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Phase diagrams near a Lifshitz point are considered for tetragonal crystals with an easy plane of
magnetization. The modulated phase is shown to be sinusoidal or helicoidal, depending on whether a certain
parameter p. measuring the strength of tetragonal anisotropy is larger or smaller than 1. The line TH(P) of
first-order phase transitions between the ferromagnetic and modulated phases is shown to be tangent to the
order-disorder transition line T),(P) at the Lifshitz point. For p, g 1, the line TH(P) is shown to be displaced
in the direction of the helicoidal phase with the growth of ILL. Such displacement of this line with the increase
of crystal anisotropy is shown to be a general property of phase diagrams in the vicinity of the Lifshitz point.

I. INTRODUCTION

The concept of Lifshitz point was introduced by
Hornreich et al. ~'2 A Lifshitz point (Pz, Tz) is a
triple point on the P Tdiagra-m (T is temperature,
and P is some other thermodynamic parameter,
like pressure or material composition) between
the paramagnetic, ferromagnetic, and modulated
(helicoidal or sinusoidal) phases; a characteristic
feature of the Lifshitz point is that the modulation
wave vector k, increases continuously from zero
as one moves from (Pz, Tz) into the modulated
phase. Hornreich et al."found the Lifshitz point
to be a multicritical point and obtained the rele-
vant critical exponents and scaling relations, using
renormalization- group techniques. They also sug-
gested that Lifshitz points might occur in various
magnetic compounds and mixtures. The results
of Hornreich et al. stimulated further theoretical
work on Lifshitz points and related phenomena. ' '
Qne of the subjects of interest is the thermody-
namic behavior of a system in the vicinity of a
Lifshitz point and the shape of the phase diagram
in this vicinity.

In our previous papers, ' (hereafter referred to
as I and II) we considered phase diagrams near
(P~, Tz, ) for uniaxial magnetic systems and for
systems with cylindrical and hexagonal (or rhom-
bohedral) symmetry having an easy plane of mag-
netization. We found that the thermodynamic pro-
perties near the Lifshitz point depend on the sym-
metry of the paramagnetic phase (phase I) of the
system. The results of Papers I and II concerning
this dependence are as follows:

In the case of cylindrical symmetry, the pha, se
transitions between the ferromagnetic phase (phase
II) and the modulated phase (phase III) are second
order, and the line T„(P) of these transitions
meets the line T~(P) of order-disorder transitions

under some angle. The presence of hexagonal
anisotropy makes the II=III phase transitions
first order, and displaces the. line T„(P) into the
region occupied in the cylindrical case by phase
III. (This region is determined by the inequality
a(P, T) &0, where o. is a coefficient in the expan-
sion of the free energy [see I and II, Eq. (2.3)].)
The lines T„(P) and T„(P) remain nontangent at
their meeting point (P~, Tz). Finally, in the uni-
axial case the line T„(P) becomes tangent to the
line T,(P) at (P~, T~), which means a still deeper
"penetration" of the ferromagnetic phase into the
region of Q. &0. Since a uniaxial system may be
regarded as the most anisotropic of the three
types of systems considered, the above results
suggest that the stronger the crystal anisotropy
is, the larger is the area of the phase diagram
which the ferromagnetic phase "captures" from
the modulated phase. Systems with tetragonal
symmetry having an easy plane of magnetization
occupy —in the sense of anisotropy —an intermedi-
ate position between uniaxial systems and hexa-
gonal systems with an easy plane. Therefore it is
of interest to study the phase diagram associated
with a Lifshitz point for such systems and to com-
pare the results with those obtained in Papers I
and II. Such a study is undertaken in the present
paper.

The formalism used in this paper is essentially
the same as in Paper II. The ordered phases are
characterized by a two-component order param-
eter M=M„x+M, g representing the magnetization
in the ea.sy plane. The possible spatial variation
of M is restricted to the z direction (parallel to
the tetragonal axis). The free-energy functional
E(M) is expanded in terms of M and its first- and
second-order derivatives with respect to ~. The
results of this work a.re based on the minimization
of F(M); therefore they are essentially mean-field
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results, as in papers I and II.

H. STUDY OF THE PHASE DIAGRAM

In a tetragonal crystal with an easy plane of
magnetization, the expansion of F(NI) has the form

)"(M) = fQA, (M,'+M„')+ ()M)— +M,',')'

where

(2.10)

so that

(2.11)

5 = (I/~2) (& -y), 7}=(I/~2)(~+y),

M = (I/&2)(M)+M„), M„= (I/&2)(M„—M));

+»B,M»M,'+»o[(M,') + (M')']

+ —,
' P[(M„")'+ (M,")']]d'~,

where the primes denote differentiation with re-
spect to z. From the requirement for thermody-
namic sta.bility it follows that

)(M)= f( A(M)+,))(„*)+—,') (M,*+M'„)*

+& b, M,'M'„+-„'.n[(M,')'+ (~~)»]

+ —,
' P[(M")'+ (M„")']]d 'r,

b=—B+—B &0, b, =——B,&0.

(2.12)

(2.13)
(2.2)B&0, B+-,B,&0, P&0.

The Lifshitz point (P~, T~) is the intersection
point of the lines

Ao(P, T) =0

a,nd

(»(P, T) =0.

(2.3)

(2.4)

%e see that in the new coordinates, $ and g, the
situation reduces to the previous one. %e shall
therefore consider only the case of B,&0.

Let us now consider the modulated phase (phase
III). In this phase, the magnetization at thermo
dynamic equilibrium, M»„ is a function of &. In
order to find M»z(z), one has to solve the vari-
ational equations

A», =A, —o."/2P= 0. (2.5)

This part corresponds to second-order transitions
between the paramagnetic phase and the modulated
phase (phase III). The two parts of T»(P) have a
common tangent at (P~, T~).

Let us consider the ferromagnetic phase (phase
II). The vector of spontaneous magnetization in
this phase M», which is determined by the
minimization of F(M), with M„'=M,'=0, depends
on the sign of B,. If B,&0, then

Mzz= +Mzzx or Mzz=+Mzz Y (2.6)

The order-disorder transition line T»(P) is given
by the same. equations as in the cases considered
in papers I and II. The part of this line lying in
the region (r & 0 coincides with the line T, (P) de-
fined by Eq. (2.3); this part corresponds to sec-
ond- order transitions between the paramagnetic
phase (phase I) and the ferromagnetic phase (phase
II). The part of T»(P) lying in the region n &0 is
described by the equation

—'PM„—o(M„+A M„+B(M„+M')M,+»B M„M„=0,

(2.14)

» PM,
' —o(M" +A» M„+B(M „'+M ')M +»B,M '„M, = 0 .

As. in the uniaxial case, the solutions of these
equations cannot be obtained in an analytical form.
However, it is known (see I, Appendix A) that at
T- T„(P) 0, M«, (z) has the asymptotic form

Mz«=M„» cos(kg+ Q)+M, » sin(kg+i()), (2 15)

where k, = (-o(/P)' ' The pa. rameters M,»,
M,», and g- Q must be found from the minimiza-
tion of the expression F(M„...M)»„P- Q) obtained
by substituting (2.15) for M in F(M). This ex-
pression is

F(M.». M.». &- &)

+ ~(B+»B,)[2+cos2(g —p)]M»» M,'», (2.16)

where

M„= (-Ao/B)'~' (2.7)

where A», =A, —n'/P. The minimization of (2.16)
with respect to g- P yields

Accordingly, the free energy at thermodynamic
equilibrium in phase II is

g- Q= g7r+n7r, n=0, 1, . . . .

Substituting (2.17) into (2.16), we have

(2.17)

F„= A', /4B. (2.8)

(2.9)

If B,&0, then the rotation of the coordinate sys-
tem about the ~ axis by the angle ~n' yields

M =M~(+M„g,

+»'»(B, —4B)M~» M'» . (2.18)

Further results depend on whether p &1 or p. & 1,
where p= B,/4B. If it&1, the minimi—zation of
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E(M,~, M, ~ ) yields

M,„=O, M„~ —= 2M~ =2(-A~ /3B)'~'

or vice versa; so that

M&«=2M& cos(kg+ Q)2

(2.19)

(2.20a)

(2.29)

It follows from (2.29), (2.23), and (2.24) that, in
the vicinity of the Lifshitz point (P~, T~) .

TH(P) = To(P) —[(4+ 2 p) —2] ~y(P —Pz) . (2.30)

T„(P)= T,(P) —2.2y (P P)', —

where the coefficient y is defined as

(2.22)

or

M«, = 2M, cos(kg+ Q)g . (2.20b)

It follows that in the case of p& 1 phase III is
characterized by a static transverse sinusoidal
wave of magnetization. The free energy at ther-
modynamic equilibrium in phase III is in this case

(2.21)

According to (2.8), (2.21), the expressions of E«
and F», in terms of the expansion coefficients
Ap Q P B are the same as in the uniaxial case. '
It follows that the line T„(P) of first-order transi-
tions between phases II and III and the latent heat
&Q of these transitions are also described by the
same equations as in the uniaxial case [See I,
Eqs. (3.11), (3.15), and (3.16)]. In particular,

In the same fashion as in Paper I, Appendix A, it
can be shown that the single-harmonic approxi-
mation (2.15) is satisfactory throughout phase III
in both of the cases considered; the third and
higher odd harmonics of k,—appearing in M„,(z)
because of the terms B,M,'M„B,M'„M, in Eqs.
(2.14)—are negligible.

Let us now discuss the results. The term
B,M,'M,' in the expansion (2.1) characterizes the
tetragonal anisotropy, and the parameter 'p,

=B,/4B can serve as a, measure of the strength of
this anisotropy. We see that certain properties
of the phase diagram depend on the value of p, . If
p & 1 (strong anisotropy), then phase III is si-
nusoidal, as in the uniaxial case, and the line
T„(P) is tangent to the line T,(P) [or T~(P)] at the
Lifshitz point and does not depend on ILL. If p, & 1
(weak anisotropy), then phase III is helicoidal, as
in the cases of cylindrical and hexagonal symme-
try. However, as distinct from these cases, the
line T„(P) is tangent to T,(P), so that phase II ex-
tends deeper into the region of n & 0 than in these
cases. For p&1, the line T„(P) depends on p.
As p, increases, approaching the value p. = 1, the

pic, (2.23)

with

GA

PyT PL~TaT, (2.24)
PHASE I

so that

M, « —-2M~ [cos(k,z+ Q)2+ sin(kg+ p)g]. (2.26)

It follows that in the case of p. &1, phase III is
characterized by a helicoidal ma"netic structure.
The expression for E», is

(2.2V)

From the equation

Fr&=F»r (2.28)

one obtains the equation of the line T„(P) of first
order transitions between phases II and III:

being the Curie-Weiss constant for the magnetic
susceptibility in the paramagnetic phase near the
point (P~, T~).

If p& 1, then the minimization of the expression
(2.18) gives

(2.26)

(p, T

PHASE

FIG. 1. Relative positions of the II' III phase-
transition line Tz(P) for different types of systems.
The positions 1-4 of this line correspond to the follow-
ing cases: 1—easy plane of magnetization with cylindri-
cal symmetry; 2—easy plane with hexagonal symmetry;
3—easy plane with tetragonal symmetry and p &1 (weak
anisotropy); 4—the same with p & 1 (strong anisotropy).
The dashed line is the order-disorder transition line
Ty(P).



5124 A. M IC HE LSON 16

line T&(P) is displaced deeper into the region of
o &0, approaching its limiting position corre-
sponding to the case of p. ~ 1.

III. CONCLUSION

In conclusion, the results of papers I, II, and
the present one exhibit the existence of the fol-
lowing regularity.

The increase of crystal anisotropy displaces
the ferromagnetic- helicoidal phase transition line
T„(P) in the vicinity of the i.ifshitz point in the
direction of the helicoidal phase —so that the area
on the P-T diagram occupied by the ferromagnetic
phase increases, and the area occupied by the
helicoidal phase decreases —until the helicoidal
phase changes into a sinusoidal one. This regu-
larity is quite natural: the ferromagnetic and
sinusoidal states are characterized by a certain

preferred direction of magnetization, whereas in
the helicoidal phase all directions (within the easy
plane) are equivalent. The crystal anisotropy
tends to align the magnetic moments along a pre-
ferred crystallographic direction (easy direction).
Therefore the stronger the anisotropy is, the
more advantageous the ferromagnetic and sinu-
soidal states are, as compared with the helicoidal
one. This tendency is displayed in the above-
mentioned displacement of the line T„(P) [and in
the change of the form of T„(P) when the hexa-
gonal symmetry changes for a tetragonal, more
anisotropic one]. It is also displayed in the even-
tual replacement of the helicoidal state by the
sinusoidal one when the tetragonal anisotropy is
sufficiently strong.

The relative positions of the line Ts(P) for the
different cases considered are shown schematic-
ally in Fig. 1.
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