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A quantum-mechanical expression is given for the local electric field in dc electron transport. The local
field is shown to provide the driving force for the migration of atoms during dc electron transport (electro-
migration). We express the local field in terms of the electron charge density, which we obtain by solving
the Liouville equation for the single-particle density matrix. The solutions are found within a self-consistent
field weak-scattering approximation scheme for an impurity in a jellium background. Electron-phonon
interaction is included via a phenomenological relaxation time. It is shown that the local field arises from
both static and dynamic screening. The static screening is associated with the screening of the external field
-near the impurity, while the dynamic screening is associated with the “electron-wind force,” or the
momentum transferred by the electrons in collisions with the impurity. It is found that the ‘“‘electron-wind
force” dominates when kpl» 1, where kj is the Fermi wave vector and [ is the electron mean free path.
Only when kgl is of order unity are the static and dynamic screening contributions comparable. Landauer’s
residual-resistivity dipoles and carrier-density-modulation effect are investigated, and are found to contribute
to the local field. The carrier-density modulation effect is shown to lead to deviations from Matthiessen’s
rule by shifting the Fermi energy relative to the band bottom. Within the local-field framework, we discuss
the distinction between the external field and long-range macroscopic fields in quantum-mechanical

formulations of dc electron transport.

I. INTRODUCTION

In discussing dc electron transport near inhomo-
geneities it may be convenient to introduce the
concept of the local electric field. The local-field
concept turns out to be especially useful in de-
scribing the migration of impurities and other de-
fects during electron transport. In fact, the local
field is the driving force for the migration of atoms
in the presence of the external electric field and
the accompanying electron current. This migra-
tion phenomenon is known as electromigration.

The local electric field is also a relevant driving
force in thermomigration, or atomic migration

in a temperature gradient. Theories of electro-
migration and thermomigration have been reviewed
in the recent literature.!™

The local electric field arises from all electrical
charges in the system, including the sources of
the external field. Part of the electrical charge
distribution may be associated with the electron
current flow, and corresponds to the “electron
wind” or dynamic screening in electromigration
theories. An additional contribution may be as-
sociated with static screening of the external
field. The statically screened external field gives
rise to the “direct-field” force in electromigration
theories. The magnitude of the “direct-field” force
has been controversial. For example, according
to some theories®™® the “direct-field” force van-
ishes (complete static screening) in the vicinity
of an interstitial impurity, while in other theo-
ries® !¢ there is no static screening.

To settle these controversies it is necessary to
determine the local electric field by solving the
quantum-mechanieal transport problem for the
response of electrons in an external dc electric
field. Several powerful techniques have been in-
troduced for treating the electron-transport prob-
lem.}”"22 It has been found that for sufficiently
long electronic mean free paths, the electrical
conductivity calculated quantum mechanically re-
duces to the electrical conductivity obtained from
the Boltzman equation.?? This reduction has been
possible only in the weak-scattering or dilute-
scattering limit. When interference effects be-
tween scatterers are allowed, extra contributions
to the transport equation emerge.!” Additional
corrections to the Boltzmann equation might also
arise from current-flow inhomogeneities,? or
possibly from Landauer’s residual-resistivity di-
poles,?*25 and his carrier-density modulation ef-
fect.24 26

Further difficulties in the Boltzmann-equation
approach arise when quantities such as charge
density and local fields are to be determined. The
problem is that such quantities involve off-diagonal
elements of the density matrix in the Bloch repre-

‘Sentation, whereas strictly speaking the Boltz-

mann equation is only relevant for the diagonal
elements.!” While it may be legitimate to ignore
this difficulty within a fully semiclassical problem
in which the scattering potentials are slowly vary-
ing in space, this semiclassical picture is highly
suspect for the case of highly localized scatterers
such as atomic defects. For this reason, charge
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densities and local fields which are derived from
the use of the Boltzmann equation may be of very
limited validity.

To avoid the difficulties inherent in semiclassi-
cal pictures, we base our calculation on the quan-
tum-mechanical Liouville equation for the density
matrix. Qur calculation is an application of the
method introduced by Kohn and Luttinger*” (KL).
One advantage of this method is that we shall be
able to extend into the quantum-mechanical re-
gime the very physical semiclassical analysis of
Das and Peierls.!® This will lead to a better -
physical understanding of the various sources of
the local electric field. In particular, we shall
be able to isolate the contributions due to the “di-
rect field” and the “electron wind,” as well as in-
vestigate the effects of the residual-resistivity
dipoles and carrier-density modulation.?3-2¢

The present calculations, like those of Das and
Peierls,'® will be confined to the model of dilute
weakly scattering impurities in jellium, with pho-
non scattering introduced via a phenomenological
relaxation time. The results we shall obtain are
consistent with recent results obtained within the
framework of linear-response theory.3"1%

II. LOCAL ELECTRIC FIELD

In analogy with classical electrostatics we can
define the local microscopic electric field at some
position X by introducing a point test charge of
magnitude @ at X. If the force exerted on the test
¢charge 1s denoted by FQ(X) we define the local
electric field E L(X ) by the expression

E (X)=1limFy(X)/Q. 6))
Q-0

The mass M of the test particle is assumed to
be very large (formally M —) so that in calculat-
ing the force we can ignore the motion of the test
particle. We then visualize the test particle as a
sharply localized wavepacket, which represents a
classical particle essentially fixed at position X.

In order to obtain Fo(X) we apply the results
given elsewhere for the force on an ion.!* The
force on any ion of valence Z at position X in the
presence of an external field E is given by'?

v, (X x)
8X

Here e is the charge of the proton, »n(X) is the ex-
act quantum-mechanical electron density at position
X, and Vo(i—?{) is the bare interaction energy be-
tween an electron at X and the ion in question. The
integral is over all space. Smce we are interested
only in that part of the force ¥ which depends on

E we need only retain in »(X) that part of the den-

F=ZeE - f(x) (2)

sity which depends on E. In Eq. (2) and henceforth
we take n(X) to be the E-dependent electron density
in the absence of the test charge.

In deriving Eq. (2) one assumes that the ions are
rigid and essentially fixed in position. The core
electrons are not treated dynamically; their polar-
ization in the external field is ignored.

It is clear from the derivation'® of Eq. (2) that
this equation is valid for any external field of ar-
bitrary space and time dependence, i.e., we can
take E=E(X,#). In this case n(X) will of course
be time dependent due to the coupling of the elec-
trons with the-external field. In the present dc
transport problem we take E to be constant in
space and time. -

Result (2) is a generalization of the Feynman-
Hellman theorem?’ to a nonequilibrium, dissipa-
tive system. In the usual derivation of that theorem
one starts with the expression F=-8(30)/8X, where
(3C) is the expectation value of the total system
Hamiltonian 3¢. Such an expression is not valid for
open, dissipative systems such as that considered
in electron transport. The correct starting point
for dissipative systems is the equation of motion
of the expectation value of the momentum of the
ion. The ion is taken to be moving infinitely slowly
as a sharply localized wavepacket whose dynamics
are governed by ¥. This is the approach used to
derive Eq. (2).13

We now apply Eq. (2) to the particular case of
the force on the test particle of charge @. The
interaction between the test charge and an electron
is Vo(X-X)=-Qe/|X-X|. Using Eqgs. (1) and (2)
we obtain

E(X)=E- fn(x)aX -l—)_(—_—ldsx (3)

where the Q —0 limit has brought in n(X), the
electron density in the absence of the test particle
but in the presence of all the ions in the system.
Since n(X) is independent of X we can recast Eq.
(3) in the suggestive form
99(X)

E(X)=E- (a)

where @(}_Z) is the local electrostatic potential de-
fined by

)= E 3 __1__ 3
oK)= -e [ n(%) gz 4% )
It should be emphasized that despite the classical
form of Egs. (2)-(5), these equations include the -
electronic many-body effects. The latter are con-
tained within n(X).

It is interesting that Eqs. (4) and (5) imply that
one could have obtained the correct force on the
test particle by simply computing the change in
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the expectation value of the interaction energy as
the particle is moved. That is, one can write

ir’o(i’c)=_9%(2, (6)

where V'=-QX +E -2J,Qe/|X - X" | and the sum

is over all electrons, with the position of the Ith
electron denoted by X', Equation (6) is valid only
for the force on the test particle to order Q. One
cannot apply Eq. (6) to the force on an ion by simply
changing @ to Ze in the expression for V’. The
resulting expression would agree with the correct
expression (2) only to terms linear in Z in the Z

-0 limit.

The connection between the force on an ion and
the local field follows immediately by comparing
Egs. (2) and (3). For a point-ion potential the
force expression (2) gives f=Ze§L. In the more
general case of an ion core of finite size, we can
write

F=fN(i)EL(i)dSX, )

where N(X) is the charge density of the bare ion
(nucleus plus core electrons). N(X) and V, are
related by the Poisson equation V2 Vo(i) =47eN(X).

It should be emphasized that by assuming all ions
to be rigid we are explicitly ignoring the dynamics
of the core electrons in the external field. If we
wish not to invokg this rigid-ion picture, then Eqgs.
(3) and (7) will remain valid provided that in Eq.
(8), n(X) includes the correct core-electron den-
sity in the presence of E, and in Eq. (7), N(X) is
the nuclear charge only.

Now, for core levels well separated from the
conduction band, the core electrons are expected
to polarize essentially as in a free ion. This im-
plies that for an ion of valence Z, the core polari-
zation cancels the effect of the field on all but Z
protons in the nucleus. The core polarization is
a very slight dipolar deformation in the core-elec-
tron wave functions.?® This polarization produces
a field near the nucleus which is comparable to the
external field E.?° However, in the important re-
gion outside the core this polarization field is not
significant. There are two reasons for this: First,
the dipolar sources of the core-polarization field
are localized within the core,?® and hence the field
is substantially weakened at distances of two or
three core radii from the nucleus. Second, the
* core-polarization field is screened out by the con-
duction electrons at distances greater than a
screening length from the nucleus. Thus it appears
to be a good approximation to use the rigid-ion ap-
proximation and ignore the dynamics of those core
electrons coming from core levels well below the
conduction band bottom. (Of course, core elec-
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trons that fall within the conduction band are to be
treated dynamically and are not considered as part
of the rigid ion.)

It is worth remarking that the electric field E
appearing in our equations is to be regarded as an
external uniform field whose sources are not to be
screened. It would be incorrect to regard Easa
longitudinal field arising from external charges
imbedded in the medium since static electronic
screening would prevent the field from penetrating
very far into the metal. The imposition of the no-
screening condition on E for dc transport is typi-
cally done in an ad koc way,* or equivalently, a’
transverse field is used.®® In either case an in-
finite medium (or periodic boundary conditions) is
assumed. '

Using the no-screening condition in an infinite
medium is a device to enable one to avoid the com-
plications of the physical boundary conditions in the
dc transport problem. For example, we need not
explicitly consider the self-consistent charges
which are set up at an interface between two dis-
similar metals, as at the electrode-metal inter-
face at the ends of the sample. These charges are
responsible for the electric field which drives the
current through the sample, and arise not from
imbedded external charges, but rather from the
self-consistent electron-scattering process as
envisioned by Landauer® (see Sec. IVC). In our
model of an infinite medium there is no polariza-
tion-charge buildup at the ends of the sample.
(These charges can be obtained macroscopically
for a finite sample of course by solving the mac-
roscopic boundary-value problem.) We emphasize
that variations in the local field due to scatterers
(microscopic or macroscopic inhomogeneities)
within the system will be correctly obtained from
Eq. (3) provided that these scatterers are included
in the system Hamiltonian.

A further advantage of considering the model of
an infinite medium is that if there are only ran-
domly distributed microscopic scatterers in the
medium the external field E is precisely the mac-
roscopic electric field. This is easily seen by
noting that the macroscopic field is the spatial
average of the local field E z» and that by sym-
metry the spatial average of the integral in Eq.

(3) vanishes for the inifinite medium.32

A more rigorous justification for considering E
to be the macroscopic electric field and for con-
sidering an infinite medium can be deduced from
KL.'" They considered the solution of the trans-
port problem in a finite toroidal geometry, with
the electric field caused by an axial magnetic
field increasing with time. They found that the
solution was consistent with that obtained for an
inifinite medium (periodic boundary conditions).3?
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Moreover, in the toroidal geometry it is clear
from symmetry that no distribution »n(X) can con-
tribute to an average field, or net voltage drop,
in a closed path around the torus. Hence, the ex-
ternal field E equals the macroscopic field here.

In quantum-mechanical calculations for any
physical system the safest course to follow is to
avoid identifying E with the macroscopic field.
Instead the latter is determined in terms of E at
the end of the calculation by setting the macro-
scopic field equal to the spatial average of E ¢ in
the medium, where E . is given by Eq. (3). This
procedure is valid for any system regardless of
the boundary conditions assumed. As an example,
consider the model of a single localized scatterer
in jellium. In this case E will equal the macro-
scopic field because the integral in Eq. (3) gives
a field which is not appreciable far from the im-
purity (Sec. III).

These remarks concerning the distinction in
quantum-mechanical theories between the external
field and the macroscopic field have been moti-
vated by questions raised by Landauer.3*

III. DENSITY-MATRIX CALCULATION OF LOCAL FIELD

A. Liouville equation in self-consistent-field approximation

We determine the electron density n(X) using a
single-particle density-matrix approach similar to
that of KL.!” The system we shall consider is that
of a weakly scattering impurity in a jellium back-
ground. Electron-phonon scattering is included
through a relaxation time. Electron-electron in-
teraction is treated within a self-consistent screen-
ing approximation. Electron-phonon and electron-
electron interactions were not considered in KL.

Following for the most part the KL notation, we
express the total one-electron Hamiltonian H, as
follows:

Hp=H,+H'+e%X E, (8)

where H, is the kinetic energy of an electron and
H’ is the electron-impurity interaction. X is the
electron coordinate. ,

We are interested in the total one-electron den-
sity matrix, which we denote by p,. This quan-
tity is separated into a term p, which is the equili-
brium density matrix (in the absence of ﬁ, but in
the presence of H’), and a term f which is linear
in the field. Corrections which are second order
or higher in E are considered negligible. We
therefore write

pr=p+f. ©)

Similarly, it is convenient to separate the elec-
tron-impurity interaction H’ into an equilibrium
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and field-dependent part as follows:
H'=V% V!, (10)

where V° is the screened electron-impurity po-
tential in the absence of E, and is to be treated as
a known quantity. V! is the screening part which
is linear in E and is to be determined self-con-
sistently.

With the separation (10), the explicit form of p
at temperature T can be expressed as

p={exp[(Hy+ V°-€p)/kpT]+ 1}, (11)

where ¢ is the Fermi energy and &, is Boltz-
mann’s constant. We use units where 77=1.

The density matrix satisfies the Liouville equa-
tion
a:tr - Ci[Hy 0] - (pT p) (12)
where we have introduced a relaxation time 7 to
describe the decay to equilibrium by dissipative
processes. These processes may be electron-
phonon scattering, or in general, any background-
scattering mechanism not included in the interac-
tion H’ between the electron and the impurity.

In the steady state, 9p,/9¢=0 and Eq. (12) can
be cast into the form

if/T=[eXE,p]+[V°, f1+[V*,p]+[H,, £].

(13)

In obtaining Eq. (13) we have used Eqgs. (8), (9),
and (10) in Eq. (12) and have systematically dis-
carded terms which are higher order in E.

It is most convenient to express Eq. (13) in the
plane-wave representation since plane waves are
eigenfunctions of H,, that is, H o|K)=¢;|k) where
|k) is a plane wave state and ¢; c=k%/2m is the en-
ergy eigenvalue. In the plane-wave representation
Eq. (13) leads immediately to

f. _ o, eX Els Z fie Ve - Vi fer

-

B €€ —1/T €g-e€p—1/T
1 1
Pien Vg — Vgpr P
sy Pule = Vepbey gy
g €;-,€;,—l/

The unknown quantity V* appearing in Eq. (14) is
determined self-consistently from the Poisson
equation

v2yi=_47é®n(X), (15)

where the electron density n(X) refers to that part
of the total electron density which depends li-
nearly on E. The self-consistency cycle is closed
by requiring that n(X) arises directly from the
quantum-mechanical wave functions, or equiva-
lently, from the density matrix. This condition
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is conveniently expressed as
n(§)=2 fie-q» (16)
k

where n(q) is the Fourier transform of »(X), that
is,

w(%)=2_ n(§) exp(id -X). (17)

In Eqs. (16) and (17) the sums are over all k and
4, respectively. For convenience we have chosen
a normalization which takes the crystal volume to
be unity. The transformation from sum to integral
is accomplished via the rule 27 -(1/8113)f dq,
with an additional factor of 2 needed for E due to
spin degeneracy.

It is convenient to rewrite the Poisson equation
(15) in terms of Fourier-transformed quantities.
Consistent with Eq. (17), we define the transform

V@)= [ VHE) exp(~i§ %) d%,

where the integration is over all coordinate space.
We can then cast Eq. (15) into the Fourier-trans-
formed form

VHE)=4ren(d)/q?. (18)

The quantity V() is identical to the mgtrix ele-
ment V‘E, g-3 irrespective of the value of k.

B. Weak-scattering approximation

Using KL as a guide we simultaneously solve
Egs. (14), (16), and (18) in the weak-scattering
limit. We consider H’ to be weak, with the strength
of H’ designated by the small parameter x. Equa-
tion (14) can now be used to show that the diagonal
element f;. is of order X° and the off-diagonal ele-
ment f., 1s of order A. To establish this we need
to consxder the commutator [p, eX E] KL show
that the commutator may be evaluated by introduc-
ing the commutation rule X=73/38p, where P is the
electron momentum. This leads immediately to
the following expression for the diagonal element
to lowest order in A. (Refs. 17 and 35):

- = = ap.
[p,eX +E];;=—ieE <-—a§‘>, (19)
where p.={exp[(e; - €z)/k5T]+ 1}* denotes the Fer-
mi-Dirac distributioll. .

The off-diagonal (k#Kk’) element of the commu-
tator, again to lowest order, is given by'™3®

- = 9 p pi>
. EHZ, EZPE) (20
[p, e% - Blgp =ieEHg (sz+ ak)(e,_€ (20)

Now it is apparent that expression (19) is O(X°)
and expression (20) is O()). Therefore, by Eq.
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(14), the diagonal element fy is 0()%). Using the
KL notation we write f;; as f4 and use Egs. (14)
and (19) to find that

f,=eTE -<%p§"‘>. (21)

It is clear from Eqs. (14) and (20) that the off-
diagonal f.; begins at O(\). Consequently to obtain
fi to O(x), one needs to consider only those terms
in the second sum on the right-hand side of Eq.

(14) in which the diagonal element fi or fi' appears.
Similarly, since the off-diagonal elements of p are
O()\) we keep only the diagonal part of p in the last
term on the right-hand side of Eq. (14). We thus
obtain for the off-diagonal elements to O(1), the
result

fa= ka' f:':vi'+ gi" (22)
where
fE = [pa exX 'E]ﬂ-‘ (23)

Woegmep—i/T
is dependent on the electric field explicitly and the

commutator is given by expression (20). The
second part of f., is given by

. £V
flV"= (fk fH)Ykk' (24)
kk €; -€ v Z/T
and will be shown to be associated with the “elec-
tron wind.” The third part of f i is given by

f§ = (pi_ PQ)VL' (25)
which explicitly contains that part of the screening
potential which is linear in the field. We there-
fore identify f v s the self-consistent screening
response to the perturbations f & and f &

We can now easily determine n(q) from Eq. (16)
and Eqgs. (22)-(25). The 1mportant step is to re-
place the matrix element V f.g In f. s by the
right-hand side of the Pmsson equatlon (18)

In analogy with expression (22), we express the
result of the calculation as

n(q) =n®(§) +nM(q) +n5(F), (26)

where #nf(§)= E f§1.; and similarly for »*(§) and
n5(q). It is part1cu1ar1y useful to introduce the
explicit form of »¥(q). From Eq. (25), we have

nS(§)=q%1-e(q)]VH(q)/4me?, (27
where
=1 LS Pi-Peg (28)

G-
is the Lindhard dielectric function.® When n5(q)

is. eliminated from Eq. (26) by means of Egs. (27)
and (18), we find
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n(q)=[n"(q)+n"(§))/e(q) . (29)

We can numerically determme n(§) by perform-
ing the sums n®'¥({)= 2 f& i ;_*. Transforming the
sums to integrals and eva.luatmg them, we obtain

n(q) = -[ieET/27e(q)]V°(q)a(q) cosd , (30)

where a(g) is a functxon we have evaluated and ¢
is the angle between E and 4. We have taken V(X)
to be spherically symmetric.

The function a(g) can be separated into an elec-
tric-field part a®(q) and an electron-wind part
a¥(q) by writing

a(g)=a®(q)+a¥(q), (31)

where a®(q) and #n®(q) satisfy Eq. (30) when they
replace a(g) and n(§), respectively, in that equa-
tion. a%(g) and n¥(§) are related by Eq. (30) in the
same way.

Both a®(g) and a¥(g) depend on ¢, 7, and the
Fermi wave vector &, but only in combinations
of the dimensionless variables 1 and £, where 7
=q/kp and £=kl, with I=k,7/m being the mean-
free-path. The explicit expressions are

n+2

e $o- T)uf2 £o- T+ )

X m((l - 3m)+ 1/n2£2>

1+ %n)2+ 1/112%‘2 (32)
and
(@)= -+ 3 tan ()
1, ./ 1
-Stan (m—xs) (33)

where ©(x)=1 for x> 0 and zero for x<0. Values
for the tan™ functions are restricted to lie between
+57. Results (32) and (33) follow from Egs. (20)-
(31) with no approximation except for invoking the
usual condition that ;T < e,. Both a®(g) and a(q)
are plotted as a function of n for £=3, 10, and 100
in Fig. 1.

Equations (30)-(33) together with Eq. (17) give
the electron density in the weak-scattering ap-
proximation. In the £>1 limit, a(q)—~©6(2-n) and
n(X) take the form of the Bosvieux-Friedel dipole®
associated with the electron-wind force. See Ref.
12 for a picture of n(X) as calculated from pseudo-
potential theory in this £>>1 limit.

C. Local field and force on an impurity ion

Having determined the electron density, we now
turn to calculating the local field and the force on
an impurity using Eqs. (3)'and (2), respectively.
For computations, the latter equations are more

conveniently expressed in terms of n(§) rather
than n(X). For example, Eq. (3) becomes

BuR)=E+ 5% [ 28 empq-Ravq. (30

Assuming that the scattering potential V° is
spherxcally symmetric and ¢entered at the origin
of X space, the angular integrations in Eq. (34)
can be performed using the »n({) expression (30).
The local field can then be cast into the from given
in Eq. (4), where the explicit expression for the
local potential ®(X) is

@(§)=<gf%ﬁ>£”a(q)V_(qT)h (@X)dg.  (35)

Here X=X /|X| and the Bessel function j, is de-
fined by j,(x)=x"?sinx - x™* cosx.

The force on an impurity ion is of special inter-
est. Expressing the integral in Eq. (2) in g space,
we obtain

F=zeF - (27)° f An(d)VoQelq)d®,  (36)

where we have taken the impurity to be at the
origin and have replaced the bare electron-ion

«(q)
064 ; . E=3
0.4} :
0.2+
o T+ t ]‘0 + t + 210 + 30 n
o0}

o.osT
o 30,4
+ i
-0.05} JE0 -7
/ /:
-0104 ," ,’, 573
H ’
5 [
-015¢ FUN.

FIG. 1. Functions a(g) and a #(q) for different values
of the parameter £=kl. Variable 5 is q/kp.
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interaction V; by the screened interaction V° using
the linear-screening relation V,(g)/e(q).

Taking the expression (30) for »n(q) and perform-
ing the angular integration in Eq. (36), we find

- - eTE «
F=2ZeE - —— f a(q) | V°(q) Pa*dq . 37
1273 J,

We have computed the local potential #(X) and
the force F using Egs. (35) and (37), respectively.
In our calculations we used the Ashcroft empty-
core pseudopotential®” for V°(q).3® Explicitly, we
took

Vq)=-[41e*Z/q%¢(q)] cosqR,, (38)

where R, is the core radius.

A plot of @(i) is given in Fig. 2 for X along the
directip_n of the electron drift velocity VD, where
Vp=-¢eET/m. In this calculation we used the val-
ues k=0.9273 a.u., R ,=1.12 a.u., and Z=3. These
values are appropriate for an aluminum impurity
(interstitial) in aluminum metal. The same general
features are observed for other choices of these
parameters. In the £>1 regime and at large dis-
tances from the impurity (2xX>1), <I>(§) varies
like (E *X/X?) sin2kX. A map of &(X) in the
near-field region is shown in Fig. 3. .

The force on an impurity has been evaluated for
k values appropriate to aluminum (%= 0.9273
a.u.) and potassium (k,=0.3878 a.u.) for various
values of R.. For convenience, we have taken Z=1
in the impurity pseudopotential expressions (38).
The results are shown in Table I for ¢-values of
3, 10, and 100. The table gives the electric-field
contribution FZ¥ and the electron-wind contribu-

$(ve/vp) (au

FIG. 2. Local potential near an interstitial aluminum
ion during dc transport. The potential is measured at a
distance X from the ion and along a vector in the direc-
tion of the electron drift velocity ¥ ,. The distance X is
measured in units of 1/k . The quantity plotted is the
local potential & multiplied by @ /v ), where v 4 is the
Fermi velocity. Values are in atomic units. The dashed
and full curves correspond to ¢ values of 3 and 100, res-
pectively.
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tion F¥. Here FF is the contribution from the sec-
ond term in Eq. (37) when a®(g) is used in the in-
tegrand, and similarly F¥ arises from using a¥(gq)
in the integrand. Note that the wind force F¥ dom-
inates, although at smaller £, the electric-field
contribution FZ begins to become appreciable.

IV. DISCUSSION
A. Sourcesof the local field

The contributions to the local field arising from
f fl.r and f l‘{i} have been-associated with the static
screening 1n the external field and with the dy-
namic screening in the “electron wind,” respec-
tively. We investigate this further. |

The association of fiEi, with the static screening
in the electric field was suggested by the presence
of E in the defining Eq. (23). It turns out that the
expression (23) is precisely what one would obtain
if one were to compute in O(AE) the change in elec-
tron wave functions due to an e% +E perturbation on
the unperturbed plane-wave states in the absence
of current flow. Thus #®(X) is the O(AE) contribu-
tion to static screening, by which we mean screen-
ing in the absence of current flow. Note that there
is no static screening in O(X°E) in our transport
problem. Terms of O(X\°E) appear only in the di-
agonal element f; and not in Sy for k.#K’. The
claim made by Sorbello is thus correct*?: The pri-
mary role of the electric field is in setting up the
currentl. or f.. To allow the electrons locally to
screen E directly in O(X°E) is to double count the
response of the electrons to the electric field.

The contribution to the local field arising from

}‘.{"’-{, was associated with the electron current or
“wind” because of the presence of the current-
carrying distribution fi in the defining Eq. (24).

FIG. 3. Equipotential lines for the local potential near
an aluminum ion during dc transport. The plane for
which the lines are shown is parallel to the electric
field and contains the ion at the origin. The electron
transport is from left to right. The distance between
scale markings on the axes is 2/k . Numerical values
are in atomic units and represent the quantity 2(X)

X @ /v p) for the case of long mean free path (£=100).
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TABLE I. Forces on an interstitial impurity in aluminum and potassium metal. The force due to the static screening
in the electric field is denoted by FZ; the force due to the “electron wind” is denoted by F¥. Forces are shown for dif-
ferent values of the parameters ¢ and R, where £=%,l and R, is the pseudopotential core radius. R, is given in units of
1/kp for aluminum metal and 1/2kj for potassium metal. Positive values for the forces indicate forces in the direction
of the electron drift velocity, negative values indicate forces in the direction of the external field. The force units are
such that when the values shown are multiplied by the ratio of drift to Fermi velocity (vp/vr) one obtains the force in
atomic units (double rydberg per Bohr radius). The valence of the impurity ion has been taken to be unity.

Aluminum Potassium
£=3 £=10 £=100 £=3 £=10 £=100
R, FE F¥ FE Y FE F¥ FE F¥ FE ¥ FE F¥
0.2 —0.0102 0.1216 —0.0032 0.1263 —0.0004 0.1311  —0.0058 0.0369 —0.0018 0.0346 —0.0003 0.0344
0.4 —0.0028 0.0862 —0.0004 0.0944 —0.0001 0.1003 —0.0043 0.0329 -0.0013 0.0318 —0.0002 0.0319
0.6 —0.0008 0.0527 —0.0001 0.0590 —0.0001 0.0638  —0.0026 0.0277 —0.0008 0.0277 —0.0000 0.0281
0.8 —0.0049 0.0338 —0.0029 0.0336 —0.0002 0.0347  —0.0013 0.0219 —0.0003 0.0227 -0.0000 0.0237
1.0  -0.0104 0.0325 —0.0039 0.0260 —0.0004 0.0231  —0.0007 0.0168 —0.0002 0.0178 —0.0000 0.0188
1.2 —0.0128 0.0423 —0.0093 0.0389 —0.0006 0.0305 —0.0007 0.0124 —0.0001 0.0132 —0.0000.0.0140
1.4  —0.0130 0.0586 —0.0047 0.0527 —0.0008 0.0504 —0.0011 0.0095 —0.0003 0.0095 —0.0000 0.0099
1.6  —0.0087 0.0704 —0.0028 0.0704 —0.0004 0.0720 -0.0021 0.0081 —0.0006 0.0070 —0.0001 0.0068
1.8 —0.0043 0.0756 —0.0008 0.0811 —0.0001 0.0862 —0.0032 0.0082 —0.0010 0.0059 —0.0001 0.0050
2.0 —-0.0024 0.0744 +0.0005 0.0819 +0.0004 0.0881  —0.0042 0.0093 —0.0015 0.0061 —0.0002 0.0046

Moreover, the electron density »¥(§) is precisely
what one would obtain by performing a calculation
of the electron density on a coordinate system
moving with the electron drift velocity ¥,=—eTE/m
but with no electric field explicitly present.

To see how n¥({) is associated with a calculation
in the moving coordinate system, we use Eq. (24)
with f. and f; described as shifted Fermi-Dirac
dlstr1but10ns. That is, we write fi PR~ Py where
K=k- m¥Vp, and similarly for f;- [This form is
equivalent to Eq. (21) for ¢,>£,7.] The charge
density #¥({) according to rule (16) becomes

() =Vq) Z

k K#va

-V __Pe=Pig

T oG-/

- Pk-§

K-;m;u -i/T
(39)

where we have changed to a summation over K in
place of k in the first sum. To terms linear in ¥,
the denominator in the first sum is easily expanded
to give €;— €gq— @ - i/7, where we define w=
-4V, The first sum is then precisely ¢71

-¢(g, w)]/4me?, where ¢(g, w) is the frequency-de-
pendent Lindhard function and is given by the e(g)
formula (28) except that i/7 is replaced by w+i/7
in that formula. Expression (39) is now reduced

to

n"(q)=Vq)q7e(g,0) - e(g, w)]/4me?. (40)

Since we are keeping only terms linear in E or ¥,
throughout our calculation, we can in Eq. (40) make
the replacement ¢(g, 0) - €(g, w) ~ —wde(g, w)/dw,
where the derivative is evaluated at w=0. When
the resulting »%(q) is used in the integral in Eq.
(36) for the force, it yields precisely the “drag”

“stopping force” on an impurity moving at velo-
city -¥, in a stationary electron gas.*® It thus be-
comes clear that the force arising from »¥({q) can
be thought of as a viscosity or “drag force” which
depends on the relative velocity between the elec-
tron gas and the impurity. - The presence of ¢(g, w)
in Eq. (40) is typical of dynamic screening re-
sponse.®

We can extend our analysis to the more general
case of an impurity moving at velocity U in an
electron gas drifting at velocity V,. The potential
of the moving impurity is of the form V(X -1¢),
which introduces an extra time dependence in its
Fourier transform, which now becomes
Vo(q) exp(-if2t), where 2=§-U. If we now solve
the Liouville equation (12) with the ansatz fo« e™!%¢,
we obtain a consistent solution for n(g) to O(\«) and
O(xvp) prov1ded that we ignore the external-field
interaction eX +E. The solution at /=0 can be
written n(§) =7%(4)/e(q), where

"(q)=V°q)g¥e(q,0) - e(g, w+ Q)] /4me*  (41)

plays the role of a new “electron wind” or dynamic
screening density. Since w+Q=-3+(V,-1), Eq.
(41) shows that ¥V, and —U cause equivalent effects.
This equivalence is at the basis of the Das-Peierls®
“equivalence theorem.”

We emphasize, however, that the equivalence
between the effects of ¥V, and - is only valid for
the 7%(§) contribution to the local field or force on
an impurity. The additional contrlbutmn n®(q)
arising from the commutator [eX -E,p] in the Liou-
ville equation vitiates the “equivalence theorem.”
However, since the #»Z({) contribution turns out to
be generally small, the “equivalence theorem”
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holds to a very good approximation in our model.
In 2 more realistic model in which 7 depends on
the state E the “equi#alence theorem” fails due

to an additional contribution arising from Tgemip in
place of 7 in the denominator of the K sum in Eq.
(39). Wearethusinagreement with discussions!® %°
pointing out the importance of a constant relaxation

time for the validity of the “equivalence theorem.”

B. Numerical results

Our numerical calculations displayed in Table I
show that for k1> 1 the “electron-wind” force
dominates the force arising from any static screen-
ing in the external field. The origin of this effect
can be seen in Fig. 1, where we have plotted a(g)
and a®(g). These quantities when used in Egs.

(35) or (37) give the total screening and static-
screening contributions, respectively. Figure 1
implies that a®(q) is much smaller than a%(g), ex-
cept for ¢ = 2k in the small-k;! regime. This re-
gime where kI is or order unity is not normally
achievable for pure metals. Even at the highest
temperatures where the ideal resistivity domi-
nates, k!l is typically around 50. It appears,
therefore, that the static-screening contribution
will not become comparable to the wind force ex-
cept for very impure metals.

Note that the force arising from a®(g) may turn
out to be along E or opposite to E depending on
whether the ¢ >2k, contribution is larger than the
q <2kj contribution. The numerical results in Ta-
ble I show that the g >2k contribution dominates
except at higher R, values The force due to static
screening in the external field, therefore, actually
intensifies the field slightly if R_ is not too large.
This behavior is contrary to what one would expect
for static screening of an external field in thermo-
dynamic equilibrium. The latter behavior does not
occur here because the contribution to #n¥ of O(\°E)
is missing.

It is also seen from Fig. 1 or from Egs. (32) and
(33) that in the k.l -~ limit, a®(g)~0, and a¥(q)
=~ 6(2kp~q). The force obtained in this limit from
Eq. (37) is identical to the results obtained pre-
viosuly from the ballistic®° and charge-polariza-
tion models®!? (without static screening of the ex-
ternal field). We note that the £l -« limit for
a(q) is reached for virtually all g when k. 1=100.
However, there are always some significant de-
partures from the 21—« limit of a(g) in the
neighborhood of ¢ =0 and 2k;. The departures
around ¢ =0 are not effective in contributing to
the integrals of Egs. (35) or (37), however, be-
cause of the phase-space factors ¢3dq at small q.
The departures around g =2k, are also washed
away by the integrations. These departures would
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show up more strongly if the pseudopotential V°(q)
were very sharply peaked (within a ¢ range equal
to I'!) around ¢ =0 or 2k,. This behavior does not
occur for pseudopotentials of atomic impurities.

C. Higher-order contributions: Residual-resistivity dipoles

Within a semiclassical analysis Landauer origi-
nally showed that there is a significant contribution
to the local field arising from his so-called resi-
dual-resistivity dipoles (RRDs).?*> According to
later discussions by Landauer*' and Schaich,*? the
RRD is the electron density arising from the am-
plitude of the scattered wave functions near the
impurity. That is, if we write the total wave func-
tion as (X)=¢,;(X)+¢,(X), where ¢; is the incident
plane wave and y, is the scattered wave, then the
RRD is the dipolarlike charge distribution
-e|y(X)[2. The RRD is thus O()?), or one order
higher than we have gone in Sec. III B.

It is straightforward to write the form of the
electron density in O(X?). Denoting this quantity
6n(q), we can use Eq. (14) and the rule (16) to de-
duce that

on(q) =6n"(q)+ 6n*FP(§) + 6n°(q) + 0n°(q),  (42)

where all terms are electron densities of O(A?) and
linear in E. 67%(§) and 6»**P({) arise from the
first and second terms, respectively, on the right-
hand side of Eq. (14). Both of these terms repre-
sent densities which would be set up in an indepen-
dent-particle picture (no self-consistent screening
potential). 6#%(q) is eas1ly found from the expres-
sion given by KL!" for [ p,eX - E] to O(X?). onRRP(q)
is the RRD electron distribution. It is obtained by
using f¥ from Eq. (24) in place of the off-diagonal
elements of fin the second term on the right-hand
side of Eq. (14) and by using the O(\) correction to
the diagonal elements of f when they appear in the
second term. [There are no such O(}) corrections
to f; if we choose V‘E" 0.] 61°(§) arises from
using ff and fS from Egs. (23) and (25) in place
of fin this second term of Eq. (14). We also in-
clude in 6n°(q) the contribution from the last term
of Eq. (14) when the off-diagonal matrix elements
of p in O() are used along with the values of V?!
previously calculated in O(X). Finally 6n5(q)
arises from using p; and p;, for the diagonal ele-
ments [ and ;. respectively, in the last term
of Eq. (14).

In Eq. (42), 8%5(q) is the self-consistent screen-
ing contribution in O(A\®) since it arises from that
part of Vi(g) which is O()?) in the last term of Eq.
(14). Denoting this O()?) potential by 6V({), the
Poisson equation (18) implies that 6V(q)
=47e25n(q)/q?. We can now eliminate 6»5(§) in
Eq. (42) by combining the Poisson equation and the

[
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relation 6n5(q)=¢%1-€(q)]6V(q)/4me?. In analogy
with Eq. (29), we obtain

6n(q) =[6n5(q) + 6n™FP(F) + 6n°(q)]/e(q) . (43)

All the terms on the right-hand-side are known
in terms of explicit E-space integrals. Unfortu-
nately, these integrals are too complicated to be
evaluated analytically. Here we settle for a dis-
cussion of the effect of the screening factor e(g) in
Eq. (43). Note that when 6x#(§) acts on a bare po-
tential V(q), the ¢(q) factor in Eq. (44) will screen
V4(q). The net effect will be that 6n%, 5n*FP, and
&n° will act on the screened potential V°(q)=V,(g)/
€(q) [this can be seen directly from Eqgs. (36) and
(43) (Refs. 43 and 44)]. As a result of this screen-
ing, the force contributed by the RRD on an im-
purity can be incorporated as a higher-order cor-
rection to the pseudopotential V°(g) in the lower-
order expression (37), just as suggested by
Schaich.*?

Now if 6»FFP(X) were localized in a finite region
of space around the impurity, the screening im-
plicit in the e(g) factor in Eq. (43) would prevent
the creation of any long-range macroscopic polari-
zation field. Instead, the RRD field would be ef-
fectively screened out within a distance of the or-

der of a screening length from the region in which
5nPPP(X) were localized.”® This would seem to
contradict Landauer’s picture®¥"?¢3¢ which has the
RRDs centered on each impurity and giving rise to
an average polarization field, in analogy with
classical dielectric theory. Landauer’s picture is
valid, however, because 5#**°(X) is nof localized
in a finite volume, but rather has the long-range
asymptotic form® E -x/x2. The potential due to
this extended electron density is not effectively
screened out at large distances by the e(g) factor
in Eq. (43).

Since 672RFP(X) is not a localized distribution
close to the impurity, estimates?® which treat the
RRD field at the origin as if it were caused by a
localized dipolar distribution may be inaccurate.
Within a Fermi-Thomas approximation, where
V(X)) x bn(X), it is legitimate to calculate the
average macroscopic field due to 6n*FP by pre-
tending that 6V *(X) is caused by a very localized
dipolar charge distribution. This Fermi-Thomas
picture is consistent with Landauer’s analysis.?®

Finally we remark that in the k57—~ limit of Eq.
(43); the “electron-wind” related terms are domi-
nant because they involve f;, which is proportional
to 7. In this limit 6»F({) can be ignored, and
5n°(§) reduces to the nonlinear corrections for
the self-consistent-field response to the “elec-
tron-wind” charge. Ignoring these nonlinear

screening corrections within 62°(§), we have
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on(q) = n*RP(q)/e(q), with the RRD now giving
the total contribution in O()?).

D. Carrier-density modulation effect

Landauer has pointed out? that the local field is

-influenced by carrier-density modulation*® (CDM).

The CDM effect arises from local changes in the
electron density caused by the introduction of the
impurity. The density affects the local field by
making it easier or harder to overcome the lattice
scattering. According to Landauer,?® the CDM
effect would show up as a deviation from Matthies-
sen’s rule by increasing the number of carriers
available for conduction. The increase in conduc-
tivity, to lowest order in the impurity scattering
strength, would be (An/n)o,, where An is the num-
ber of valence electrons contributed by the impuri-
ties and n is the number of conduction electrons
originally present. o, is the conductivity in the
absence of the impurities. This addition to the
conductivity seems to have been generally ignored
by workers in the field presumably because there
is a local pile up of An electrons around the impu-
rities and this localization would seem to disqual-
ify the added carriers from the conduction pro-
cess. We have found no quantum-mechanical
study of this question in the literature. We under-
take such a study here.

We trace the CDM effect on the conductivity to
the diagonal elements_of [p,eX*E] in Eq. (14). The
contribution to [p,eX*E]g in O(A) is easily obtained
from the k—k’ limit of expression (20).*" This
term plus the O(A°) contribution from Eq. (19) can
be combined and expressed to U()) as

’
[p, eX°Elzz = —ieE » <%% D , (44)
where p; ={exp[(¢; - €4)/ksT]+ 1} is the Fermi-
Dirac distribution appropriate to a new Fermi en-
ergy €; =€, — V%; measured from the band bottom.
This shift of the Fermi surface is precisely what
one would expect if the extra carriers introduced
by the impurities were directly put into the con-
duction band. It follows that to O(1) the diagonal
element f; is given by Eq. (21) with pg replaced by
pg in that equation. This change in f; represents
an added current which leads to a conductivity in-
crease (An/n)o, exactly as predicted from the
CDM effect by Landauer® to lowest order in Z.
The CDM contribution to the local field E; is
difficult to isolate. We have just seen that CDM
effects on the conductivity are built into our equa-
tions, through an effective shift of €. In higher
orders of A, further corrections to €z will occur.
These €, corrections affect f;, and will begin
to affect fgg, in O(A%) within the RRD contribution.
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We also suggest that some CDM-like contribution
may be contained within the term fg, of Eq. (23).
This suggestion is based on the fact that the CDM
correction to f; is precisely the diagonal element

;’é. 1t is natural to expect some vestige of the
CDM effect in the off-diagonal elements fg., and
hence in n®(§). Note also that »5(§), like a CDM
contribution, depends explicitly upon the scat-
tering time 7, the screening associated with the
potential V°, and the external field E. However,
as we have pointed out, #*(q) is more properly
interpreted as the static screening response to
the external field. Strictly speaking, in the lat-
ter interpretation 7 represents the lifetime of the
electron states and not a transpdrt scattering
time. However, in our model there is no distinc-
tion between these two quantities since T enters
the Liouville equation (12) as a universal relax-
ation time valid for all perturbations.

Higher-order CDM contributions are still more
difficult to isolate. Furthermore, any rigorous
calculation of the CDM effect should be done out-
side the relaxation-time approximation so as to
allow for all interference effects between electron-
phonon and electron-impurity scattering.!* We
conclude that while certain CDM-like effects are
identifiable, it is generally difficult, if not impos-
sible, to separate out from a quantum-mechanical
calculation those terms associated with the semi-
classical CDM effect. Fortunately, it is not nec-
essary to do this.

V. CONCLUSION

We have seen that the local electric field can be
expressed exactly in terms of the electron density
according to Eq. (3). We have evaluated the charge
density by solving the Liouville equation in the
weak-scattering limit. Our calculation represents
the quantum-mechanical generalization of the
semiclassical Das-Peierls analysis,!® and is the
first correct Bosvieux-Friedel-type calcula-
tion*"12 insofar as no ad hoc assumptions are
made concerning the static screening of the exter-
nal field.

The local field, as well as the force on an im-
purity, contains contributions from the external
field, from the static screening in the presence of
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the external field, and from the dynamic screening
in the presence of the electron current or “elec-
tron wind.” In the kzl>1 regime the “electron-
wind” term dominates the static-screening re-
sponse. There is no screening O(Z). This is in
disagreement with the Bosvieux-Friedel analysis, ¢
but it is in agreement with the semiclassical ana-
lyses of Das and Peierls'® and Rorschach.*® Our
result is also in agreement with the work of Kumar
and Sorbello'® and Sham!* who used linear-re-
sponse theory for an interacting electron gas. %14
The contribution which we have denoted by the
term “static screening” is not present in the

final linear-response expressions,!*™® but this
contribution is negligible in the £zl > 1 regime.

In general, this contribution does not necessarily
weaken the electric field at the impurity; in cer-
tain situations, it may actually intensify the local
field. For this reason, it may be preferable to
abandon the term “static-screening” contribution
in favor of the somewhat less suggestive term
”electrostatic” contribution.

Our calculations have been performed in the
weak-scattering limit, i. e., to lowest order in
the pseudopotential.®® This is formally equivalent
to performing the calculations to the leading order
in Z. However, it is argued that the validity of
lowest-order pseudopotential theory for impurity
scattering is not limited to the Z =1 regime.**%°

We have considered contributions which are
higher order in the electron-impurity interaction.
Specifically, we found that Landauer’s residual-
resistivity dipoles® contribute to the local field
near an impurity and give rise to long-range mac-
roscopic fields. These fields are not screened out
because of the extended nature of the dipolar
charge.

Our calculations show that Landauer’s carrier-
density modulation effect contributes to the local
field in higher orders of the impurity-scattering
pseudopotential. The CDM effect contributes to
the conductivity by shifting the Fermi energy with
respect to the band bottom. The number of car-
riers taking part in the conduction process is ef-
fectively augmented by the number of valence elec-
trons brought in by the impurities. The resulting
increase in conductivity is in agreement with re-
cent estimates by Landauer.2®
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