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Charge-density distortions and lattice dynamics: A general theory and ayyhcation to Nb
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A general formulation is given of phenomenological models for lattice dynamics -which use localized
electronic variables as additional adiabatic degrees of freedom. This formulation encompasses shell models of
all types, bond-charge models, and charge-fluctuation models. Restrictions due to symmetry are discussed.
In a specific application to Nb, 1

&
(scalar), and I » (quadrupolar) degrees of freedom are introduced. All

symmetry-allowed parameters out to second-neighbor coupling are kept. The resulting 18-parameter model
gives a good At to the measured phonon dispersion, and a number of the parameters are found to be
ignorable. The anomalies in the I.A branches arise from interatomic-stabilized charge fluctuations, while the
anomalies in TA branches are associated with dispersionless quadrupolar fluctuations. It is suggested that in
a similar model for 2 15 metals, charge fluctuations alone might explain the TA anomalies.

I. INTRODUCTION

Many phenomenological models have been. devel-
oped to interpret the lattice dynamics of ionic
crystals. ' A simplifying feature of ionic materials
is localization of electronic charge around atoms.
Distortion of electronic-charge clouds during lat-
tice displacements can then be modeled with lo-
calized parameters. The shell. model keeps only
t4e induced electx'onie dipole moments. For non-
transition metals the opposite situation holds: va-
lence electrons are not localized, and charge-
density distortions (CDD's) cannot be modeled with
localized parameters. Fortunately, pseudopoten, —

tial theory gives a good microseopie picture of in-
duced CDD, making phenomenological models un-
necessary. Covalent solids and d-band metals are
intermediate cases. Microscopic theox'y is not yet
able to calculate with sufficient accuracy the CDD's
of these materials. Qn the other hand, since there
is a faix'ly good degree of valence-charge localiza-
tion (in the bonds between atoms for covalent ma-
terials, and around atoms for d-band metals),
phenomenological descriptions with local, ized CDD
parameters may be of some help in interpreting
experiment and guiding microscopic theory. A
number of steps in this direction have been taken,
especially in the development of bond-charge mod-
els for covalent materials. ' The situation for d-
band metals is more obscure, partly because of
the complexity of d-electron bonding, and partly
because complex phonon spectra are observed,
especially in materials with a high superconducting
transition tempex ature. ' Probably the best model
for a truly complicated d-band metal is Weber's
double-shell model~ for NbC and TaC. However,
it is not easy to understand the physical basis fox
this model.

This papex' presents a. general formulation of

phenomenological models which differs somewhat
in philosophy from most earlier work. An appeal-
ing feature of most phenomenological models is
that they are based on well-defined notion. s of the
relatively simple CDD's which are occurring; the
new pax ameters and their coupling constants can
usually be generated by intuition or inspection of
a mechanical analog. However, the rel. iance on
intuitively simple distortions may be a mistake in
fox mulating models for d-band metal. s. The pres-
ent formulation makes no reference to intuitive
models, but is instead an analysis of a completely
general set of local CDD parameters. The cou-
pling constants are as general as symmetry al-
lows. All phenomenologieal models known to me
are. contained as special cases of the present
formulation. .

The model is then specialized to body-centered
cubic (bcc) transition metal~. Niobium has been
chosen as a test ease because of all elements it
seems to be the most challenging to theoxists at
this time. ' The specific model used for Nb. has
two types of electronic CDD parameters, a scalar
(I',) and a three-component quadrupole (I"».).

Scalar variables were first introduced in lattice
dynamics as the breathing mode of the breathing-
shell model. ' A more general interpretation oc-
curs in the deformable-shell model. ' The first
use of a scalar variable interpreted as a charge
transfer was by Feldkamp. ' Such a scalar variable
is also implicit in the semimicroscopie work of
Sinha and Harmon. ' Quadrupole and higher-multi-
pole models were first explicitly introduced by
Bilz."0 The present papex is a generalization of
the ideas of Refs. 7-10. The specific model used
for Nb differs from all previous models with CDD
parameters in not having a I'„(dipolar) degree of
freedom. After the research had been completed,
a preprint, was received fxom akabayashi" pro-
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posing a model for Nb with a single I', (scalar)
CDD, interpreted as a charge-transfer mode. The
present work is essentially identical to Ref. 11 in-
sofar as the treatment of LA modes is concerned.

H. CENKRAL THEORY

X, = Q p,.(&}A..', (R)u«(f+ R)

+- g p,.(f)e.",,'(R)p, .,(f+R).
LL'$B

(3)

The Hamiltonian for ihe lattice degrees of free-
dom in harmonic approximation is written in terms
of the displacement u(f) and momentum P(f) oper-
ators of the Eth atom as

X0= Q [P (l)]'+- Qu, (l)K «(R)u«(f+R). (1)
tR

In this formula, M is the atomic mass and a and

P are indices for Cartesian components, with re-
peated Greek indices summed, and E «(R) is the
Born-von Khrm5n force-constant matrix. There
is one atom per cell. The solutions are propaga-
ting phonon modes described by quantum numbers
QX (wave-vector and branch index) with polariza-
tion Cq„and frequency u~ given by the eigensolu-
tions ef the dynamical matrix IC «(Q),

M(d &t Ol If 8+)C Ql„«

(2)
Z.,(q) = g ff.«(R)e'&'~.

Microscopic considerations show that the force
constants have two contributions —a direct force
between the rigidly moving parts of the atom, and

an indirect force coming from the CDD; The lat-
ter is responsible for the interesting long-range
forces in metals and semiconductors.

One of the principal difficulties of the micro-
scopic theory is that there 'is no clear definition of
the entity which moves rigidly and the remaining
charge density which distorts. The conceptual
problem is especially severe for d-band metals.
It is possible that phenomenological models may
be of help in clarifying the situation. The essence
of all phenomenologieal models is the assumed
existence of parameters p~ (f) which describe
the amplitude of the I a component of the CDD on

atom l. For example in NaCl, the dipole moment
of the Cl ion is such a set of parametex s, which
could be labeled p» . The terminology I.= 15
corresponds. to the fact that the dipole moment
vector transforms according to the 1» irreducible
representation of the point group of the crystal.
The subscript e then runs over tbe three Cartesian
components which are the partners for a basis, of
this irreducible representation.

Generalizing the idea of the shell model, we can
write an additional term in the Hamiltonian de-
scribing an arbitrary collection of electronic co-
ordinates p«(f)

Here the phenomenological coupling constants 4

and A describe the CDD-CDD interactions and the
CDD- displacement coupling forces, respectively.
Unlike earlier models, Q need not be diagonal in

I.I.'. There is no term in this theory correspond-
ing to a momentum conjugate to pL . Instead the
dynamics of the CDD'.s are specified by the con-
straint

8X~

sp, (~)

This is the adiabatic approximation, i.e. , what-
ever lattice displacements u (f) exist at a given
time, the CDD amplitudes p«(l) instantly adjust
themselves to minimize electronic energy. The
resulting theory [Eqs. (1), (3), and (4)] then gives
rise to a modified dynamical matrix

ff'.",(0) =&.,(0) —g [&;.(0)]'[4 (Q) '];o'&';(0),
LL'

where A(Q) and Q(Q) are Fourier transforms of
A(R) and $(R), respectively, just as in Eq. (2) for
K(Q). The dagger in (5) means complex-conjugate
transpose. The matrix 4 which is inverted in Eq.
(5) is the multidimensional matrix formed by the'

direct product of the (a, P)-labeled matrices P~~~'

for the various representations I.I.'. This theory
describes long-range forces even when the coupling
constants EC(R),A(R), 4 (R) are short range.

As has been shown most clearly by Sham, ' the
structure of the phenomenological theory has a
direct correspondence with the structure of micro-
scopic theory. The total energy change U of a lat-
tice with distortions u, and charge deformation
5p(r) can be written to second order as

s'V, (R, —R, ,)

g («8Rg~R) r

( )
8V(r —R,)

&R,

~p~p1 Qp r g
1 r rI Qp rP

Here Vc(%, —R, .) is the direct Coulomb interaction
with ionic positions denoted R, =T+u„V(r —R,) is
the bare electron- ion potential, and y(r, r') is the
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charge-density response at point r to an external
scalar potential at point r'. The derivatives by
R, and the susceptibility y are to be evaluated at
the undistorted lattice positions. The adiabatic

approximation now says that Bp(r) instantly ad-
justs to minimize energy. Mathematically, the
functional derivative BU/Bp(r) vanishes. Then
Bp(r) can be eliminated from (6), giving

U=2 g u, ~ - ~
— drdr' y(rr') ~ u,

B Vc,BV(r), BV(r')

Jg ~ l 1' aalu 8R,,

This is the standard microscopic formula" for the
force constants K(l —l'). The microscopic formula
(6) would translate directly into the phenomenolog-
ical version (1) plus (3) if we could write

Bp(r) = g p,.(I )f,.(r l),
L, f

(6)

III. SYMMETRY CONSIDERATIONS

To fix a notation, let S stand for a general ele-
ment of the point group, and S be the correspond-
ing three-dimensional rotation matrix. Then if R
is a lattice vector, SR= R' is another lattice vec-
tor. The representation matrices for the Lth ir-
reducible representation will be denoted I'„„(S).
Then under the, rotation S of the point group, the
displacements u(l) and CDD's p(l) transform ac-
cording to

u (ST)= I",'~(S)u~(T),

p (Sl) = I' (S)p (1).
Rotational invariance of the Hamiltonian then im-
plies the following transformation laws for the
coupling constants:

E ~(SR) = I",(S)E,~, (R)I"~',~(S '),
W.',(SR) = r.'..(S)x.'., (R)I',".,(S-'), (10)

4~~'(SR)=1'~, {S}4f. .(R)i',",,(S ').
The first of these is the familiar transformation
law for force constants, '~ and the others are a
simple generalization The requ. irements (10}put
severe restrictions on the form the coupling con-
stants can take and the number of free parameters.

As a matter of practical necessity, one must

where the CDD Bp(r) is expanded in a complete
orthonormal set of functions f~ (r f) with —ex-
pansion coefficients p~ . Then the coupling con-
stants 4 and A would be matrix elements of X

'
and BV/BR+ with the basis function f~, . The
Wannier functions are the simplest known complete
orthonormal set, and are sometimes exploited for
lattice-dynamical calculations. " However, so far
such microscopic schemes have not proved easy
to implement. Thus a purely phenomenological in-
vestigation seems warranted.

I

minimize the number of new coordinates that are
introduced. Choices are usually based on intuition,
but symmetry considerations are helpful also.
Consider the case of bcc Nb. It seems logical that
the first electronic coordinate should have I',
symmetry. This is partly because the lowest
terms in an angular momentum expansion should
have largest amplitude. But more important, in-
tuition says that in a metal, flow of charge from
one atom to another is the most fundamental dis-
tortion. Thus the net charge on an atom might be
taken as the first electronic variable, and its sym-
metry is clearly I', . As shown by Wakabayashi, "
the addition of a, parameter for the net charge al-
lows an accurate few-parameter fit to the peculiar
longitudinal modes of Nb. However, a F, CDD has
no influence on transverse modes along symmetry
directions. The reason is clear from group theory.
The dynamical matrix (5) is block-diagonal along
symmetry directions, corresponding to the vari-
ous irreducible representations of the little group
of Q which are compatible with the I"' representa-
tion at /=0. These are the n„n, representations
along the 4 direction, Z„Z„Z, along Z, and

Ag A3 along A. But a CDD of I', symmetry can
only couple to the representations 4, Zy Ag which
are compatible with I', at Q = 0. These are the
longitudinal branches.

Doe logical way to proceed wouM be to add new
parameters p~ corresponding first to I = 1 (I'„),
then l = 2 (I'»+ I'», ), and so forth. The I = 1 terms
have been studied extensively in the context Of the
shell model. ' Simple shell models have not been
successful for fitting complicated dispersion
curves of metals, although some success has been
achieved with shell" and breathing-sheB" models
for ct-band metals such as Ni which have simple
dispersion curves. Weber s do@Me-sb8B xGQCSly

although very successful for TaC and NbC, is less
successful. when applied to Nb, Mo, and Nb-Mo al-
loys." Because the sheD-displacement symmetry
is the same, as the lattice-displacement symmetry,
models of this type are permitted to couple to gU.

phono@8 in bee structure. However, expel jeeee
has not given compelling evidence for th{8 access~
Of F»-tyye yar@meters ia ~.

Sever gl axg@meots cga be myths feI' cgesi@qr@4@a
ie@4ea4 Of s I ~,-tyye CQD paraxeeteg. Since k. 0
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distortions break into I'» and I'», symmetries; a
1»,-type distortion can be thought of as a special
type of quadruyolar charge distortion, and will be
referred to as a quadruyolar degree of freedom
frequently in this paper.

The first argument rests on the nature of the ex-
perimentally observed anomalies" in the disper-
sion curves of Nb. All longitudinal branches are
unusual, but these can be explained (as Wakabaya-
shi" showed) by the 1, CDD alone. All transverse
branches except Z~ have sharp wiggles or anoma-
lous inflection points. The I'», representation has
the unique feature of coupling to (i.e. , being com-
patible with) every transverse branch (TA) excePt
'Z~. Thus the experiments suggest an electronic
mode of I'», syxametry. This mode also happens
to couple to the longitudinal branches (LA) every-
where except along [100] (4,), and at N and
P.

A totally different reason for considering I'»,
ODD's lies in an analysis of the electronic charge
density of Nb. This has been calculated from
pseudoyotential band theox y by Ho ef; u/. " There
is a noticeable buildup of bonding valence charge
between nearest-neighbor atoms, coming from
electron states within 2 e7 of the Fermi level.
These bonds should be particularly susceptible to
distortion when an atom is moved. Thus we might
imagine making a bond-charge model for Nb,
where the parameters pz(l) corresponded to the
amount of charge in the ith bond about the lth
atom. This idea is somewhat different from the
bond-charge models which have recently been ap-
plied' with considerable success to covalent semi-
conductors. The model of Weber' uses the Posi-
t~on of the bond charge as the electronic variable
p, (l), whereas it is the amplitude of the bond
charge which can be more naturally taken as the
fluctuating variable for Nb. Thus we introduce
four electronic parameters p, (l) per atom of Nb.
(There are eight nearest neighbors, each sharing
one bond charge. ) These variables form the basis
for a four-dimensional representetion of the cubic
point group, which is easily shown to reduce to
I', + I'», . Thus in the next section. we make a mod-
el for Nb with a 1", and a 1», set of CDD parame-
ters. This model contains a bond-charge model
as a special case. However, the choice of coupling
constants will be as general as point symmetry al-
lows, while a pure bond-charge model would no
doubt involve restrictions relating 1, and I'»,
coupling constants. Also it should be said that
Wakabayashi's" charge- fluctuation model is less
general than the most general 1, model permitted
by Eqs. (3) and (10), because his parameters A
and @ are imagined to be derived from a scalar
potential. However, for first and second neigh-

bors in bcc structure, there is no difference be-
tween Wakabayashi's form and the present theory.

1V. A MODELFORNb

ln choosing specific forms for the coupling ma-
trices K, A, and 4, the parameters are allowed
to be as general as point symmetry permits, with
the restriction that the range should be short. Un-

fortunately, in bcc structure the second neighbor
lies only 15% further away than the first neighbor.
The third neighbor is 63% further away. Thus all
coupl. ing constants are truncated after second
neighbors, but it does not seem a Priori justifiable
to omit any second-neighbor parameters while
keeping fix st neighbors. It proves imyossible to
fit the experimental curves with this model, so
that direct displacement-displacement matrix K
is allowed to have centrally-symmetric third-
neighbor components. A very satisfactory fit is
then found.

An explicit form for each coupling constant out
to second neighbor is given in Table I. The de-
finitions of the coupling matrices are given in Eqs.
(1) and (3), and the symmetries were determined
from the rules (10). The zeroth-neighbor coupling
constants are particularly simple. The charge-,
charge constants P~~~'(0) are of the form

P,6~~, 6 ~, while the charge-displacement matri-
ces A~~(0) all vanish unless I.= 15 in which case
the result is A,6,&. There is no I.= 15 (i.e. , 1".-
type) CDD in the present model. The reason be-
hind these rules is that the 8= 0 coupling matrices
form a representation of the full point group and
are thus block diagonal with no components cou-
pling different irreducible representations (or dif-
ferent rows of the same one). By the same argu-
ment, the R= 0 Born-von K5rmin matrix E(0)
should be proportional to the unit matrix. How-
ever, this matrix can. be eliminated by the re-
quirement of translational invariance

This constraint is built into the theory by redefin-
ing the Fourier transform of Eq. (2),

(12)

Use has also been made of the evenness of the
matrix elements E ~ as a function of B. A sign
change has also been introduced in Eq. (12) and in
row one of Table I, so that positive values of
R IC(R) R will correspond to positive spring con-
stants.

A similar restriction from translational invari-
ance applies to the matrices A~~(R), namely,
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TABLE I. Definitions of the 16 coupling constants (Kg~, KfgyK2gyK2gj /fan f2 Cfg Cfg CQ Cfgy

D~; A~, A2, B~„B~&,B2) allowed by. symmetry in the scalar-quadrupolar model for bcc struc-
ture, out to second neighbor. The structure of the coupling matrices for each neighbor R is
also given explicitly here.

Zeroth
neighbor

First neighbor
R=&a(X, Y, Z)q

(X, Y, Z) = (+1,+1,+1)

Second neighbor
R =a(X, Y, Z),

(X, Y, Z) = (+ 1,0, 0), etc.

-K,(R)

4 ~'~(R)

@25,25 (R)ofB

4'25 (R)

A' (R)

A~ (R)

See
text

1

K(J)~g+KfgXN X~(1 —I5~6)

Cfg6~~+ CfyXcg X~(1 —6o~)

D( (YZ, ZX, XY)

A, (X, Y, Z)

Bye XYZ B(g Z BggY

B(g Z B(~XYZ BfgX

l BggY BgP X B(fm XYZ

[K2~+ (K2g —Kg~) xml~~&

(C2a+ Cpy Xa)~eg

A2(X, Y, Z)

(' ' "')
B2 Z0 X

&Yx o&

0= QA~ (R)
I'

(13)

However, this places no restrictions on the ma-
trices for L = 1 or 25' or any other even represen-
tation, because for even representations L, A~&(R)
is an odd function of R and (13) is automatic. Be-
cause the present model has only even L, the
Fourier transform matrices can be written

out to be small, the relative signs of A' and A"
coefficients are only weakly determined.

The model is now completely specified by Eqs.
(5) and (12)-(15) and Table 1, plus the following
definition of the central-force third-neighbor
spring constants, with R = a(X, Y, Z) and (X, Y, Z)
= (a1, +1, 0), etc. :

(16)

A~~(g) = g A~~(R) sin(Q ~ R),

4 '(Q) = g 4', ~
'(R) cos(Q ~ R) .

(14)

The 18 parameters have been chosen to mini-
mize the mean-square deviation in m+ between
theory and experiment for 155 frequencies as
tabulated in Ref. 18 along the b, , A, and Z direc-
tions. Most of the data points are shown in Fig. 1.

The remaining nonvanishing zeroth-neighbor
constants are 4"(0) (renamed Q,) and 4"' "'(0)
(renamed C,). These parameters can both be
scaled to 1 without affecting phonon frequencies.
The reason is that according to Eq. (5), only the
factors A~A~'(Q ')~~' affect the frequencies uPq.

Thus the frequencies are invariant under the
scaling

[@LL'(ft)]+ 4 r L
( )/R[@II (Q)4 5 r, (Q)]l/2

[A.', (ft) ]~ = A.', (ft)/[4.'.(0)]"'.
The parameters defined in Table I are to be inter-
preted as having been scaled as in (15), with the
asterisks dropped for simplicity. Note that it is
thus impossible to assign absolute magnitudes to
the values of the CDD coupling constants A and 4.
Similarly it is impossible to learn the absolute
sign of the coefficients A, although the relative
signs are fixed. Furthermore, since the scalar-
quadrupolar coupling constant 4,'"(R,) =—D, turns

I I I I

Niobium
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I 6 H horF P h I X N

Reduced Wave Vector g

FIG. 1. Theoretical and measured phonon dispersion
in Nb. Some of the data points (from Ref. 18, denoted
by boxes) have been omitted for clarity. The solid curve
is the best fit with the scalar-quadrupolar model. The
dashed curve is the same theory with the displacement-
scalar and displacement-quadrupolar coupling constants
A~ set to zero. The g branch is unaffected by the pa-
rameters A ~.



P. B. ALLEN

TABLE II. Fitted values of the parameters of the
scalar-quadrupolar model of Nb.

Name of
parameter

Best
value Uncertainty

2.69
0.98

-0.48
1.72

—0.59
1.08

+0.24
~0.39
+0.54
+1.05
+0.29
+0.37

dimensionle ss

0.138
0.076

-0.027
-0.057

0.066
0.214

-0.023

+0.12
+0.15
+0.20
+0.13
t 0.14
+0.45
+0.11

Ap

Bg~(I)'~~
Bia
B2

10"Hz

0.207
—0.522

0.031
0.377
0.038

~0.18
+0.51
+0.09
+0.25
+0.41

The fitting was done with the help of the program
MINUS' from the CERN program library. The
best fit has a root-mean-square deviation of 0.1,0
x 10'2 cps, which ss the size of the experimental
uncertainty of (d+. The best values of the parame-
ters are shown in Table II, and the theoretical
dispersion is the solid line in Fig. 1. The fit, al.-
though quite good, is not decisively superior to a
Born-von Karmirz fit with an equal number of pa-
rameters. In particular, there are problems at
the A, maximum, on the 4, branch near I and

near H, and in the Z, and Z, branches near ¹

These problems give rise to a large measure of
uncertainty shown in Table Q for most of the pa-
rameters. Relatively large excursions in parame-
ter space are available which cause improvements
in some branches and discrepancies elsewhere,
with a small increase in mean-square deviation.
The program MINUS' calculates an 18-dimensional
hyperellipse in parameter space, centered about
the minimum, on the surface of which the rms de-
viation is increased from 0.10' 10~2 to 0.13 x 10'2

cps. This ellipse is rather eccentric, with a ma-
jor axis tilted away from the parameter axes.
The listed uncertainties are not the intersections
but the projections of the extreme points onto the
parameter axes. These results suggest that im-
provements might occur by eliminating (i.e. , set-
ting to zero) certain parameters, such as D„B„
and possibly all four parameters C„and adding
soIDe new degrees of freedom.

The reason why third-neighbor Born-von
Klrmgn terms were needed is that none of the
scalar or quadrupolar degrees of freedom can
couple at H or N. The four experimental frequen-
cies at these points then put four constraints on

the Born.—von. Kh,rman matrix; leaving no extra
flexibility to fit elsewhere in Q space. This is
disturbing in light of the fact that karma and
%'eber' need only first- and second-neighbor
Born-von KRmin constants plus electron-phonon
terms. In retrospect, a I'» (dipolar) degree of
freedom might be the physically most correct way
to open up the extra needed flexibility. A I'» elec-
tronic parameter would couple at H and N, re-
leasing some of the constraints on the Born-von
Karman terms. A full scalar- shell- quadrupolar
theory with all allowed coupling constants out to
second neighbors has 29 parameters, an almost
prohibitive number (and this without third-neighbor
Born-von Karman terms). However, the present
results strongly suggest that Q~~ (R) may be ne-
glected when I 4 I-' and is of extremely short
range (zeroth neighbor only P) for the i.=I, '=25'
terms. The matrices A~(R) are somewhat longer
range, but possibly only first neighbor is needed
except for L, = 1. Further development of the mod-
el along these lines is needed before it can be con-
sidered as a serious candidate for interpolation
and data fitting.

In spite of these reservations, it is possible to
draw several conclusions about the origin of pho-
non anomalies in Nb. The dip in the LA branch at
/ = 0.V in the [100]direction (n, branch) has been
assigned both to topological features of the elec-
tron bands near the Fermi surface in. Q space, '
and to "resonant screening" corresponding to geo-
metrical resonances in the local field in R space. '
It is not entirely clear that these are distinct con-
cepts, but in an extreme phrasing the former point
of view maintains that the physics is in the band-
structure- induced anomalies of the diagonal part
e(Q+ G, g+G) of the dielectric function, while the
latter point of view claims this is unimportant
compared to the geometric structure of the off-
diagonal part e(Q+ G, g+ G') and its inverse a '
which are related to resonances in the factor
[4 '(Q)]~~ of phenomenological theory. The cal-
culations presented here show' clearly that reso-
nances of 4 '(Q) coming from charge transfer give
a natur al explanation for the LA anomalies. On
the other hand, interatomic quadrupolar-quadru-
polar coupling, although capable of producing simi-
lar resonancelike behavior of Q '(Q) for the TA
branches, is in fact unimportant.

To see these results more clearly, we can write
out the explicit solution of Eq. (5) for the n, and

4, branches,
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M&@'(6,) = 16K„sin'z+ (4K„+16K„+16K„)sin'2z (&A, sin2z+ 2A, sin4z)'/ [1+8p, cos2z+ Q, (4+ 2 cos4z)],

(17)

Mv'(&, ) = 16K„sin'z + (4K„+16K„+8K») sin'2z

—(8B» sin2z+ 2B, sin4z) / [1+8C„cos2z+ C„(4+2 cos4z)+ 2C»], (18)

where z = &wg and Q= (2w/a)(f, 0, 0). The last terms
in (17) and (18) represent the effect of charge and
quadrupolar fluctuations, respectively, in soften-
ing the LA and TA branches. The degree of soft-
ening is exhibited in Fig. 1 by comparing the
dashed and solid lines. The dashed line (with the
matrices A~ set to zero) shows the unsoftened
Born-von Klrman curves, and the solid line is the
complete fit. The denominators of the last terms
in (17) and (18) have extrema at the zone boundary
and zone center, with the possibility of other ex-
trema in between. For the LA branch, the denom-
inator in (17) is 2.56 at Q = 0 and 0.35 (seven times
smaller) at Q = 2m/a, which are the absolute maxi-
mum and minimum, respectively, whereas for the
TA branch, the denominator of (18} is almost con-
stant. The physical interpretation is that these
denominators represent the electronic restoring
forces for charge and quadrupolar fluctuations.
These forces are highly local for quadrupolar
fluctuations giving a dispersionless denominator.
For charge fluctuations the range is longer. First-.
and second-neighbor terms P, and Q, help to sta-
bilize charge fluctuations with large Q where near-
neighbor atoms have opposite charge, while the
on-site Coulomb term P, discourages all fluctua-
tions. Apparently a zone-boundary charge density
wave in the [100]direction costs only about (&)' '
as much energy as at Q=0. The characteristic
energy is roughly the plasma energy, about 20 e7.
It would be interesting to see whether this effect
could be observed in inelastic Q c0 electron scat-
tering. The reason for the minimum in v'(&, )
occurring at g = 0.7 instead of f = 1 is because the
numerator has a maximum at

g= (1/w) cos '[-n —(o.'+-,')'~']

= 0.68

(where o. =A, /A, ), and goes to zero at f= 1. The
position of the dip along 4, is thus determined in
this model primarily by the ratio A, /A„and to
get the right position this ratio must be about
-0.4. It is uncertain whether the large value of
A, relative to A, is physically meaningful.

V. CONCLUSIONS

In agreement with Wakabayashi, " the LA anoma-
lies in Nb have a natural explanation from coupling
of phonons to charge fluctuations. The large-Q
charge fluctuations are softened by interatomic
charge-charge interactions, and this in turn soft-
ens the phonons. The TA anomalies of Nb have a
reasonably good explanation in terms of quadru-
polar fluctuations with local (R=0) restoring
forces. However, a dipolar degree of freedom
might be helpful in improving the fit.

Wakabayashi has mentioned other types of crys-
tals where charge-fluctuation models might be use-
ful. The A15 metals can also be considered. The
simplest model would have (in addition to the 24
lattice degrees of freedom which occur for eight
atoms in a cell) six new variables corresponding
to the magnitude of the charge on the six atoms
which lie on linear chains. 0ne of the interesting
features of phonons in these materials is the soft
TA ([110],[1TO]}phonon known to occur in V,Si and

Nb, Sn. If the model allowed transfer of charge
only within a single chain, then there would be no
coupling to this branch. A symmetry analysis
shows that the soft TA branch in the [110]direction
does couple to charge fluctuations between the
[100]and [010] chains. The TA ([110],[001])pho-
non does not couple to any charge fluctuation
modes in this model. Thus a charge fluctuation
model would be interesting to examin'e for A15
metals, and suggests the unorthodox view that in-
terchain coupling may be necessary to explain the
phonon anomalies.
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