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Renormahzation-group approach to a random resistor network
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A renormalization-group approach for calculating the critical exponent t for the electrical conductance of a
two-dimensional random resistor network is developed. The value t = 1.359 (for a triangular lattice) is

obtained.

Random resistor networks (RRN's) can be used
as a model to represent some features of trans-
port in disordered systems and have been widely
studied (see Refs. 1-3 and references therein).
The bond-percolation problem provides a par-
ticularly simple example of a RRN, ' in which the
conductance between two adjacent sites of a lat-
tice may assume either some finite value 0. or
zero (with probabilities p and 1 -p, respectively).
Such a RRN provides a simple model system, in
which a metal-insulator transition occurs: the
total conductance G of the network is zero for
p &p, (percolation threshold) and increases with

P for P &P, . Slightly above the percolation thres-
hold, G is proportional to (p -p,), and this defines
the critical exponent t. This exponent is believed
to be a universal constant (depending only on the
dimensionality of the network). For two-dimen-
sional networks numerical studies of Kirkpatrick'
gave 1 & t &1.3. Watson and Leath' experimentally
obtained t = 1.38+0.12.

The conductance G is more complex than quan-
tities such as the percolation probability P(p)
or the mean cluster size S(p) which are usually
studied in the percolation problem. ' G depends
on the topology of the "percolation channels"'
and [unlike P(p) or S(P)j does not have a thermo-
dynamic analog in the Ashkin-Teller-Potts (ATP)
model. ' In what follows we shall use the term per-
colation problem only in its narrow sense, i.e.,
in connection with quantities of "thermodynamic"
nature (and their critical exponents). The cal-
culation of G and of the exponent t will be referred
to as the RRN problem.

There have been some attempts' to derive a
scaling relation which connects t to the percola-
tion-problem exponents. These derivations are
based on some specific assumptions about the
structure of the "percolation channels, " and the
obtained relations differ from one another. No
such assumptions are made in this work: we
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FIG. 1. Decimation procedure for a square lattice
(the scaling factor 5 =W2). The sites remaining after
scaling are indicated by crosses. An example of a
nearest-neighbor (nn) bond AB on the new lattice is
shown by a dashed line. One possible way in which this
bond may be formed is via the nn bonds A1, 1B (shown
by the heavy lines) on the old lattice.

perform a direct calculation of the exponent t,
using the renormalization-group ideas. "

Two renormalization-group approaches to the
percolation problem have been developed recent-
ly. "'" In the first, " the renormalization of the
ATP Hamiltonian is performed, and the equiv-
alence between the ATP model and the percola-
tion problem is used. In the second approach, "
the original lattice is rescaled by a decimation
procedure" and the renormalized probability
p' is calculated directly. For example, " consider-
ing a four-site cluster A1B2 in a square lattice
(Fig. 1) and calculating the probability p' of sites
A and B being connected, one obtains

P -2P P (1)
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t = [1n(b 'o/cr')]/ink. . (5)

According to Eq. (2), at the fixed point o/o' = 1/P*,
which [with the above values of P* and X (Ref. 11)]
leads to a reasonable value I;= 1.134.

Alternatively, Eq. (5) may be written as

t = (d —8+ 1n(o/&r')/lnb) v

where v= lnb/in' is the correlation length expon-
ent Sg 11

The simple percolation problem discussed above
(with a single parameter P) is not "renormalizable*'
because scaling introduces bonds between distant
sites and correlations between bonds. These cor-
relations may be taken into account by introducing
more comply, multisite, bonds, which connect
more than two sites. " Thus one arrives at a
generalized percolation problem which, in addition
to the bond probability p, is characterized by a
set {P;fof independent probabilities for other types
of bonds (including multisite bonds). For the same
reasons the simple RRN discussed above has also
to be generalized, and a set of additional cbn-
ductances {&r,) has to be introduced. The way in
which these conductances will be assigned to dif-
ferent bonds will be discussed below. Instead of
Eq. (3), we now have

G=«' 'f(P~P, P2~ ~ ~ ~ i o'& o'2~. )

The nontrivial fixed point of Eq. (1) is P"=0.618;
near the fixed point 6P'= X6P (6P=P -P*) with X

= 1.528 (Ref. 11).
Our extension of the ideas of Ref. 11 to the RHN

may be demonstrated in the simple example of
Fig. 1. We shall require the average conductance
between points A and B to remain the same after
the decimation of sites 1 and 2. Then, in addition
to Eq. (1), we have

P'o'= 2P'(1 P')-'o-+P'o=P'o.

Here a and o' are the conduetances assigned to
a nearest-neighbor (nn) bond in the original and

in the rescaled lattices, respectively.
The total conductance G may be written in the

form

G = «-'-'y(P),

where d is the dimensionality of the network, L,

its linear dimension (measured in lattice units),
and-f(P) is some function which near (from above)
the fixed point is proportional to (6P)'. The re-
quirement that G should not change by scaling leads
to

o'(L/b)'-'(6P')' = «'-'(6P)', (4)
I

where b is the scaling factor. Thus, using 5p'
= Xhp, we find

where ~,.= o, /o. '.Equation (7) has a form which
obviously satisfies the requirement that if all con-
ductances o, v». . . are multiplied by a given fac-
tor, so is G. Using arguments similar to those
of Ref. 8 (pp. 110 and 111)one obtains from Eq.
(7) the expression for the critical exponent f given

by Eq. (5) [or Eq. (6)], where X is now the biggest
eigenvalue of the linearized renormalization-group
transformation matrix. At the fixed point o.,*
= o,/o = o', /o'; hence the ratio o/o' in Eqs. (5)
and (6) may be replaced by any of the ratios o, /o', .
Thus o does not play any special role —any of the
conductances c, can be singled out instead of o in
Eq. (7).

Let us represent any bond (including multisite
bonds) by a line. To every type of bond we assign
a different color. A microconfiguration is defined
by a set of lines with their color assignment (a
pair of sites can be connected directly by a number
of lines of different colors). A configuration 9
is defined by a set of lines irrespective of their
color assignment (two or more lines directly con-
necting a pair of sites are replaced by one line
only). The probability WB of the configuration 9
is the sum of the probabilities of all microcon. -
figurations compatible with 9. The probability
of a microconfiguration is easily calculated in
terms of the set of independent probabilities p,
p ~ ~ ~ ~

Let 9 and 9' be configurations of the initial and
new lattices respectively. In the generalized per-
colation problem, the renormal ized probabilities
can be obtained from the requirement

g8 (P' Pl )= Q gs(P P„. ),
QF +~

where R denotes the set of configurations in the
old lattice which axe compatible with O'. Equations
(8) guarantee that the total probability of two or
more given sites (common to both lattices) being
connected (via any path) is the same in both lat-
tices.

To obtain the renormalized conductances in the
generalized RBN we shall require, in addition to
Eq. (8),

W&,(P', P'„.. . )Gg~(o', a', , . . . )

&s(P,P„" )Gs'(o, c„) (8)
QCgsi

Here, G~, and G& are the total conductances be-
tween sites A and B in the configurations 9 and 9',
respectively. Eqs. (9) guarantee the electrical
equivalence of both lattices in the sense that the
average conductance between two given sites is
preserved in the renormalization tx ansformation.

Our assignment for the set of conductances
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In the actual evaluation of the sums in Eqs. (8)
and (9) we shall further limit ourselves to con-
figurations 8 compatible with a given configuration
9' within a small cluster only. For the evaluation
of p' we use the cluster A12B; for q', the cluster
C12D, and for r', the cluster L4BC, from which
the following equations result:

p'= q+ ~["+ 2rr(2pp+p')'

+ i'(2p' —P'+ 2P'P')],

qi P3

~/p13+ ~J p3

(10)

FIG. 2. Decimation procedure for a triangular lattice
(the scaling factor b =&3). The reD1aining sites are indi-
cated by crosses ~

(o, o,j is done as follows: to each bond l in the con-
figuration 9 we assign a conductance o&

' (some of
the bond conductances may be equal if the bonds
are symmetrically situated).

Equa'tions (8) are sufficient for the evaluation of
the fixed point probabilities (p*,p f) and the biggest
eigenvalue X of the renormalization-group trans-
formation matrix. The critical exponent t is then
determined by the ratio o'/o, which is evaluated
from Eqs. (9),where allprobabilities assume their
fixed -point values.

We now perform an approximate renormalization
calculation for a triangular lattice (Fig. 2). We
shall limit ourselves to only three independent
probabilities: of a nnbond —p, of anext-nnbond-
q, and of a three-sitebond (connecting three sites
onan elementary triangle likeA12) —r. In terms of
the ATP model this corresponds to aHamiltonian
with nn, next nn, and three-spin (in an elementary
triangle) interactions. We shall also limit ourselves
to three conductances only, and assign them as fol-
lows: o to a nn bond (in a configuration in the
sense defined above) which is not part of an elem-
entary triangle, a~ to a nn bond which belongs to
an elementary triangle, and o, to a next-nn bond.

where the notation x=1-x is used. Equations (10)
lead to the fixed point values for the probabilities
p*= 0.4215, q*= 0.0749, x*=0. From the linear-
ization of Eqs. (10) near the fixed point one obtains
A. = 1.549, v= 1;256. This differs slightly from the
value v= 1.284 obtained in Ref. 11, where the clus-
ter A2B3C4 (Fig. 2) was considered.

The equations for the conductances evaluated
within the above mentioned clusters are

p'c'= —ox2p p'(3p+p)+3ox2p /+op p

30'0~'o~'+o, q+ ~ 4p'p+O(x),20+ 30~

p'3 x —'o'yO(y') = 2op~.

From Eqs. (10) and (11), the fixed point values
of the parameters n, = o,/o and n'= o~/o are found

to be o,*=n'*= —;o/o', where o/o'=0. 5517. This
gives t= 1.359, which is in good agreement with
the experimental value t= 1.38+0.12 of Ref. 4."
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' Very recently, our attention was drawn to: (i) the

recent work of R. B. Stinchcombe and B. P. Watson
[J. Phys. C 9, 3221 (1976)] which also deals with a
renormalization approach for percolation conductivity,
(ii) the works of S. Kirkpatrick [Phys. Rev. B (to be

published)] and of J. P. Straley [Phys. Rev. B (to be
published)] on related topics, and (iii) more recent
computer- simulation calculations by S. Kirkpatrick
[Phys. Rev. Lett. 36, 69 (1976}],that put a sharper
limit to a value of t: 1 & t & 1.2.


