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We examine the nature of surface spin waves in a ferromagnetic crystal for which the surface spin

configuration is unstable with respect to ferromagnetic alignment. Magnetic surface reconstruction then

occurs, and the spectrum of surface spin waves is found to differ qualitatively from the case where the spins

align ferromagnetically. In particular, with the reconstructed phase, there is a surface-spin-wave branch with a
dispersion relation A, (k~~) that approaches zero linearly with k~~, as k~~ vanishes. In the long-wavelength

limit, the spin deviation associated with the mode is localized to the surface. While we consider only a simple

model here, we argue that symmetry considerations lead to the existence of such modes whenever magnetic
surface reconstruction occurs. We also examine the nature of spin fluctuations in the reconstructed state by
studying the behavior of spin correlation functions for a two-dimensional layer of canted spins in a strong
exchange field. Large-amplitude spin fluctuations occur in the presence of the low-frequency surface wave;

these fluctuations are subdued by the presence of surface anisotropy fields.

I. INTRODUCTION

There is by now a considerable body of theoreti-
cal literature on the behavior of spins near the
surface of Heisenberg ferromagnets. ' Most of these
analyses presume that the ferromagnetic arrange-
ment of the spin array is present right up to the
surface. In the more recent literature, 2 4 atten-
tion has focused on circumstances where the spin
configuration in and near the surface may be un-
stable with respect to the ferromagnetic state.
This may occur if the surface exchange differs in
sign' from that in the bulk of the material, or if
both ferromagnetic and antiferromagnetic exchange
are present simultaneously, with ferromagnetism
favored in the bulk. The latter situation occurs in
many well-known magnetic crystals, and the for-
mer may prove of interest for an overlayer on a
magnetic substrate, or if appreciable expansion of
the lattice occurs near the surface. '

In a recent paper, 4 two of the present authors
have explored the stability of the ground state of
a semi-infinite fcc lattice of spins, and the de-
pendence of the surface spin configuration on tem-
perature and magnetic field was examined through
use of mean-field theory. A similar study has been
described recently by Castiel. ' It was demon-
strated for the semi-infinite fcc lattice with a
(100) surface that when a surface instability oc-
curs, the surface spins reorder into a new con-
figuration with two sites in each unit cell of the
spins in the outermost atomic layer. One has
here the phenomenon of magnetic surface recon-
struction, a spin analog of the well-known phe-

nomenon of (crystallographic) surface reconstruc-
t&on. '

The purpose of the present paper is to investi-
gate the nature of surface spin waves in the pres-
ence of magnetic surface reconstruction. We con-
fine our attention here to the simple model used
earlier by Trullinger and Mills' in which only
spins in the outer most atomic layer are unstable
with respect to the ferromagnetic arrangement.

We find that in the presence of surface spin re-
construction, the surface spin wave spectrum dif-
fers qualitatively from the case where all spins
align ferromagnetically. In particular, there is
a surface mode with dispersion relation Q, (k„)
that approaches zero linearly with k . This is so
when an external magnetic field H, is applied par-
allel to the bulk magnetization. In the semi-infin-
ite ferromagnet (i.e., no surface magnetic recon-
struction), in the presence of an external field,
there is a Zeeman gap gp, ~H„and all long-wave-
length excitations including the surface spin waves
have frequencies equal to or greater than I, p, ~H, .'

This new mode, while described here in the con-
text of an analysis of a simple model, is expected
to be a general feature present in the surface spin
wave spectrum whenever magnetic surface recon-
struction occurs. The mode may be called a sur-
face Goldstone mode; in the reconstructed state,
its frequency approaches zero in the long-wave-
length limit by virtue of a symmetry present in the
system. The canted surface spin array may be
rotated rigidly about the bulk magnetization, at no
cost in energy. This symmetry is always present
in both structures examined in Ref. 4, although it
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is only for the simple model examined here that
the spin canting is confined to the outermost atomic
layer. Also, since it is a symmetry argument
that leads one to expect this mode to be a general
feature of the problem, it is also clear that sur-
face anisotropy fields (transverse to the bulk mag-
netization) present in all real materials will pro-
duce a gap in this surface spin wave branch.

If one considers the theory of crystallographic
surface reconstruction, then there is no surface
phonon analogous to the surface Goldstone mode
just described, as long as the reconstructed con-
figuration is commensurate with the underlying
crystal structure. Thus, while in the present mag-
netic problem, we shall be led to conclude that
there are large amplitude fluctuations in the re-
constructed surface layer (in the absence of sur-
face anisotropy fields of the type discussed below),
there are no fluctuations similar to those discussed
here, in the theory of crystallographic surface re-
construction.

In addition to presenting a study of the surface
spin-wave dispersion relation in the reconstructed
state, we also wish to examine the nature of spin
fluctuations in the surface to assess the importance
of the low-frequency surface waves. This is a dif-
ficult task for the semi-infinite solid. However,
since we find that in the long-wavelength limit the
spin deviation in the surface Goldstone mode is
confined only to the outermost layer of spins, we

may replace the semi-infinite solid by a simple
two-dimensional layer of antiferromagnetically
aligned spins, in a strong exchange field from the
aligned bulk spins. For this picture we study the
spin- correlation functions within the framework
of spin-wave theory, ' to find large amplitude fluc-
tuations in the spin system which in fact diverge in
amplitude in the absence of surface anisotropy
fields. Even in the presence of such fields, the
fluctuations in the surface of a magnet which ex-
periences surface spin reconstruction may be ex-
pected, under some circumstances, to be enhanced
substantially over the values appropriate to the
bulk material. Thus, one conclusion we reach is
that the phenomenon of surface spin reconstruction
can be accompanied by large surface spin fluctua-
tions, although the analysis here presents a rather
crude study of them.

The outline of this paper is as follows. In Sec.
II we present a study of surface spin waves in the
model of a semi-infinite fcc ferromagnet used in
Ref. 2 to obtain the dispersion relation in the
presence of surface spin reconstruction. In Sec.
III we examine within spin-wave theory spin-cor-
relation functions for a two-dimensional layer of
antiferromagnetically coupled spins placed in a
strong exchange field. In Sec. IV we make some
concluding observations.

II. SURFACE SPIN WAVES IN A MODEL CRYSTAL

WITH MAGNETIC SURFACE RECONSTRUCTION

Z Z

FIG. 1. Configuration of the spins in the outermost
layer of the model crystal in the presence of magnetic
surface reconstruction.

As remarked in Sec. I, we consider here the na-
ture of surface spin waves in a model of a semi-
infinite magnetic material in which surface spin
reconstruction occurs. The model is that examined
in Bef. 2: we have a semi-infinite fcc lattice of
spins with a (100) surface. The spins in the bulk of
the material are coupled by nearest-neighbor
Heisenberg-exchange interactions J, while the
spins within the outermost layer are coupled by
antiferromagnetic exchange J,. The sign conven-
tion is such that J, &0. The geometry and choice
of coordinate axes may be found in Fig. 1.

In Ref. 2 it was demonstrated that in the absence
of an external magnetic field, if J, &-,'J, then the
spins in the outermost atomic layer are unstable
with respect to the ferromagnetically aligned state.
In the new ground state, the spins in the surface
layer break up into two sublattices, each of which
is canted at the angle 8 relative to the bulk mag-
netization. The surface spin geometry is illus-
trated in Fig. 1. The spins in all the interior
layers remain aligned, since in the presence of
nearest-neighbor exchange only, no torque is ex-
erted on interior spins by the realignment of the
surface spins. This simple model is a special
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limiting case of the more general discussion of
Ref. 4.

We wish to study the spin excitations of the above
array, in the spin-wave limit. To do this we use
the Holstein-Primakoff transformation to cast the
Hamiltonian into a quadratic form in Boson an-
nihilation and creation operators. For all interior
layers, the standard procedure may be employed.
The surface spins must be treated differently.

We divide the surface spin into an A and a B
sublattice, and write for the A sites

S(1~)=z [cos8S,, (1„)—sin8S„, (1„)]

+x [cos8 S„,(I„)+sin8 S~ {1~}]

+jS,, (T~}, (2.1)

where S~(1„),S,, (1„), and S+ (1„)are the Carte-
sian components of the spin S(l~) in a coordinate
system aligned with the magnetization of the A
suMattice. For the B spins, we write a form anal-
ogous to K[I. (2.l), with 8 replaced by -8. Then
the Holstein-Primakoff transformation is applied
to the operators in the primed coordinate systems.

For the interior spins, since they remain fer-
romagnetically aligned, in principle one need not
divide them into two sublattices. However, we
find it convenient to use the magnetic unit cell ap-
propriate to the outer reconstructed layer for each
interior layer of spins. Thus, we divide each in-
terior layer into an A and a B sublattice, even
though the two spins in the unit cell are aligned
paralled.

When the transformation to boson variables is
carried out, if the angle 8 is allowed to be general,
then terms linear in the boson operators appear in
the Hamiltonian. If a(l„,0, l,) and b(l„,0, l,) denote
the boson annihilation operators for A and B spins
in the surface layer (l, =0), we find the linear
terms have the form

H" ' = (I/~2) S' ~' [4SJ,sin28 —(4ZS+ gp,sH, ) sin8]

b l„,O, E, +b~ l„O, l,
B

—Q [a()„0,l,) + a'()„0,l,)]),
A

(2 2)

We have presumed a uniform external magnetic
field 8, is applied parallel to the bulk magnetiza-
tion.

For the configuration of the surface spins to be
a stable equilibrium configuration, one requires
the linear times to vanish. Thus, we have

sin8(4JS+gp, ~, —8J,S cos8) =0, (2.3)

and if cT~ = 2eT+ gp, sHo/8S~ the ec[ulllhrlum con-
figuration of the surface spins has

0, J,(J,"'
8=

cos |(Pc)/J ) I )Z&c)

The analysis below applies to either the case J,
~ J,"or the case 8, )8,"', although it is the
second case of primary interest here.
For the quadratic terms, we Fourier transform

the two spatial coordinates parallel to the surface
by writing

(2.4)

(2.5a)

1
(I ) e '4k)I [ It at(l )

v'N, g„)
(2.5h)

with a similar transformation for the B operators.
Here N, is the number of magnetic unit cells in a
given layer of spins.

The quadratic terms in the Hamiltonian may then
be broken down into the following arrangement of
terms: (i) terms which couple only spins within
the surface layer:

H(00) = (gp ~, cos8 —4J,S cos28+4SJ cos8) [b? (0) b (0)+ aI (0)a„(0)]
k(( k)g kit

k(I

+4', cos'8+y(k„) [at (0) b (0}+H..c.] —4SZ, sin'8 y(k„)[at (0)bI (0)+ H.c.] .
w kll "kll

(2.6a)

(ii)Terms which couple surface spins {l,=0) to spine in the first interior layer (l, =I}:

H(01) = —2SJ cos' —g y, (k„)[a (1)at (0)+ b (1)bt (0)-+ H.c.]2 ~ kll k() k((
k/f

—2SJcos' — y„k„a- 1 b~ 0 +b. 1 a~ 0 +H.c.
k(}

+2SJsin2 — y, k„a„» 1 a „. 0 +b 1 b . 0 +H.c. +2SJsin — y„k~, b- 1 a 1 b - 0 +H.c.
k(( k((

ll
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(iii) Terms which involve operators for spins in layer l, =1:

H(1, 1) =(g(&,sHo+8SJ+4SJcos8) +[at (1)a. (1)+bt (1)b„(1)]—4SJ+y(k„)[a~ (1)b (1)+H c.].. (2.6c)

(iv) Terms which involve operators in layers l„»2:

Hs =(gt&eH, +12SJ) +[at (l) a (l)+bt (l) b- (l)]—4SJ ggy (k )[a~ (l) b (l)+H c.]
=2 ~ k II k(I

-2S j y, k„a„- l a~ l —1 +b. l b~ l —1 +H.c.
II

2SZ y„k„a- l b~ l —1 +b» l at l-1 +H.c. .
I(

(2.6d)

In these expressions,

y„(k„)= cos(-,'a,k„), (2.7a)

operators will be written down shortly. To search
for surface spin waves, we shall seek solutions of
the system of equations in the form

y, .(k„)= cos(-,'a, k, .),
r(k„) =r.(k„)r.(k„) .

(2.7b}

(2.7c}
a„(0) l =0

k»( } g (1)e Q(& && 1)1a],„e (2.11a)

a. (l, t) =a, (l)e '"',
II I(

gt (l, t}= a'f (l)e '"'
,

and similarly for b-„(l, t) and b &-„,(l, t) .
For the operator a-(l), when l»2 we find

(2.8a)

(2.8b)

From the boson Hamiltonian displayed above,
we form the equations of motion for the various
operators. Again, this is a standard procedure.
To find the spin-wave frequencies of the system,
one seeks solutions with the time dependence

a'-k (o» l=0

{1}e o~ & l 1
Il

(2.11b)

Expressions for Q and Q may be found by insert-
ing Eqs. (2.1la) and (2.11b) into the equations of
motion for the operators for layers with l ~ 2.
%hen this is done, for a given frequency and given
value of k„, one finds two allowed values of Q,
and two allowed values of Q. We call these Q, and

Q„where

Qa- (l) = (g(&WHO+ 12SJ)a- (l) —4SJy(k„) b (l)
k II k„ k(I

-2SJy,(k„)[a.„(l+1)+a (l —1)]
II II

and

coshQ, =(6+38 ay 4 —Q)/g(y, vy„) (2.12a)

cosh@, =(k+38 +yg+Q)(g(y, vy„) . (2.12b)

a. (l) —a~k (1),
II

b (l) —b -„„(l),
II

0-—0

(2.10a)

(2.10b)

(2.10c)

everywhere in the equations of motion for a- (l)
and b (l).

Note that for l ~ 2, there are no terms which
couple the annihilation operators to the creation
operators. This will not be true for l =0 and l =1.

The equations of motion for the l =0 and l =1

-2SJ'y„(k„)[b.(l+1)+b (l —1)] . (2.9)
II II

For l» 2, the equation of motion for b» (l) is the
same as Eq. (2.9}, except b»„(l} and a (l) are
everywhere interchanged. The equations of mo-
tion for at„(l) and btk (l) may be found by making
the replacements

We have introduced the abbreviations 4 =4', II
=gp, ~II„and explicit reference to k, is dropped
from r(k„), r„(k»), and r,(k„).

To satisfy the equations of motion for l =0 and
l =1, solutions with ea.ch allowed value of Q and
each allowed value of Q must be superimposed for
l » 1. The bulk equations (l » 2) rec(uire the solu-
tions to have the form

g (l) =g (1+)e o4t &+g (1-}eo- & && (213a)
k II II k(l

b. (l) =-a. (1+)e o ""+a- (1-)e o-" "
k(I k(I k((

(2.13b)

gt (l) —at (1+ )e Q~( &. &&~ at (1 )e 0 ( l
k k

I( II k II

(2.13c)

bt (l}=-at.(1+)e o ""+a~ (1 —)e @""
-k„

~ I(
(2.13d}
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b,'(1~) =+ a', (1+) .
II

(2.14a)

(2.14b)

That is to say, the bulk equations lead to the
requirements

In the interest of brevity, we present only a
summary of the lengthy manipulations of the equa-
tions of motion for layers /=1 and 7 =0. For ex-
ample, when the equation for a„. (1) is written

II

down, after some manipulation with the formulas
in Eq. (2.13a), the result may be written

(2 sin' —,'8 —y e'~+)a- (1+)+ (2 sin2 —,'8 —y,e'@-)a. (1 -) + —,'y, cos' —,'8 a- (0)
II II II

+ ~y„cos 28 b, (0) —&y, sin' —,'8 a „- (0) —~~„sin'~8 b (0) =0, (2.15)
kII II II

v, = '(y. ~-y.) . (2.16)

with three similar equations formed from the
equation of motion for b- (1), and bt„. (1). We have

k II

introduced

p = yJ', sin'8,

g,'"=Ay', /(2 sin'-,'8 —y,eo~),

g,"'=gy', /(2 sin'-'8 —y,e ~),

(2.21)

(2 .22)

(2.23)

A."=a' (0)+bt. (0)

Af&-&=al. (o)-b' (o) .
II II

(2.1Va)

(2.1Vb)

(2.1Vc)

(2. 17d)

The final set of equations has the form

(n —n" —cos 28g,' —sill 28g + )A&+'

+ [P+ sin' —,'8 cos' —,'8(g,"+g,")]A."=0, (2.18a)

—[P+ sill p8 cos g8(gi +g2 )]A.
II

+ (0+n" + sin —,'8 g,"+ c os' —,'8 g,")A."= 0,

(2.18b)

(n —n' ' —cos'-,'8 g,'-' —sin'-,'8 g,' ')A.' '

—[P —sin' —,'8 cos' —,'8(g,' '+g,' ')]A' '=0, (2.19a)
kII

[P —sin' —,'8 cos'-,'8(g', '+g,' ')]A'. '

+(0+o.' '+sin' —,'8g,' '+cos'-,'8g,' ')A' '=0.

(2.19b)

In these expressions, we have introduced

n"' = (b+g)cos8 —g, cos28 +yJ, cos'8, (2.20)

From the four equations for the layer / = 1, ex-
pressions may be obtained for the four amplitudes
a„. (1+), ~„. (1 —), at. (1+ ), and at& (1-) in terms of
the four variables a-„(0), etc. , that describe the
spin motion in the outermost layer l =0. Finally,
in the equations of motion for the operators with
l =0, all operators that refer to layers other than
l = 0 may be now eliminated, to find four equations
which involve only a& (0), b„. (0), a'. (0), and b', (0).
The last step is to break these four surface equa-
tions into two sets of equations decoupled from
each other through use of the transformation

where J,=4J,S.
The remainder of this section will be devoted

to exploration of the solutior's of Eqs. (2.18) and
(2.19). To find the surface spin-wave frequencies,
one picks a value of k„ in the Brillouin zone of the
reconstructed surface spin layer, and searches for
frequencies where either of the 2 x2 determinants
vanishes. Before we proceed with a description of
these solutions for the general case, we look at
two special examples.

A. Case 0 = 0 (no surface spin reconstruction)

If the antiferromagnetic surface exchange J, is
less than the critical value J,' required for rnag-
netic surface reconstruction to occur, then from
Eq. (2.4) we have 8 =0; the spins in the surface
aligned ferromagnetically, with moment, parallel
to the bulk spins. Then Eqs. (2.18) and (2.19) may
be solved trivially. For each k, there are two
positive frequency solutions we denote by Q, (k„)
and 0 (k„). These are

Q, (k„)=8+J- g, [1+y(k„)]

gy', (k„)
1+(1+/,/g)

[lory(k

l)7
(2.24)

The mode 0, emerges from Eqs. (2.18), while
that labeled 0 emerges from Eqs. (2.19).

This dispersion relation in Eq. (2.24) is identical
tothatwhich forms the basis of the earlier discus-
sion by Trullinger and Mills. ' To see the equi-
valence of the two forms, one must first note that
in the present work, the orientation of the two co-
ordinate axes parallel to the surface (the y and the
z axes) differs by 45' from the axes used in Ref.
2. Also, we use here the Brillouin zone appro-
priate to the reconstructed surface spin configura-
tion, while Ref. 2 uses that for the unreconstructed
one. This is why we obtain two distinct branches,
while only a single branch is described in Ref. 2;
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our 0 branch is a portion of the dispersion rela-
tion of the single branch folded back into a smaller
Brillouin zone. The two Brillouin zones are il-
lustrated in Fig. 2. Because the dispersion rela-
tion is examined in Ref. 2, we do not comment in
detail here.

so we have in the long-wavelength limit

Q (k„)= 2g,a,k„[sin'& + —,', cos20(a,k„)']" '

and

Q, (k„) = 2g, cose [1+O((k„a,)')].

(2.2%a)

(2.27b)
B. Two-dimensional surface spin layer

Q~(kp) 8g[1 + y(kI)] [1+ /(k~~) cos28 ]
'

(2.25)

Once again, the mode labeled "+" emerges from
Eqs. (2.18) while the labeled "-"emerges from
Eqs. (2.19). In this expression, we have elimi-
nated k and P in favor of J, through use of Eq.
(2.3).

In the limit k -0, we have

y(k„) —= 1 ——,'a,'k' + ~ ~ ~ (2.26)

The terms in Eqs. (2.18) and (2.19}which involve

g, and g2 have their physical origin in the motion
of the interior spins (layers with I —1), which
feeds back to affect the motion of the spins in the
surface layer. If we set g, =g, =0, then the dis-
persion relation becomes that of a two-dimensional
layer of spins (the surface spins) which are ex-
cited, and the only role of the interior spins is to
provide a fixed exchange field within which the
surface spins precess. The presence of the ex-
change field from the surface spins enters through
the factor of 4 which enters the definition of n.

If we set g, =g, =0 to obtain the approximate de-
scription of the surface spin dynamics just de-
scribed then we find the two-branch dispersion
relation (assume 8 a0}

Note that as k, -0, the frequency of the lower
branch vanishes linearly with k, . This is the case
even when the Zeeman field Ho is present. From
a physical point of view, this mode has vanishing
frequency as k„-0 because the two canted sublat-
tices may be rigidly rotated about the bulk mag-
netization (always keeping the two sublattices in
the same plane) with no cost in energy. There is
a symmetry operation present for the reconstructed
surface spin configuration that is absent when no
surface spin reconstruction occurs. The Q (k„}
mode displayed in Eq. (2.25) is the "surface Gold-
stone mode" described in Sec. I.

Of course, the discussion above is based on the
presumption that we may set g, and g, equal to
zero, to obtain a surface spin wave confined en-
tirely to the reconstructed surface layer. We shall
shall see shortly that this procedure is justifiable,
in the long-wave length limit.

We next turn to a study of the full equations
(2.18) and (2.19).

In Fig. 3 (a), we show the Q+ (k~~) and Q (k~~) curves for
h =0.3$ and g, =0.6$, in the direction k, =0. For
these parameters, g, is small enough that 0 =0,
and no surface spin reconstruction occurs. Note
that both Q, (k„) and Q (k„) are finite and nonzero
for k„=0. In Fig. 3(b), we show the dispersion
curves when g, =0.65$, and again h =0.3$. For
this value of h, the value of g, is the critical

2lT
)ao

0.6

(a) (b)
gs
g
—s = 0.65

pg 04

27K
)o

0.2

2ao

0.2

I

I

I
I

7r }t X 0
aa Zao

X
7J'

aa

FIG. 2. Brillouin zone for the unreconstructed surface
spin configuration (large diamond) and reconstructed
spin configuration (small square).

FIG. 3. Surface spin-wave dispersion relations for
values of J~ given by (a) J ~ = 0.6J, a value too small
to provide surface reconstruction, and (b) P ~ = 0.65$,
the critical value of P~ where reconstruction just sets
in. We have taken h =0.3$ for these calculations.
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value g,'" at which surface spin reconstruction
occurs. At this point, 8 (k„) drops to zero at
k

~~
0, and the lower branch varies quadrat ical ly

with wave vector, for k a, «1. The curves in

Fig. 3 may be calculated from the analytic formula
in Eq. (2.24).

In Fig. 4 we show surface spin-wave dispersion
curves for values of g, large enough to drive the
surface spins into a reconstructed configuration.
To obtain these curves, we have solved numerical-
ly for the roots of the 2 &&2 determinants formed
from Eqs. (2.18) and (2.19). The main point to
note is that the frequency of the lower branch
vanishes linearly with k„, as k, -0. We explored
other directions of the two dimensional Brillouin
zone and found similar behavior.

From the structure of Eqs. (2.19), one may show
that as k,~-0, the reconstructed surface spins
behave as a two-dimensional layer of spins de-
coupled in a dynamical sense from the bulk spins.
The only role of the bulk spins is to provide a
strong exchange field [the term J in Eq. (2.20)].
We believe this to be an important observation,
since the existence of the low-frequency surface
mode necessarily leads to the presence of large
amplitude spin fluctuations in the surface, as
we shall see in Sec. III. To describe these large
fluctuations which originate from the surface
Goldstone mode, one may replace the problem of.
the semi-infinite magnet with a reconstructed
surface by the problem of a two-dimensional layer
of spins in a strong exchange field. The model ex-
plored here is a special one, in that only the spins in
the surface layer reconstruct. Since the surface
Goldstone mode has its origin in an underlying
symmetry in the reconstructed ground state, it
should exist quite generally, with properties
similar in a qualitative sense to the mode de-

scribed here.
To see the correctness of the assertion just

made, first note that as k, -0, the attenuation con-
stants Q, and Q, defined in Eqs. (2.12) both ap-
proach infinity. We have e@+ and e~+ both pro-
portional to k„', as k~-0. With this information
in hand, we see that the quantities y e+ and y e@+

both approach a constant as k~-0:
A', +4@+0

lim y e~+=— (2.28a)

III. COMMENTS ON THE NATURE OF SPIN

FLUCTUATIONS IN THE RECONSTRUCTED SURFACE

lim y e@+= k+4/- 0
(2.28b)

This implies that g,' ' and g,' ' both vanish as the
fourth power of k„as k„-0.

This result means that if in the expressions for
o, ' ' and P, we replace y by the long-wavelength
form y =—1 ——,'(a,k„)', the contributions from gI '

and g,' ' are the next highest order in the expansion
in powers of (a,k„)'. Thus, in the long-wavelength
limit, both g,' ' and g, ' fail to contribute to the
two leading terms of the dispersion relation and
0 (k„) is given by the two-dimensional layer re-
sult displayed in Eq. (2.27a), with the neglected
terms being of order (a,k„)' inside the square
root. We see that the two-dimensional layer
model produces not only the linear term in k„
correctly in the dispersion relation, but the first
correction as well. In Sec. III we study the behav-
ior of spin fluctuations in the reconstructed sur-
face layer by exploiting the analogy w'ith the two-
dimensional canted spin array in a strong exchange
field.

(o)

—= 0.7As

{b)

0.6

0.4 0.4

0.2 0.2

0.0

2op

0.0
k

7r
X op

7F

20p
7f

k X op

FIG. 4. Surface spin-wave dispersion relation for
values of g~ large enough to produce surface recon-
struction. We have, again for h =-0.3$, calculations for
(a) e~s =0 7~ and (b) ~8 ——0.8

In this section we comment on the nature of
spin fluctuations in canted layers of spins of
the sort described in Sec. II. One knows well that
that in systems in less than three dimensions,
long-wavelength fluctuations (spin waves in the
present case) can break up long-range order. In
Sec. II we saw that to excellent approximation,
the long-wavelength low-frequency spin waves
may be regarded as quite localized to the surface
layer. Thus, the role of these long-wavelength
modes may be assessed by confining one's atten-
tion to a two-dimensional layer of canted spins in
a strong external field. The field represents the
sum of the applied Zeeman field and the exchange
fieM from the ferromagnetically aligned bulk
spins. We investigate the nature of the spin-cor-
relation functions for such a layer of spins.

The two-dimensional layer we consider is il-
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lustrated in Fig. 1. %e presume that the spins
lie in the plane of the layer in the equilibrium
configuration. The Hamiltonian has the form

H =H +H„+HA,

where

(3 1)

H, =-((p J/ S,()„)+P S,() )}
A ~B

(3.2)

is the Zeeman interaction of the surface spins
with the effective field (the sum of the externally
applied field plus the exchange field from the bulk
spins), and

H„=—((, S',()„)+gS,()~})
A SB

—K„S'„lA + S'„ l,

Ky S2y lA + S2y lB
A

(3 4)

H„=+J,g g %(1„)' S(r„+~) (3.3)

is the exchange coupling between the spins. In
E(I. (3.3), I) is a vector from a site on the A sub-
lattice to a nearest site on the B sublattice. Fin-
ally in HA, we introduce an anisotropy field which
acts on the spins. Because the surface sites have
lower symmetry than bulk sites, additional aniso-
tropy fields will always be present in the surface.
%e shall see that such anisotropy fields play a
crucial role in damping the large amplitude spin
fluctuations which we find below with no anisotropy
present. For H» we take the form

sin8[(2$, + 2K+ 4K) cos8 —k, ]= 0, (3.6)

with sublattice canting (8 W 0) when 2g, + 2K+ &k )k, .
%e assume here that &K)0, so the transverse
moment of the spin array aligns parallel to the
x direction. If &K(0, then the spin array will
rotate through 90', with the transverse moment
aligned along y.

To proceed further, we introduce the wave vec-
tor k, parallel to the layer as in E(I. (2.5), and
then transform to the variables

cf„=(1/v 2 )(ag, + b
~ ) (3.Va)

d.„=(1/&2)(a-„,—b„-„). (3.Vb)

The Hamiltonian then becomes

contributions to the anisotropy which are quartic
in the spin operators are introduced.

The next step is to find the spectrum of spin
waves provided by the Hamiltonian displayed above,
and study the behavior of the spin-correlation func-
tions in the spin-wave regime. The problem of
finding the form of the spin-wave spectrum is a
standard one, so we only sketch the details.

To proceed, we transform the spin operators
for the A and B sublattices to a canted coordinate
system, as described in E(I. (2.1) and the remarks
that follow. Then the Holstein- Primakoff transfor-
mation is applied, ' and the angle 8 is found by the
requirement that terms linear in the annihilation
and creation operators vanish. In the present
case, with J, =4SJ„k,=gp~~, K=SR, and &k

S&K, we have

If constant terms are discarded, Eq. (3.4) may be
rewritten

H=H, +H2, (3.8)

& lA +S; lA + S' lB + lB
A, B

S„ lA —S~ lA

H, = Q A, (k)))c& c& p B (k)))(c c |,))+H.c.)
w '

&il ll

(3.9a)

(3.6}

where &K=K„-K,; K=K„+K„—2K,.
If the lattice in Fig. 1 is a square lattice, we

should take K, =K„. If we were to rotate the spins
through 90' so that the net moment of the spin
array is directed normal to the plane, then we
should choose K„=K,. It is then easy to see for
this latter choice that &K=O. The parameter~ will play a crucial role in the discussion
below; for the case where the net moment is nor-
mal to the plane, effects similar to those en-
countered below from &K will be encountered if

Hp Q A (k)))d )( } d$)} Q ( )))( ) )()) ) )

&ll ~ll

(3.9b)

with

A, (k„) = 8,(1+ y cos'8)+ k sin'8+ ~ b k(2+ sin'8)

(3.10a)

B,(k„)= 8,y sin'8 —k sin'8+ ~ Ek(2 —sin'8) .
(3.10'b)
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with the "+" replaced by "-"for the operator
d~ . If we choose

tanh28j (+) B (k~~)/A~(k~~)

then the Hamiltonian II becomes

(3.12)

H, , = ——Q A, (k„)+Q Q, (k„)[nt (+)ng (+)+-,'],
"n

(3.13)

Each of the Hamiltonians in Eq. (3.6) is diagon-
alized readily by means of a Bogoliubov transfor-
mation:

ct =cosh8. (+)oJ (y)+sinh8-„(+)o, (+), (3.11)

behavior of the spins i:n the limit that the surface
anisotropy 4$ becomes very small. The spin-
correlation functions are readily calculated
through use of the Holstein-Primakoff transforma-
tion outlined above. As a consequence, we only
quote the results.

To examine the fluctuations in the transverse
moment, consider the form of (S„(1„)S„(0)) and

(S,(1„)S,(0)), where both spin operators refer to the
A sublattice. We find after some straightforward
calculation that

where the spin-wave frequencies are given by

Q, (k„)= [8,(1+y)+ 26k]'~'

x [8,(1+y cos28) + (2k+ ak) sin' 8]'~'. and

(3.16)

x.g [1+2n (klan)][As(kit) Bo(k~~ )]

x [Q,(k„)] ' cos (k ~ 1„)

Q (k„)=——,'8,a, (sin8)(X'+ k'„)'~', (3.15)

where X' = 16&k/8, a,'.
We next turn to a study of the nature of the spin-

correlation functions. Qf particular concern is the

(3.14)

If we set &0= 0, then the frequency of the mode
Q (k„) vanishes in the limit k„-0. This is the
"surface Goldstone mode" discussed earlier in the
paper. Our primary interest in this section is
the role of this low-frequency mode in producing
spin fluctuations within the layer.

Note that when &&4 0, then Q (0) is finite. The
anisotropy terms which contribute to &$ inhibit
rotation of the spins in the plane perpendicular
to the magnetization of the layer, with the result
that a finite restoring force is obtained even for
k~ = 0. The gap in the surface wave branch can be
considerable even though 4k is small. To see this,
for exchange-coupled S-state ions (say Eu"), one
may expect to find both 0 and &5 small compared
to 8,. In this circumstance, Q (0) = 2(sin8)(8, &k)' '.
Thus, Q (0) is proportional to the geometrical
mean of the (large) exchange field 8„and the
(small) anisotropy term &k. A small amount of
anisotropy can thus produce a substantial gap in
the low-frequency surface spin-wave spectrum.
It is well known that this is a general feature of
spin configurations with antif erromagnetic char-
acter.

For our purposes, only the long-wavelength
modes on the lowe'r branch will prove of interest.
Indeed, for the short-wavelength exditations, the
use of the single layer is a poor approximation to
ihe semi-infinite geometry. For k„a, «1, we have
to good approximation

(S„(1„)S„(0))= S(S+ 1) sin'8—
S

xg

xg

', ", [1+2n.(k„)]+
~gkk(f l S

)A (k„)+B,(R„)

x [1+2n, $.„)], (3.17)

In these expressions, o ="+"or "—"is a branch
index and

n (k„)=[e "s&~(i&~&B ' I]
is the Bose-Einstein factor. It is useful to note
that a,s k -0, one has the limiting forms

A (k„)+B (k„)= 88,a,'(A'+ k'„) (3.18a)

A (k„) —B (k„)=28, sin'8. (3.18b)

Inspection of Eqs. (3.16) and (3.17) show that at
T = 0, the zero-point fluctuations of the spin array
do not break up the long-range order in the trans-
verse moment, in the limit 4k =0. That is to say,
both (S',(0)) and (S„'(0)) remain finite and well be-
haved at T=O, when 4&=0. However, when the
temperature is finite, both of these quantities
diverge for Ak =0, since for k~T»RQ (k„), one
has n (k„) approximately equal to ksT/k Q (k„).
Thus, for long-. range order in the transverse mo-
ment to exist in the layer at nonzero temperature,
it is necessary for surface anisotropy to inhibit
the transverse fluctuations in the spin system.

If we take only the contribution from the long-
wavelength modes associated with ihe lower
branch, and use Eq. (3.15), we find
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(S'„(0)) —(S',(0)), = —ASa, (sin8)

x [w ln(e' ~' —1) —1], (3.19)

where X is defined after Eg. (3.15), and we have

(3.20)

Thus, as bk-0, (S',(0))r -(S',(0)), diverges as
In[ksT/kQ (0)], a very weak divergence. This is
in accord with the earlier notion that modest
amounts of surface anisotropy are most effective
in damping the large amplitude spin fluctuations.
Note also that 0 (0) is proportional to sin8. Ap-
plication of an external magnetic field parallel to
the bulk magnetization will decxease the value of
8 [see Eq. (3.6) and the results of Ref 4]. Thus,
as 8 decreases and Q (0) decreases, the amplitude
of the transverse spin fluctuations increases in
the present model.

All of the conclusions above apply to fluctuations
in a two-dimensional array of spins inhibited by
planar anisotropy fields. However, since the di-
vergences have their origin in the low-frequency
long-wavelength modes (the surface Goldstone
modes of Sec. II) for which in the semi-infinite
model of Sec. II the surface spins decouple from
the bulk to good approximation, we argue that the
conclusions apply to reconstructed layers on sub-
strates.

Note that while for small 4k we find (S„'(0))r and
(S',(0))r to be large, the correlation functions of
the form

([$„(1 ) —S„(0)][S„(1„)—S„(0)])

are well behaved, with no divergences from the
low -frequency long -wavelength modes. Thus, the
motion of the spins is highly correlated, although
both (S,'(0)) r and (S,'(0)) r may be large (for small
&k). There is an analogy here between the spin
array presently under consideration and the two-
dimensional lattice, where the mean-square dis-
placement diverges for each atom, but there re-
main correlations between the relative positions
of the atoms.

One may believe that (for 6k=0), since at k((:0
the zero-frequency mode is a rigid precession of
the two sublattices with the z component of the spin
fixed, long-range order in S, will persist even
though we have just seen that the fluctuations in
(S„')r and (S,')r diverge when Ak-0. If this were
so, one could think of the layer of fluctuating spins
as a system with d = 2 and n = 2, as suggested by
Blandin and Castiel. ' From our spin-wave analy-

(S,(l ) $,(0))= S(S+ 1)cos'8
S

S sin'8' -" -[1+2n. (k„)]+
Q, k(( S

II

,- -, , A.(k„)+a.(k„)
II.(k„)

x [1+2n, (k„)]. (3.21)

Examination of this form shows divergences iden-
tical to those which occur in (S'„(0))r and (S'„(0))r,
as 4k-0.

IV. CONCLUSION

The purpose of this paper has been to outline
the qualitative features of the spin behavior in the
surface of a semi-infinite magnet which undergoes
surface spin reconstruction. Before one can pro-
ceed further, it is necessary to have a firmer
grasp on the physics of the surface region. For
example, whether surface reconstruction can oc-
cur at all depends on the nature of the exchange
interactions in and near the surface. We know of
no simple argument that can lead one to reliable
conclusions on the magnitude and sign of surface
exchange constants relative to the bulk.

We also see here that the behavior of the surface
spins is quite sensitive to the nature of aniso-
tropy fields at the surface. This is another area
where little is known. From one recent experi-
mental study that has probed this question in de-
tail one sees that the surface pinning fields may be
complex in nature. " In the limit ~p -0, one en-
counters an interesting problem in statistical
mechanics posed by the existence of the large
fluctuations. Qur own view is that surface anisot-
ropy fields present in real materials should be
sufficiently large that the spin fluctuations in the
surface remain well behaved. But this conjec-
ture must await further experimental data for
conf i rmation.

sis, we find large fluctuations in S, which diverge
as 4k-0, just as the fluctuations in the transverse
moment diverge. The point is that at finite tem-
perature, the spin sublattices wobble as they pre-
cess, to produce fluctuations in S, comparable to
those in S„and S,. Thus, the analysis here raises
a question about whether the analogy d=2, n=2 is
appropriate when 4$ = 0.

For (S,(l„)S,(0)) we find the result
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