PHYSICAL REVIEW B

VOLUME 16, NUMBER 12

15 DECEMBER 1977

Local pseudopotential theory for transition metals

Th. Starkloff* and J. D. Joannopoulos'
Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
(Received 28 June 1977)

A simple local-pseudopotential formalism capable of describing d-band metals is introduced. The theory
involves a straightforward method for generating a local pseudopotential for both valence and outermost-core-
.shell electrons. Niobium is used as a prototype to demonstrate the applicability of this method. Excellent
agreement with nonlocal self-consistent pseudopotential and augmented-plane-wave band structures is
obtained using a modest number of plane waves. The electronic density of states and core 4p absorption
spectra are calculated. Two regions of distinctly different electronic character in the density of states could

be demonstrated.

I. INTRODUCTION

We present the first self-consistent-pseudopo-
tential*"3 formalism capable of describing the elec-
tronic structure of d-band metals using simple
local potentials. As an example, the method is
applied to study the electronic structure of Nb,
which has been studied extensively in the litera-
ture by different theoretical approaches.** Ni-
obium is of particular interest because of the high
transition temperatures of several superconduct-
ing Nb compounds. In recent years the use of
pseudopotentials in calculations of the optical and
electronic properties has become increasingly im-
portant and widespread. The basic concept behind
pseudopotentials is the replacement of the actual
potential describing all the electrons of an atom
with a much weaker potential describing only its
valence electrons.'®'® This approach is very use-
ful because it is the valence electrons which are
responsible for the physical and chemical proper-
ties of solids. The weak nature of the potential
permits the expansion of the crystalline wave func-
tion in terms of plane waves. This facilitates the
calculation of valence charge densities and sim-
plifies the extension of pseudopotential band cal-
culations to self-consistency. Consequently, pseu-
dopotentials can easily be applied to the study of
crystals with large and complicated unit cells,
e.g., vacancies, surfaces, and interfaces.'”!®
The main advantages of the pseudopotential ap-
proach over first-principles methods, particularly
where self-consistency is required, are calcula-
tional simplicity, resulting in low tomputational
expenses, and the availability of the crystalline
wave functions which are necessary to obtain opti-
cal spectra and charge densities. The drawbacks
of this approach, however, are the nonuniqueness
of the generally highly parametrized model pseu-
dopotential and the nonlocality required to apply
the pseudopotential concept to d-band metals. In
the following, we present a method to generate

pseudopotentials which overcomes both of these
difficulties. This is important because there has
been much interest recently in the application of
pseudopotentials to simple d-band metals and
structurally more complicated transition-metal
systems.!9-2¢

II. THEORY

The basic concept underlying our method is to
include the outermost s and p core electrons in
addition to the customary 4 and s valence elec-
trons. The method thus provides a description of
the complete outer (valence) shell. Therefore, we
need only deal with a local potential. A general and
systematic procedure for generating this potential
is given as follows. Beginning with a self-consis-
tent Xa atomic potential?”*2® using local Slater
p/? exchange, the screening potential due to the
outer-shell electrons screening themselves is sub-
tracted out. The resulting potential, hereafter re-
ferred to as the base potential, rapidly approaches
the Coulomb potential of the respective ion outside
the core although it still contains the effects of the
mutual screening of the core and valence elec-
trons. This base potential then is “pseudized” by
multiplying it with a smooth steplike function

1- e-Xr
1 +e'7‘("'c) ’

forinr)= (1)
where 7, is the core radius and A a reciprocal
length characterizing the smoothness of the step
function. This correctionfunction sets the poten-
tial almost to zero inside the core radius but
leaves the base potential essentially unchanged
outside.?®

Varying the parameters 7, and A the (atomic)
eigenvalues of the fully screened ion pseudopoten-
tial are fit to the valence levels of the self-con-
sistent Xa calculation which are known to give
very good agreement with experimental term val-
ues. The same set of fitted parameters then re-
produces the atomic wave function and the valence
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energies and wave functions of the different pos-
sible ionic configurations as compared to the Xa
calculations of these configurations. As illustrated
in Table I for Nb this is achieved to a high degree
of accuracy. Infact, outside the core region the
pseudo wave functions are almost indistinguishable
from the Xa wave functions (Fig. 1). The same
good agreement still holds if one applies transi-
tion-state*” theory to both the full atom and the
pseudoatom. We have applied the method also to
Au(r,=0.60415 a.u., A=11.41351 a.u.™ for a
=0.69301) and arrived at a pseudopotential display-
ing the same characteristics as described in the
case of niobium. The method is suitable for the
treatment of atoms which do not belong to the
transition metals.*®

We note that to a good approximation the core
radius 7, can be chosen a priori half way between
the charge-density maxima of valence shell and
outermost core shell. We find that in the fitting
process the variations of 7, are restricted to
~+10% of this predetermined value. By keeping
7, fixed and varying only A we can obtain only one
possible good fit. This drastically reduces the de-
gree of arbitrariness usually found in the highly
parameterized model pseudopotentials. Hence, the
resulting pseudopotentials seem to be almost unique
and this close to first principles.

IIl. APPLICATION TO NIOBIUM

To demonstrate the applicability of our method
to transition metals we have applied it to the cal-

TABLE I. Comparison of pseudopotential eigenstates
(o =1) with Herman-Skillman eigenstates (@ =1) and ex-
perimental term values. The pseudopotential parame-
ters are 7,=0.70270 a.u. and A=16.385 a.u.™ resulting
in a potential with minimum of —28.57 Ry at 0.86 a.u.
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culation of the electronic structure of Nb., The
band structure and the density of states (DOS) of
this material have recently been investigated with
several different theoretical approaches.*!* The
results of these calculations are very similar and
suggest that the influence of self-consistent screen-
ing in the crystal is unimportant. We have there-
fore calculated a band structure for niobium using
only a superposition of self-consistent atomic
pseudopotentials. With these atomie potentials
(as described in Table I and Fig. 1) we obtain a
band structure agreeing with those of an APW®
and a self- consistent-nonlocal-pseudopotential
(SCNLP)* calculation to within 0.5 eV.

We employed a basis set similar to that of the
SCNLP calculation of about 80 plane waves and in-
cluded the effects of 380 more plane waves through
Ldwdin perturbation theory.! Convergence tests
showed that the 5s-, 4d-, and 4p-like bands were
stable with this basis set. The deep 4s band, how-
ever, requires 180 plane waves to converge.

Nb

(Ryd)
T

S5s

~ me

v(r)

Energy (Ry) WFM? ¥y @.u.)?

Pseudo Xa® Exp.¢ Pseudo Xa° Pseudo Xo°
Atom

4s 4.448 4.435 1.09 1.08 1.06 1.04

4p 2.811 2.827 1.02 1.00 1.14 1.10

4d 0.465 0.448 0.764 0.752 1.45 1.41

5s 0.396 0.402 0.546 0.548 3.14 3.10
4* Ton

44 3.601 3.682 3.63 0.887 0.877 1.35 1.29

5s 2.920 2.985 2.95 0.741 0.741 2.48 2.40

5p 2.460 2.534 2.45 0.699 0.699 2.77 2.69

5d 1.796 1.850 1.71 0.622 0.622 3.51 3.43

6s 1.632 1.662 1.56 0.583 0.583 4.66 4.58

#Maximum of radial eigenfunction P(r,,)=|R@,)| 7

Ss

cf. Ref. 28.
PReference 28.
®Table I in Ref. 4 and references therein.
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FIG. 1. Top: Comparison of radial eigenfunctions
7R,; (r) of full Nb atom and Nb pseudoatom. Bottom:
Nb'%* jon pseudopotential (ViS" and self-consistently
screened pseudopotential of the Nb atom (V3>™). The
horizontal lines in the potentials indicate the respective
eigenenergies. On these energy levels the maxima of
YR, (r) are marked by vertical bars.
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Since the 4p core band is already a bonus for a
pseudopotential calculation we chose to limit our
investigation to the 4p, and 5s electrons.

In Fig. 2 and in the upper part of Fig. 3 we show
the calculated DOS and compare it to the results
of APW® and SCNLP.* We can distinguish three re-
gions. Firstly, we see a three peak structure
around -31.5 eV arising from the 4p core bands.
Its width (1.45 eV) compares favorably with the re-
sults of self-consistent augmented-plane-wavel!
(APW) (1.63 eV, a=%) and modified orthogonal-
plane-wave® (OPW) (1.36 eV) calculations. More-
over, recent photoemission measurements® on
Nb,Ge place the 4p electrons, with comparable
width, at the same energy below the Fermi level
as we obtain from our calculation.

The second region in the DOS comprises the
structures between -5 and 6 eV originating from
the 4d and 5s electrons. They appear to be bond-
ing-/antibonding-like split with the minimum at 1
eV above E as the center. We find this part of
the DOS and the position of the Fermi energy in
particular to be in excellent agreement with the
results from APW® and SCNLP* displayed in the
insets. A third region in the DOS becomes ap-
parent in the upper part of Fig. 3. Above 6 eV the
general form of the density of states takes on a
free electron characteristic, but exhibits strong
superposed structure.

Experimental information about the unfilled por-
tions of the density of states can be obtained from
core absorption and reflectivity spectra. Weaver
et al.®® have measured the reflectivity of Nb for
photon energies up to 36.4 eV. They find a broad
peak around 36 eV which is interpreted as arising
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FIG. 2. Density of states between —35 and 15 eV com-
pared to the results of APW (Ref. 6) and SCNLP (Ref.
4).

from the 4p core levels.

Since our pseudopotential approach describes the
4p core levels, we can straightforwardly calculate
spectra involving transitions from these core states
into states above the Fermi level. We have calcu-
lated the partial joint density of states J(E) (Ref.
34) and partial imaginary part of the dielectric
function €,(E) for such transitions (Fig. 3). As can
be seen from a comparison of partial J(E) and
N(E) in Fig. 3, the joint density of states closely
follows the DOS.

Taking into account matrix element effects, we
find that €,(F) exhibits a strong maximum at 32.4
eV, then decays rapidly to almost zero at 40 eV
and shows no appreciable change up to 80 eV. We
identify this maximum with the structure of the
same height at about 36 eV in the €,(E) spectrum
derived from reflectivity measurements. The
sharp peak at 35.5 eV is due to transitions in the
vicinity of N. The matrix element induced behavior
of €,(E) for photon energies above 40 eV signifies
the distinct character of the states in the third re-
gion of the DOS. The very weak matrix elements
suggest a free-electron-like nature for the levels
between 10 and 50 eV. It is important to note that
because of the narrowness of €,(E) 4p core absorp-
tion spectra should have an almost identical shape.

IV. SUMMARY

In summary, we have presented a straightfor-
ward method to generate local pseudopotentials.
These are capable of self-consistently describing
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FIG: 3. Density of states N(E) (top), partial joint
density of states J(E) (middle), and partial €,(E) (bot-
tom). The partial J(E) and €,(E) spectra are obtained
from the 4p core band. Note the different energy scale
for the top part of this figure.
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the valence shell electrons of a neutral atom and
its associated ionic configurations with very good
accuracy. This is accomplished while using only
two parameters. The applicability of the method
to d-band metals has been demonstrated in the
case of niobium. Without recourse to fitting any
crystalline properties the self-consistent Nb atom-
ic pseudopotential was successfully employed for
the calculation of the crystalline electronic struc-
ture. We have found the resulting band structure
and DOS to be in very good agreement with various
first-principle calculations. Two regions of dis-
tinctly different electronic character in the density
of states could be demonstrated. In addition, the
4p core band was used to predict the shape of ab-
sorption measurements into states up to 50 eV
above E.

Though the range of possible applications of our
approach may be limited by the cancellation
rule'® !¢ we believe that the first-principles-like
nature of the generated pseudopotentials could be
successfully employed in investigations of a wide
variety of physical systems. It should also be
noted that an interesting extension of our theory
would be to do OPW-type calculations by ortho-
gonalizing the basis set of plane waves to the pseu-
do core wave functions. This would constitute a
considerable simplification to standard OPW cal-
culations.
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