock densities of states obtained using the analytic
tetrahedron method. '4 In these calculations the ir-
reducible portion of the Brillouin zone was divided
into 6912 equal-volume tetrahedrons by assigning
the point X to be (24, 0, 0); for smaller grid sizes
oscillations appeared which were related to the fi-
nite grid size. The contribution of each tetra-
hedron to the density of states was computed for
the first energy band only. Since this required cal-
culation of energy bands at a large number of points
in the Brillouin zone, the exact expressions were
used to "interpolate" between computed GHF val-
ues. On the scale of these diagrams the exact and
GHF energies were identical for the first band, so
this procedure saved computer time without pre-
judicing the results. But, as a consequence, this
calculation serves more as a test of the analytic
tetrahedron method than the GHF results.

Figure 2 shows good agreement with the analytic
results of the NFE density of states in the Hartree
approximation, where the function is slowly vary-
ing (E'&). On the other hand, the HF density of
states in Fig. 3, which contains a rapid variation
near the Fermi energy, is not reproduced so well
for this grid size. The HF density of states can
be reproduced more accurately by sampling more,
smaller tetrahedrons in the vicinity of the Fermi
surface, "but this requires knowledge of the loca-
tion of the Fermi surface in order to make the
sampling. For the NFE (spherical) Fermi surface
this is easy to do, but for a complicated Fermi
surface this may be a nontrivial task requiring very
substantial computer time and necessitating some
type of interpolation of energies It is con.cluded
that, in a real solid with a nonspherical Fermi sur-
face, the zero of the density of states at the Fermi
energy, if it exists, could easily be overlooked in
a numerical calculation. This may be seen by com-
paring the dashed curve in Fig. 3.

TABLE IV. Comparison of exact and Gaussian-Hartree-Fock-NFE energy bands along the 4
axis. Units are the same as Table III.

(o, o, o)
Exact GHF

(2, 0, 0)
Exact GHF

(6, 0, 0)
Exact GHF

(8, o, o)
Exact GHF

I'g -1.2024 -l.1992
Its 2 914 2 9
I s 2.9147 2,9157
I'is 3.9368 3.9365
I 3.9368 4.2272

-1.0980 -1.0952
2.4619 2.4621
2.4619 2.5526
2.9791 3.0042
4.0003 4.0044

-0.1350
1.3909
1.9357
1.9357
4.5073

-0.1322
1.3927
1.9359
1.9408
4.6208

x4 0.7129 0.7152
xi 0.7129 0.7159
xs 1.8689 1.8702
xg 1.8689 1.8710
x4 4.9498 4.9478
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3.0-

2.0-

1.0-

10
I

20 30 0.0 -65 -35

(4a/aL E

-5

FIG. 2. Hartree density of states for the NFE gas.
The solid curve gives the exact result; the points were
obtained with the GHF bands using the analytic tetra-
hedron method and a cubic grid of 1505 points in —of

48
the Brillouin zone. The density of states is given in
units of (2 ~/k ) x (V/87ta), where V is the crys+1
volume. On this scale the density of states at the point
X is 8.

VI. CONCLUSION

In this paper a Hartree-Fock formalism has been
presented and tested by applying it to one of the
few three-dimensional problems in solid state
physics for which exact solutions are known: the
nearly-free-electron gas. It is concluded that the
formalism is both simple and practical, and it is
found to yield accurate NFE energy bands when a
reasonable set of Gaussian orbitals is chosen. De-
pending upon the accuracy desired, a fairly small
basis set may be employed. In this paper no spe-
cial effort was made to optimize the orbitals, but
good energy eigenvalues were obtained. No tests
of the Gaussian wave functions which resulted have
been performed, such as charge density or sus-
ceptibility calculations. Tests of the wave functions
and variation of nonlinear Gaussian parameters are
reserved for future studies, and should be per-
formed in view of the conclusions drawn by Kari
et aL in atomic calculations. " As far as the ener-
gy bands are concerned it appears, on the basis of
this study and results of atomic GHF calculations,
the Gaussian-Hartree-Fock procedures should be
powerful enough to yield good energy bands. for
real crystals. A real crystal will require more
extensive calculation for the first iteration of the
HF equation, but use of the overlapping atomic po-
tential model simplifies the procedures, as dis-
cussed in I.

The fact that "localized" basis sets are able to
treat conduction states in the NFE gas or a real
solid can be traced to the formation of the LCAQ.

FIG. 3. Hartree-Fock density of states for the NFE
gas. The solid curve is the exact result. The dashed
curve was obtained with a cubic grid of 89 points, while
the unconnected points were obtained with a grid of 1505
points in 48

of the Brillouin zone. Units are the same as
Fig. 2.

As an LCAO, the Gaussian functions are not lo-
calized, be satisfy Bloch's theorem. The varia-
tional freedom needed for the basis set is satis-
fied by choosing a variety of Gaussians which can
be made to overlap in such a way as to accurately
reproduce the true Bloch function in a single unit
cell. In this way the Gaussian LCAO can be made
to simulate even a plane wave solution of the NFE
gas.
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APPENDIX A

For Gaussian orbitals the functions P,(q) of Eq.
(2.6) may be computed easily. Including normali-
zation factors, the s and p orbitals are

y, (r) = (2n, /m)'~' e (A1)

and

(r) = ix(128n'-/w')'~'e ~o"' (A2)

where a phase factor has been introduced to make
the fcc LCAO sp matrix elements real. Inserting
these orbitals into (2.6) yields

p, (q) = (2w/n, )'~4e ' ~'~s,

(q) = -a(128m'/n')' 'e ' '~&
~x 2

(AS)

(A4)

Similar expressions may be obtained for d orbitals.
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