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%'e present the equation of motion for the drift velocity of a charge-density wave (CD%'), the electron drift

velocity, and the total electric current in the presence of applied electric and magnetic fields. These

equations can be microscopically derived. In this paper, we discuss the electric current and the dynamical

effects of an electric field for an incommensurate CDW in a three-dimensional metal. An expression for the

efFective mass characterizing the CD% acceleration is derived.

I. INTRODUCTION

The discovery of charge-density waves (CDW) in
pseudo-one-dimensional conductors and in transi-
tion-metal dichalcogenides has stimulated con-
siderable interest in the properties of CD% sys-
tems. One of the most fundamental problems is
the effect of CD%'s on electrical transport pro-
perties. Much of the theoretical effort on CDVif

transport has been directed toward the one-di-
mensional conductor TTF-TCNQ. The problem of
the conductivity associated with fluctuations into
the CD% state above the Peierls critical tempera-
ture has been addressed by Patton and Sham, ' Al-
lender, Bray, and Bardeen, ' and Fukuyama, Rice,
and 7arma. ' Lee, Rice, and Anderson4 have
studied microscopically the problem of a on@-di-
mensional system containing a CD% which is
pinned or fixed in space. Rice' has dealt pheno-
menologically with the problem of a pinned CD%
Ul one dimension

Although in some systems, the CD% may be
pinned, the existence of phason modes' may make
it possible to have systems with spatial fluctua-
tions of the CD%'s position which are so large that
the CD% is not pinned. Thus one of the most
fundamental questions which must be answexed is
that of the electrical transport properties of a
system containing an unpinned CD%. It is toward
the resolution of this problem that we direct this
paper. %'e begin by presenting a set of equations
describing the motion of a CD% and the electron
distribution in three-dimensional jellium in the
presence of applied electric and magnetic fields.
The complete microscopic derivation of these
equations will encompass several papers. In this
paper we discuss the current and the effects of an
applied electric field. The discussion of the mag-
netic fie$d and scattering px'ocesses will be studied
in later woxk.

Because the CD% model has been successful in
explaining several of the anomalous properties of
potassium, including the Mayer-El Naby optical

absorption' and the conduction-electron spin res-
onance, ' and because spatial fluctuations associ-
ated with the phason modes are expected to be
large lf a CD% ls assumed to exist I potassium, '
it is of great interest to evaluate the expressions
for the current and for the CD% effective mass
for values of the various parameters suitable to
the CD% model of potassium.

II. EQUATiONS OF MOTION

In this section we write down without motivation
a set of equations describing the motion of the
CD% and the electron distribution in the presence
of an electric field ~+ and a magnetic field H.
These equations are intended to be used as a ref-
erence throughout this and future works in which

they shall be motivated and microscopicaQy de-
rived.

For the magnetic field H in the 2 direction and
the CDW wave vector Q in the x direction, the
equation of motion for the CD% drift velocity D
can be written

where D is along Q. (The symbol D was chosen to
bring to mind the word "drift. " Nowhere in this
paper is the electric displacement discussed. ) rn*

is the effective mass associated with the accelera-
tion of the CD%, and the, electxonic charge is -e.
r~ is the relaxation time for the CDW velocity D,
and P is another constant which ax'ises due to scat-
tering. K is the quasivelocity of the electron dis-
tribution and is related to the average electron
wave vector (Q,.by

R =-s(%)../m,

where m is the electron mass. The PE, term tries
to pull the CD% along with the drifting electrons.
By (R),„we mean the average value of the wave-
vector label for occupied states.

It may seem somewhat surpx'ising that a magnetic
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dK,„'=(1/m}(-eg„+eev./c) -K,/7„,dt

dK,
df'= (1/m)(-eS. }—K,/T. .

(3)

The relaxation times for electron drift parallel
(7,) and perpendicular (r„r, ) to Q are different
due to the distortion of the Fermi surface caused
by the CDW. In the case under consideration
v, =7,. V is the mean group velocity of the elec-
trons, i.e.,

V =- {v,),„={p/m), „
and is related to K and D by

V„= (1 —y)K, +yD,

V~ =R~,

Vg =Kg

The current is given by J = —net, where n is the
number of electrons per unit volume. u is another
constant which arises from scattering, and the
term eD tries to pull the electrons along with the
CDW in a manner analogous to.the acoustoeleetric
effect. y is discussed in Sec. IV.

In this paper we will discuss Eq. (5) and the el-
ectric field terms in Eqs. (1) and (3). The terms
arising from the magnetic field and from scatter-
ing wiQ be dealt with in future work.

III. JELLIUM MODEL FOR A CD%'

field can accelerate a CDW. Not only does this
arise from a microscopic derivation, but if the
electric and magnetic field terms are not as shown
in Eq. (1), it is easy to envision an experiment
which violates the second law of thermodynamics.
This mill be shomn in a subsequent paper.

The equations of motion for the components of the
electron quasivelocity parallel (K,) and perpendicu-
lar (K„K,) to Q are

dK =(I/m)(-eS„- eHK, /c) - (K, aD)—/T„

eetron gas by

p = (3G/2e, )g(q/2k„),

g(x) =--,'+I (I —x')/4x] In((1+&)/(I —x) (

alld ey =If k~/2m.
The density modulation of the electron gas must

be con1pensated by a density modulation of the
positively' charged background. This requires a
local displacement u of the background such that

u(r) =. (p'Q') sing r .
Throughout our discussion me mill take G in the

self-consistent potential, Eq. (6), to be a constant.
Since the existence of CDW's depends crucially
upon the velocity dependence of G, it is an incon-
sistent approximation. However, the treatment of
velocity dependent effects opens up many intricate
questions mhich mould unduly complicate our pres-
ent discussion and must be postponed to later mork.

The one-electron Hamiltonian mhich incorpor-
ates Eq. (6) is

36=p'/2m+ Gcosg r

Compact solutions to this question cannot be writ-
ten down. However, for our purposes it is suf-
ficiently accurate to divide the potential term into
two parts, one mhieh leads to the gap at k = —,'Q and
the other which leads to the gap at k = —-', Q. Each
part must be treated accurately near the gap
since the wave functions and energy spectrum are
significantly altered there. The simplifying fea-
ture of this method is that the effects of the tmo
parts of the potential are additive in many cases.

For discussion we take the part of the potential
which mixes the plane wave state k with k —Q and
produces the gap at k =-,'Q. Treating the mixing
by degenerate perturbation theory leads to a secu-
lar equation which ean be solved for the energies
of the states above and below the gap,

&, (k)=l(eI; @ -)+lL(e(;-@ -)'+G']'~', (12)

Our discussion of CDW motion will be given in
terms of a three-dimensional jellium model. In
the presence of a CD', the total self-consistent
potential in the one-electron Hamiltonian is of the
form

where e~ =@'k'/2m. The corresponding eigen-
functions are

cpf. = Cos( e —s1n)e—:e BI (1')

=sing e"-' "+cost'e'e o"—= e'" ' w;(r),
(13}

V(r) =G cosQ r. ~

This potential produces a density modulation in
the electron gas so that the electron density is
given by

p(r) = po(1 -p cosQ r) .
The mean density is po =k~z/3v' and the fractional
modulation p is given for an unperturbed free el-

for states below and above the gap, respectively.
The coefficients obey the relation

sin2 ) = G/(E, —E ) =- G/W . (14)

Away from the gap these wave functions reduce to
those found by nondegenerate perturbation theory.

Due to the "softening" of the energy for wave
vectors along Q, the Fermi surface distorts and
takes on a lemon shape. 6
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IV. CURRENT V. EFFECTS OF AN APPLIED ELECTRIC FIELD

P„'=nmK,' (1—y),
with

y= — d(cos8) cos8 sin't'
~
~.~

3q l

k~ k~kg y

(16)

where 8 is the polar angle measured from the x
axis. In the laboratory frame K„=K,'+ D and the
average group velocity is

V~ =K, —y(K, D) . —

If K is perpendicular to Q it is easy to see from
Eq. (15}that the periodic potential cannot make the
average group velocity unequal to the drift velocity
so that we have V„=K . Thus the current along @
and perpendicular to $ should be different for two
reasons: different relaxation times and different
relationships between the drift velocity and the
current.

It is of interest to calculate y using the values
of the proposed CDW model for potassium. "Tak-
ing G/E~ -=0.35 from fitting the Mayer-El Naby
optical absorption data and Q/2k~ =—1+G/4Ee for
Q in "critical contact" with the Fermi surface
gives a value of y-=0.2.

Equation (5}states that the total momentum or
:current depends upon the difference in CDW and
electron drift velocities. This results because
the momentum of an electron in a periodic poten-
tial is not simply proportional to the wave vector.
To derive Eq. (5) it is most convenient to work in
a reference frame in which the CDW is at rest and
the electron drift velocity is K'. The expectation
value of the momentum for an electron in a state
y-„ is hk plus an additional term which is an odd
function of k. The total contributipn of this term
due to all the electrons clearly depends on the
position of the electron distribution in k space.
The expectation value for the momentum operator
p= —iKV for an electron the state yI in Eq. (1$}is

(rp1 ~p~ pf }=Sk —KQsin'] . (15)

There is similar term due to the part of the yo-
tential which causes tQe other gap. We will con-
sider the case. where- Q and the electron quasi-
velocity k' are in the x direction. To calculate
the net group velocity we add up all the contri-
butians of the occupied states for a distribution
centered at mK,'/ll in k space. To first order in
G/E~ we can approximate the Fermi surface by a
sphere, and at zero temperature the net contri-
bution to the group velocity comes from a shell of
thickness mK,'k, /Kk~ at the Fermi surface. Ac-
counting for both gaps the total momentum P„' in
the CDW rest frame is

It is well known that electrons in a periodic po-
tential (i.e. , Bloch electrons) obey the equation of
motion

X=P'/2m+ V(r)+el r . (20)

The spacial periodicity of V(r) allows the solution
in zero electric field to have the 9loch form,

q&„-„(r)=e' 'u„-„(r), (21)

where u„k(r) is periodic in r and n is the band in-
dex.

In dealing with the term containing the applied
electric 'field, mathematical difficulties arise due
to the fact that the coordinate operator r is not
square integrable with the wave functions in Eq.
(21) over infinite space. To avoid these problems
we will use the Bloch or crystal momentum re-
presentation. If a general wave function P is

(( ) =,Q J d'aa„(%)e'"'N„);(r)

in the coordinate representation, then P is

(22)

~%) =[..%).,%)~0)" ] (23)

in the Bloch representation. P(R) is an (infinite)
column vector. In this representation the x com-
ponent of r, for example, is"

x=ff e/sk +X„„.(k),
where I is an (infinite) unit matrix and

(24)

x„„.o))=' Jd'rut „( )8[ „)(r)]/sk, ()'5)-. .
The Hamiltonian (20) with if =0 is, of course,

dk
dt
—=,—eg /g (19)

in an applied electric field g. However, the elec-
tric field has the additional effect of "polarizing"
the electron density in a manner analogous to the
way an atomic wave function is perturbed Qy an
electric field. ' This polarization should not be
confused with interband transitions which are neg-
ligible for our purpose. This effect is present for
electrons in any periodic potential and results in
an electron density which is.out of phase with the
original periodicity of the potential. This results
in a net force on the lattice and is the microscopic
origin of the so-called "Bragg reflection force.""
Whereas in many problems the ions are fixed in
the lattice, in jellium the ions are free to adjust
to the new charge density and thus the CD% can
be accelerated by the electric field.

The Hamiltonian of an electron in a periodic
potential V(r) and an applied uniform electric field
g is
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diagonal in this representation with diagonal ele-
ments

which are the energy bands.
From Eq. (24) for the x operator in the Bloch

representation, the tmo effects of the electric
field can be seen. If me consider an electron des-
cribed by a wave packet confined to one band, say
E,(R), then

P{%)= [a,(%) 00 ~ ]. (27)

We assume that a,{R) is nonzero only in a small
region of % space. The first term on the right in
Eq. (24) leads to an equation of motion for

~ a0$) ~'

which is solved by some general function of the
form F(%+el t/g). Thus the wave packet moves in
fi space according to the equation d%/dt =- eh/g.
For a distribution of electrons, this leads to the
electric field term in Eq. (3).

The second term on the right in Eq. (24) leads
to off-diagonal terms in the Hamiltonian matrix
X„„.These off-diagonal terms can be eliminated
to first order in g by using a new set of basis
functions given by first-order pex'turbation theory'

„{i) „+M„(~~a7 l~e~ +a IsnT)"nT+m "n'Tc E g) E (k)
(28)

where V'& is the gxadient operator in k space.
Thus it is clear that the electric field polarizes
the electron wave functions (as soon as it is turned
on) by mixing states with the same% in different
energy bands. This is analogous to atomic physics
where the electric field polarizes the atomic wave
functions by mixing the wave functions belonging
to various states.

%e can nom evaluate the change in electron
probability density due to the electric field for the
CDW state, Eq. (13). The perturbed wave func-
tions p are

T

(29)

The change in probability density is given by

[ qf"('- [ qq; [' =(h'Geg. @/mW')sin@. r . (30)

The corresponding change for a state Q{, above the

gap is opposite in sign. Note that the part of elec-
tron density induced by the electric field is 90'
out of phase with that produced by the self-consist-
ent potential G cos@ r. It is only the component
of h along with @which gives rise to this out-of-
phase part of the electron density.

The total electron density induced by the elec-
tric field is found by summing the contributions

from all states y~ and Q& weighted by the appro-
priate Fermi-Dirac occupation probability. For
zero temperature only states up to the Fermi en-
ergy are filled and the total electron probability
density induced by the electric field is

2K'Gef Q d'k
~N~ =

3 gas (31)

where a factor of 4 has been included to account
for spin degeneracy and for both parts of the po-
tential. The vol.ume of integration is that enclosed
by the Fermi surface. Note that kg& does not de-
pend on the electron drift or CD% velocities.

VI. CD% ACCELERATION AND EFFECTIVE MASS
I

In an applied electric field and the absence of
scattering processes, the total electron density
mill be phase shifted, i.e. , moved in space, with

respect to the density of the positive ion back-
ground. This phase shift is proportional to the
magnitude of the electric field. With the electron
and ion densities out of phase, there mill be non-
zero net forces on the ions; and they mill move in
such a, manner that the local displacement u of the
background can be described by an accelerating
running wave,

u(r) = (PQ/q') sin[/ (r 5t ——,'A-t' )], (32)

M(r) —= (g@/q')[sin@ r —(Q A t'/2)cos@. r]. (33)

The sin@. r term leads to a term in the one-
eleetron Hamiltonian which is proportional to

where D and A are the CD% velocity and accelera-
tion respectively. Thus the periodic ion density
tries to catch up to that of the electrons only to
find the periodic part of the electron density pulled
ahead by the electric field like the carrot before the
nose of the px'overbial donkey. Note that the

acceleration A of the CD%, i.e. , that of
the periodic part of the electron and ion densities,
is not the same quantity as the rate of change of
the electron drift velocity given by Eq. (19).

The acceleration of the CD% can be determined
by making the ions obey Newton's second lam of
motion, F=Ma, where Mis the ion mass. Al-
ternatively, the same result can be obtained by re-
quiring that the rate at which the total energy in
the system is changing is equal to the rate at which
the applied electric field does work on the system.
Both methods, of course, give equivalent results;
but since the first is tidier, only it mill be given
here,

It is convenient to work in the laboratory frame
of reference and to take D =0 at time t =0. The
instantaneously accelerating wave of Eq.. (32) be-
comes
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cos@- r. We put this together with the cosQ r
parts from the Hartree, exchange and correlation
terms to get the static CDW potential in Eq. (6).

Due'to the out-of-phase electron density induced
by the electric field I Eq. (31)], there will be a
force F, on a unit volume of the background which
is easily found using Poisson's equation. The re-
sult is

50,000

~~ 30,000

5.0

F, =(4ve'p, Q/e, Q')n~gcosQ r, (34)

where e, is the electron-gas dielectric function for
wave vector Q which results from including elec-
tron-electron interactions self-consistently. e, is'
discussed in the Appendix.

The other term in Eq. (33) is present only when
the acceleration of the CDW is nonzero and gives
rise to an additional Coulomb term $C' in the one-
ei.ec tron Hamiltonian where

3t"=(2ve poPA. Q/Q2)t'sing- r . (35)

X" is explicitly time dependent, and time-depend-
ent perturbation theory can be used to find the per-
turbed wave functions and the expectation value of
the Hamiltonian. This leads to a force F, on a unit
volume of the background where

F, =(8ve'p, QG/e, Q')(A ~ @)g, , cosQ r, (36)

where g, is discussed in the Appendix.
From Eq. (32) the acceleration of a unit volume

of the background at time t =0 is

dt, = —(PQ/Q')(A Q)cosQ r . (37)

Writing Newton's second law using Eqs. (34), (36),
and (37) results in an equation for the accelera-
tion of the CD%,

F, +F, = —p,pMA ~ Q/Q' cosQ r .
Solving for A Q we have,

A Q=-eg Q/m*,

where

(38)

(39)

m*/m=1+MPe, 8ve h G Q 1
(40)

k

and m" is the zero-temperature effective mass
characterizing the acceleration of the CD% in an
electric field. Note that near the gape W-1/G.
The volume in%. space where W- 1/G is of order
G'. Thus gT, (1/W') -1/G plus higher-order terms
in G. For this reason the second term Eq. (40)
goes to zero linearly with G for small G and m*

approaches m a,s the CDW amplitude vanishes.
Thus the CD% acceleration is the same as that of
the electron distribution in this limit.

It is interesting to evaluate m*/m for the pro-
posed CD% model of potassium. '' Figure 1 shows

IO,OOO
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FIG. I. Charge-density-wave effective mass m*
versus ener'gy gap t" for a jellium model with electron
density and ion mass suitable for potassium. m is the
free-electron mass and Ez is the Fermi energy. See
text for details.

a plot of m*/m versus the normalized energy gap
G/Ez for a jellium model with M equal to the mass
of a potassium ion and e, suitable for an electron
gas with the density of that in potassium. Using
the value G/EF =—0.35, the effective mass m*
would be about 40000 times the electron mass.

For the large value of m* which would be re-
quired for a CDW in potassium and assuming that
the CDW terminal velocity is of the same order of
magnitude as the electron drift velocity, Eq. (5)
implies that a transient effect should be seen in
the current since the CD% should accelerate about
40000 times slower than the eI.ectrons. For any
materials in which the CDW is unpinned, this ef-
fect should exist. Since the results derived in this
paper assume a spherical Fermi surface, it would
be necessary to take account of the actual Fermi
surface to derive quantitative expressions for ani-
sotropie mater ials.

VII. CONCLUSION

We have presented a set of equations describing
the CDW velocity, the electron drift velocity, and
the current in the presence of applied electric and
magnetic fields for a three-dimensional jellium
model of a system with an unpinned CDW. These
equations can be microscopically derived. In this
paper we discussed the current and the rates of
change of the CDW and the electron drift velocities
in an applied electric field. We derived an expres-
sion for the CDW effective mass in terms of the
CDW energy gap Q and found that as G goes to zero,
the CD% effective mass goes to the electron mass.
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The out-of-phase electron density induced by an
applied electric field was found in Eq. (31) to be

25'Geist. Q
m

d'k 1
4p 8' (Al)

V„=-(e k„/2vp, )AV . (A2)

%e can then write the total self-consistent per-

To calculate the total induced electron density self-
consistency it is necessary to include electron-
electron interactions. There mill be an additional
Hartree term due to the change in the electron
charge density.

'

Exchange and correlation effects
can be accounted for by the observation that to
first order in b, the effect of the electric field is
to change the phase (or spatial position) of the
periodic part of the electron density but not to
change its amplitude. For a CD% to exist the ex-
change and correlation potential V„, would of nec-
essity be highly nonlocal or velocity dependent.
However, since we have ignored this velocity de-
pendence throughout, for the discussion hex e we
approximate V„by the Slater potential,

turbation due to the electric field as

$C' = eb . r + — n lVs sin@ r4 we' e'0
2%po

(A3)

where n.Ns is the magnitude of the sin r part of
the self-consistent electron density. The second
term ln (A3) contains the Hartree and exchange-
correlation effects. It follows that

n Ntt' =nNsle~

(A5)

where g(x) is given in Eq. (9) and x = q/2kF.
A similar treatment of the perturbation (35) due

to the acceleration of the ions leads to Eq. (36).
In order that m*/m can be calculated for the pro-

posed CD% model of potassium, "we evaluate E',

for an electron gas with the density of that in
potassium. &, is a function of Q through its de-
pendence on Q/2kF. For G/ZF =-0.35 we find e,
=0.81.
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