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Electronic structure of ferromagnetic hcp cobalt. I. Band properties*
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A first-principles self-consistent, unrestricted Hartree-Pock, hybridized-tight-binding-plane-wave, electronic-

structure calculation for ferromagnetic cobalt in hexagonal-close-packed structure is presented. The nonlocal

Hartree-Fock exchange-interaction matrix elements were explicitly included in the Hamiltonian matrix and

correlation effects on the one-electron energy levels were incorporated through the pair correlation energies

among the core, 31, and conduction electrons. The most important correlation effect was that associated with

the 31-band electrons and this was included through the Hubbard-Kanamori bandwidth-dependent model.

Self-consistency was reached through an iterative procedure with respect to the density matrix, bandwidth,

and the magnetic moment. For the latter, we obtained a value of 1.58@,~ as compared to the experimental

value of 1.S6p,z. We have utilized the results of our energy-band calculations to study different energy- and

wave-function-related properties, namely, the work function, electronic density of states, bandwidth and

exchange splittings, specific heat, Fermi-surface cross sections, and spin-wave spectra, results for which are

presented here and comparisons made with experiment. Our results for a number of other properties will be

presented in subsequent papers.

I. INTRODUCTION

The first-principles understanding of the elec-
tronic structure of ferromagnetic metals has be-
come a subject of considerable interest in recent
years. This interest has been generated as a con-
sequence of parallel developments in refined theo-
retical techniques' ' for studying electronic wave
functions and energy bands and the development of
sophisticated experimental techniques to study a
variety of properties. Among these are the shape
and dimensions of the Fermi surface, ' ' by
de Haas-van Alphen and related measurements,
the density of states through ultraviolet photoemis-
sion techniques, ' the spin splittings of core levels
by x-ray photoemission techniques"'" (ESCA),
the magnetization through neutron-scattering"
techniques, and the hyperfine fields" ' by nuclear
magnetic resonance and Mossbauer techniques in
both the pure metals and a variety of alloys. "
Among the theoretical techniques that have been
employed are the augmented plane wave"' and

Kohn, Korringa, and Hostoker procedures, the
tight-binding procedure with extensive basis
states, and the hybridized tight-binding-orthogo-
nalized-plane-wave (OPW)' procedure. Calcula-
tions based on the first three procedures' ' have
made use of a local r-dependent potential approxi-
mation for the exchange interaction, while the last
procedure' has utilized the actual nonlocal Hartree-
Fock (HF) matrix elements involving the 1/r»
explicitly. This feature is particularly important
for the study of magnetic hyperfine fields. '" An
additional feature of this last procedure, which is
a consequence of using the actual HF exchange, is

that the correlation effects can be introduced ex-
plicitly since they are completely absent in the
one-electron HF approximation. In our present
investigations on ferromagnetic cobalt, we have
mainly followed this last procedure, which had

been applied earlier to ferromagnetic iron, ' with
some modifications. One of these is aimed at
substantially reducing the computational effort
in the calculation of two-center Coulomb and ex-
change interactions, without sacrificing any ac-
curacy, thereby making it practicable to attempt
some cycles of self -consistency. Other modifica-
tions involve the incorporation of correlation ef-
fects in core states and of the perturbation of
core-state energies and wave functions in the metal
with respect to those for the free atom. In our in-
vestigations on ferromagnetic cobalt, we have
studied all the properties mentioned before, as
well as a number of additional ones. The results
of these investigations will be published in a series
of articles. In the present article we shaH de-
scribe the procedure for the band calculation and
discuss and compare with experiment, both the
magnetic moment obtained self-consistently and
a number of Fermi-surface and band properties,
such as Fermi-surface cross sections ' in differ-
ent directions, the total density-of-states curve,
and individual density of states for the majority-
and minority-spin states and the work function. "

In Sec. II, first a brief review of HF theory
as applied to metals is presented and some of the
important notations to be used in this work are in-
troduced together with the choice of the variational
basis set for the hybridized tight-binding-OPW
procedure that we have employed to permit suffi-
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cient flexibility for adequate representation of
both the Bd-like and freelike band wave functions.
This section also includes a description of the
method of evaluation of Hamiltonian matrix ele-
ments, particularly the Coulomb and exchange
matrix elements, and especially the multicenter
contributions to these matrix elements. Section
III will deal with the incorporation of correlation
effects for core, 3d-,like, and freelike electrons
by appropriate procedures. ' " In Sec. IV we first
discuss the self-consistency of the band calculation
with respect to the magnetization and 3d-like and
freelike band populations. Sec. V presents the
band structure and analyzes several specific fea-
tures of the bands, for example, their crystal-
field-like splittings, spin splittings, the k depen-
dence of these splittings and the extent of hybridi-
zation between OPW and 3d characters in the en-
ergy bands. This section will also deal with our
results on the magnetic moment, the work func-
tion, the density-of-states curve, and Fermi-sur-
face cross sections and comparisons with corre-
sponding experimental data and results of earlier
theoretical investigations. Section VI presents
concluding remarks together with suggestions for
possible modifications to further improve agree-
ment with experiment.

II. DESCRIPTION OF HARTREE-FOCK PROCEDURE FOR
METALS

solution of appropriate differential equations, only

for atomic systems because of the spherical sym-
metry of their Hartree-Fock potential. For
molecules and solid state one has to adopt a varia-
tional procedure to solve the Hartree-Fock equa-
tions. Thus the spin-orbital u, is expanded in a
set of known linearly independent basis functions
P„with the total number of functions 1P greater
than &.

u,. = g C„,g„. (2.2)

and

(2.4)

mn mn+ mn+ mn &

where

(2.5)

On taking the expectation value of the Hamilton-
ian in Eq. (2.1) over the determinantal wave func-
tion + built from the one-electron spin-orbitals
u,- and minimizing with respect to variations in the
variation parameters &„;, we get the usual set of
linear equations for C„; which lead to the secular
equation of dimension N'.

d tel H „—E&„„l=o,

where

In this section, we shall review the Hartree-
Fock theory as applied to metals and briefly dis-
cuss the choice of basis sets and evaluation of
Coulomb and exchange integrals. A more detailed
description of the procedure, together with useful
technical points, is available elsewhere. "

A. Hartree-Fock formalism and choice of basis states

The HF Hamiltonian is a one-electron Hamilton-
ian derived from the more complete Hamiltonian

and
(2.6)

1 e2

2~ Ir, —r,. l

(2.1)

where 6, is the nuclear charge at the atomic site
R, and r,. is the coordinate for the electron. In
the one-electron HF approximation, each electron
moves in the average potential from the other
electrons and the antisymmetrized wave function
+ of & electrons is a Slater determinant of their
spin orbitals u;. While one can always derive
Hartree-Fock equations ' for u, , one can obtain
their solutions'"" conveniently through numerical

g (H.„s,.S.„)C„,. =O (2.7)

combined with the normalization condition:

m, n

(2.8)

S „representing elements of the overlap matrix
and H „elements of the HF Hamiltonian matrix,
the I „,J „, and K „being, respectively, the
one-electron, Coulomb, and exchange contribu-
tions to H „. On solving Eq. (2.3), we get the en-
ergy eigenvalues c„ for which the corresponding
eigenfunctions u, can be obtained by determining
the C„,. from the equations:
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Since the matrix elements in the overlap and Ham-
iltonian matrix in Eqs. (2.4) and (2.5) involve inte-
gration over spin components of the basis functions
as well, it is clear that H „and S „will b'e zero
if P and P„have orthogonal spins. Consequently,
each of the B and S matrices and the secular de-
terminant can be decomposed into two separate
.square blocks for the spin-up and spin-down direc-
tions. This corresponds to the unrestricted-Har-
tree-Fock approximation" which is employed
here.

The plane-wave (PW) and tight-binding functions
which are utilized here as basis functions in con-
structing the one electron eigenfunctions are de-
fined as follows for our hcp lattice.

y
P)&( —(2~@)-&/ke«k && n (2.9)
K+K

(o, o, o)

/

I

I

y I

I

( i/2, i/S, Q ) t&

t2

and

Here

ik (Ri+n/k&y (r lt p)]

(2.10)

(2.11)

I
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FIG. 1. Direct lattice unit cell hcp structure.

and
1 1 2

P —&t, +3t, +3t, (2.12)

represents the vector joining one atom in the hcp
unit cell (Fig. 1) to the other atom, the origin
being taken at the midpoint of such a vector, with

and t, r ep resent ing p r im iti v e latti ce vecto r s
for the hcp structure. The presence of two atoms
in the unit cell leads to a multiplicity of two in the
tight-binding functions. Our calculations were per-
formed for the lattice parameters a and c of the
cobalt hcp structure appropriate" for O'K, namely

a =2.5007 A=4.72580 a.u. ,

c = 4.055 72 A = 7.664 37 au. . (2.13)

+ p kt((, n(mk4 nlmk, k p
nl mP

(2.14)

We shall thus obtain the band-structure appropriate
to O'K, which is appropriate for most of the ex-
perimental data we plan to interpret.

The form of the one-electron variational func-
tion, which we have chosen and which is simultan-
eously suitable for core electrons, valence elec-
trons (3d-like electrons) and conduction electrons
(freelike electrons) can be referred to as the
hybridized tight-binding-plane-wave wave function:

(-„()=(Qc;„-„(."-( )
K

the summations in nlm running over the core and
3d states. For core states, the coefficients of the
plane-wave components will be negligible. For
freelike electrons, the relative coefficients of the
core and Sd functions will be close to those for a
linear combination of orthogonalized plane-wave
(OPW) functions, "while for 3d-like eigenfunctions
in the metal, the coefficients of the Sd tight-bind-
ing wave functions are expected to predominate.
The plane-wave components in the latter case can
be appreciable owing to the mixing or hybridiza-
tion caused by the pote'ntial and from the influence
of interatomic overlaps. Correspondingly for
freelike electrons, the eigenfunction gk„can be
expressed as a linear combinatiop of QPW func-
tions and finite admixtures of 3d tight-binding
functions due to hybridization effects.

From earlier paramagnetic band-structure
calculations' in cobalt, it has been found that, the
number of 3d-like electrons in the metal is about
one more than that in the free atom in common
with the situation in iron metal. ' In free cobalt
atom (apart from configuration mixing due to cor-
relation effects) the ground state is 3d'4s'(~F).
Since cobalt metal seems to lead to a configura-
tion close to Sd'4s', it is desirable to obtain the
wave functions for all the core and 3d and 4s states
for this configuration by solving the appropriate
Hartree-Fock equations. However, since most of
the magnetization is due to the 3d-like electrons,
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FIG. 2. %ave functions for 3d and 4s atomic states in configuration 3d 4s. Arrows on the r axis give the positions
of the neighboring atoms and the arrows on the curve give the half of the distances to the neighboring atoms.

and the freelike electrons have nearly equal pop-
ulatlonq lt 18 Dlol e RppropllRte to Use
3d' Sd'i4s'~'i4s'~'~('F) configuration, which is
closest to the population distribution in the metal.
The radial functions P„,(r) for 1s, 2s, 2p, Ss, Sp,

Rnd 4s orbltRls were obtained by self-consis-
tent numerical solution of the restricted Hartree-
Fock" equations, with spin-independent orbitals,
for the average of the configurations
3d' M i4s' (~F) and 3d' Sd ~4s'i(F) which is
equivalent to using the 'I' configuration. For the
sake of comparison, the 3d and 4s orbitals from
this calculation are plotted against x in Fig. 2

along with the orbitals corresponding to the free
atom configuration Sd'4s'('F), taken from tables
of analytic wave functions obtained by Clementi.
%e see that the 3d and 4s functions are more
spread out for the configuration corresponding to
the metal than for the free atom case. This dif-
fuseness assists'o in the binding in the metal
through a lowering of kinetic energy and increased
interaction between atoms.

For our work in the metal, we shall make use of
this newly determined 3d function. However, in
calculating the Coulomb and exchange potential
matrix elements, the diffuse nature of these 3d
orbitals leads to substantial overlap between orbi-
tals on adjacent atoms and can require the calcu-
lation of a large number of two-, three-, and

four center integrals. The calculation of these
multicenter integrals involving explicit overlap
between two Rnd more atoms is rather time con-
suming. ' %e shall avoid calculating these inte-
grals explicitly by breaking up the 3d function into
two parts, as in Fig. 3, namely a tightly packed
function with no overlap between atoms and a dif-
fuse tail function. The tail function mill be expand-
ed in a series of plane waves. Thus, the right
binding function of the form (2.12) constructed
out of atomic 3d orbitals now becomes a linear
combination of a tight binding function constructed
from the truncated 3d function and plane-wave
wave functions.

We shall use the notation II„,(r) for the nonover-
lapping radial functions, including the cores which
do not overlap anyway and the truncated 3d orbi-
tals. The tight-binding functions built out of these
II„,(r) shall be referred to as P„, ~;. As far as
the core and 3d tight-binding functions are con-
cerned, the basis set to be used in our variational
calculations for band functions will then be com-
posed of the 18 P„, ~ -„ functions constructed from
the is, 2s, 2p, 3s, and 3p core functions and
the 10 QM &

-„ functions. This set will be comple-
mented by 23 plane-wave wave functions P%-„,K
corresponding to the 23 shortest values of K, the
same set that is used for the expansion of the
tail part of the 3d atomic function into plane waves.
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orthogonal to each other, the overlap integrals be-
tween them being given by:
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FIG. 3. Truncated 3d radial function, II3„(r) and the
tail part g&(r) of the 3d radial function. Function IIM(x)
is normalized to unity.

B. Evaluation of overlap and Hamiltonian matrices

We shall next discuss the evaluation of the over-
lap (S) and Hamiltonian (H) matrices. Considering
first the S matrix, the plane-wave basis states
PW-„,"„are obviously orthonormal. Also, because
of negligible interatomic overlaps, the tight-bind-
ing functions p„, p; can be taken as orthonormal
as well. Thus,

&0 i pal 14'p m p l &=&la &

4w ~
M

(.)I l
(

-4K p/2
+p

e+iK p/2)
Wn

x Y ) (e-„,-„) j,( I
k+ K

I r)rII„, (r) dr, (2 .I7)

II„;r II„, r, drl(I+1)

r dr, 2.1S

and

v'Ip-'"-- &= Ik+Kl'I)- -, (2.ig)

&@„...-„I v~f@P~& = fk+KI'&@„...;,Ill@-'„"-„&.

(2.20)

It is to be noted that both in the case of matrix
elements of unity and of -V', no two-center inte-
grals occur with our choice of basis states. The
potential due to the nuclear charge f of 27 protons
at each lattice site, for any electron, which is
attractive in nature, is given by:

p))

where e-„,-„ is a unit vector. along k+K. For the
8 matrix, we have to evaluate matrix elements
of the kinetic energy, nuclear potential, and Cou-
lomb and exchange interaction energies among the
electrons. The kinetic energy matrix elements
are easy to evaluate and are given in Rydberg units
by:

and

(2.i5)

(2.i6)

2 2
Z(r) = —l j ~ +

I r.—R&+ & p I I r - nz —& p I

(2.2i)

However, the (t)~"-„and p„, p-„ functions are not
with the following matrix elements between the
tight-binding basis functions:

(p, , -„(P(,)(P„, , -„)= (n„.()...()„.J —ll„,()ll„., (r)P~

2 X47I
(l (l' ', l" — ')J r' ll„, ( )rl„, , ( )dr

zpp

1 i l~p + (-i)"']Z 2 P IR I'"'' 2
I R, + 1 I

x ( i) "Y*,„,(e-, or e„-,-), (2.22)
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where

(Im i
I'm ', l "m —m')

ei(k+K& r ~ 4&(&)ly 4 (& )lm k+K
lm

x y (r) j)(lk+KIr) . (2.24)

The matrix elements of the nuclear Coulomb
potential between two plane waves is the next one
to be considered and the diagonal and off-diagonal
elements are evaluated separately. For the off-
diagonal case one obtains:

cos [(K-K')'~ p] for K&K',
Q]K

(2.25)

while for the diagonal case one gets the divergent
result

(2.28)

The divergence is owing to the fact that the integral
on the right-hand side extends over the entire
volume of the crystal. This divergence is not of

y i* (6 0)y) ~ (8 0)y)-, , (e, )t)) sint)ded4 .i~m 7 r I m I 7 i ~
t m Im I t

~

(2.23)

The right-hand side of Eq. (2.22) is independent of
k. The summation on I" in Eq. (2.22) is limited b'y
angular momentum and parity conservation rules.
The summation on j is over all lattice sites (this
includes both the atoms in the unit cell and all the
unit cells). In all the matrix elements, values of

j corresponding to 38 neighbor atoms plus the
central atom (j= 0) at which the atomic orbital is
located, are included. The contribution from the
distant atoms is very nearly cancelled (to about
0.0015Ry) by a simila. r contribution from the
Coulomb potential due to the electrons, with oppo-
site sign. The choice of the term in the large
square brackets in Eq. (2.22) is decided by the
nature of the interatomic vector R&p For R&g R„,
the first term is to be taken, while for R,.p= R„+p,
the second is the appropriate term. A correspond-
ing choice is made for the argument of the spheri-
cal harmonic involving the lattice coordinates.
This kind of dual set of terms will appear in later
matrix elements also and a similar procedure
will be adopted there. The hybrid matrix elements

(y„, , -„ IZ(r) t
y'"-)

can be similarly obtained by expanding the PW in
Bes'sel functions and spherical harmonics.

(2.27)
K K tk tg 2 k tgK % tg K' &

for the matrix elements purely in tight-binding
space and plane-wave space, respectively, and

Pnlmg, K, k tg= 2Cktg~nlmp k tg, K) (2.28)

for the hybrid elements involving the two spaces.
The factor of one-half is included to take account
of the fact that there are two atoms per unit cell.

Lastly, before proceeding to the calculation of
the Coulomb and exchange matrix elements, we
should remark that we need a summation over oc-
cupied k states. For this purpose, we transform
the density matrix for a value of k within the —' th

24
Brillouinzone(BZ), shownin Fig. 4, totheotherk
vectors belonging to the star of k and contained in the
23 other segments of the Brillouin zone. This trans-
formation can be accomplished by using the trans-

any concern, ' since it arises because of the long-
range character of the nuclear Coulomb potential
and is completely cancelled by a similar divergent
term coming from the electronic Coulomb poten-
tial, as discussed subsequently in this section.

We turn next to the matrix elements for the
electron-electron interactions. These involve the
potential due to the electrons and for the latter,
we need a knowledge of the electron distribution.
However, to get the electronic distribution we

need, in turn, to know the potential, and this is a
typical self-consistency problem, to be discussed
in Sec. IV. To start the calculation, one has to
make an initial choice of the populations in majori-
ty- and minority-spin Sd and freelike bands.
Thus, from the earlier band calculations of Wakoh
and Yamashita' for the paramagnetic phase with
a rigid band shift to give ferromagnetism, one
finds that the bands that look Sd-like are complete-
ly filled for the majority spin, while the corre-
sponding minority bands are only partially full.
Also, as a first approximation, one can assume
that the total magnetic moment of 1.56'.~ per atom
is due entirely to Sd-like electrons. Thus, of the
total of nine valence electrons, one makes the
initial assignment of five electrons to majority-
spin Sd states, 3.44 electrons to minority-spin
3d states, and 0.28 each in the majority- and
minority-spin freelike bands. In addition to this,
of course, there are 18 core electrons in states

-„with nine for each spin.
Using this choice of populations, one can con-

struct the initial density matrix. The general form
of the density matrix elements, at any stage of
iteration, can be obtained using the eigenfunctions
corresponding to band g, reduced vector k, and

spin o defined in Eq. (2.14), and have the forms:

——l
nlmp, n' I'm'p', k tg ~ k tg, nlmp k tg, n'l'm'l}' &
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formation properties of the coefficients Ck„n, p
and C-k«. Thus, we consider for example sum-k te, K'
mations over all k for the density matrix elements
between purely tight-binding states and purely

.plane-wave states as given by:

+n l mp, n' l' m' p', e

kt
occupied states

(2.29)

1
K,K'

~ k to&

nlmP, n' l' m'P', k tfJ

li
A[4

I

iL H

I

I

occupied states

which occur in the Coulomb integrals. Using the
symmetry operations of the hcp lattice, one can
show3' that Eqs. (2.29) take the form

FIG. 4. Reciprocal lattice, first Brillouin zone, and
the irreducible part I'MKFMI-1" of the Brillouin zone.

nl mP, n' l' m' P', tf

t k
1

occupied states in 24 th of BZ

+ e f (m - m' )ff/3X (Pntmt), nk (km'p', k tn+ nlmtkn' l'm't sk tn'

—(I+2cos[(m —tn') —,'ll]] (1+(-1)''" ' '][I+(-I) 't'PP ]

(2.30)

eHK'- K) ' p/2
KyR' ~ty

t
1

occupied states in 24th of BZ

- io ~ (K' K) ~ P /2l ~e j (P() R, o R, ktn+ -o.R, -o.R';k'tnj ' j ' j
Oj

(2.31)

he e 0,. is the jth group operation, j= 1-12 and excludes the inversion operation.
In obtaimng the Coulomb and exchange matrix elements, given by J „and K „ in Eq. (2.6), in forms con-

venient for calculation, it is usef~ to define one- and two-electron density functions namely p(r) and
( „r,) including summations of terms involving density matrices and basis set wave functions over the

occupied core, 3d, and conduction-band states.

P(r, ) = 2 g P g P„, A n, t, , t), -„«Pnl A -„(r,) Pn. t m. tn -„(rl)+2 g g Q PK R, -k «P-„z (r, ) Q-„"K,(r,)
nlmp ke t KtK' ka t
l' m' p'

nlmP K, kty t nlmP K, ko

(2.32)

and

p'(r„r, ) =2 p Q QP„( A „,t, ,t. -„„yn,„-„(r,) (t„,t -„(r,)+2 g g gP„„.-k„pp"-*(r,) harv(r, )
nlmp k t K%K kn'l'm'0'

+ 2 g p g P„, n
„- «, gnt

A -„(r,) pp"-(r )i2 g g QPmt A x "„„(py"-*(r,) p„t ~ -„(r2). (2.33)

There are three families of Coulomb potential matrix elements, namely,
2

(k ~ K
$

V „,$k ~ K')= (k.„'"-„(,)
/ f nr )—k'k $t. -(,)),

12

2

&nlmPt k
I Voo, ( In'I'm'P' k& = &@,t t, k(rt) I P(r, )—d'rn

I @n l mt, k(r, )&,

(2.34)

(2.35)

2

&«mp, k
I
I o..l Ik+ K& = &y.t.,.;(rk) I (2.36)
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The exchange interaction matrix elements needed for the Hamiltonian matrix are listed below, the V',„
operator on the left-hand side being nonlocal' in nature.

2

(k+@V;„~k+K) = J(d'r, d'r, p~"- (r,) p'(r„r, ) p.„"„-,(r,), (2.37)

(nl p, k~v;,
~

'l' 'p', k)= Jd'r, d'ry, ~;(r)p'(r„r) —y„., „,„;(I'),
12

(2.38)

and

2

(nlmp, k~ V;„~k+K)= d'r, d'r, p„*, ~ „-(r,) p'(r„r, )—g.„"-(r,).
~J 12

(2.39)

On substituting the expression for p(r) from Eq.
(2.32) into Egs. (2.34)-(2.36) and the expression
for p' from Eq. (2.33) into Eqs. (2.37)-(2.39), we

get more explicit expressions for each of the inter-
action matrix elements. We will not present these
elaborate equations" here, but instead include the
important steps in their derivation in the appen-
dlX.

III. INCORPORATION OF CORRELATION EFFECTS IN

BAND CALCULATION

In this section, the incorporation of the elec-
tron-electron correlation effects into the elec-
tronic band structure will be discussed. The pro-
cedure followed involves a combination of differ-
ent methods applicable for the variety of pair-cor-
relation interactions, involving electrons in core
states, d-bands, and conduction bands, that we
have to be concerned with. For correlation ef-
fects involving core electrons interacting with
other core electrons, d-band electrons, or free-
like electrons and d-electrons interacting with
freelike band electrons, we shall make use of
atomic many-body perturbation theory. "'"'"
For interactions between d-band electrons, we
have used a bandwidth-dependent Hubbard corre-
lation treatment" applied earlier to iron. ' For
correlation effects involving only freelike elec-
trons, the results of a recently developed self-
consistent many-body procedure by the authors"
will be utilized. Thi's treatment of correlation ef-
fects among freelike electrons is different from
that utilized for iron. Also the correlation effects
between core and 3d electrons (except for intra-
band effects) were not considered for iron but are
included in the present calculation. The descrip-
tion of these types of correlation will therefore be
described here. For the intraband correlation,
we shall follow the procedure developed in the
earlier work on iron' for adaptation of the Hubbard
treatment for narrow bands. Only a few remarks
will be added iri this case for the sake of com-
pleteness.

TABLE I. Atomiclike correlation energy corrections
for core one-electron states in cobalt metal. Unit of en-
ergy is one rydberg.

State Spin up ~ Spin down

is
2s
2P
3s
3P
3d
4s"

3d (Hubbard)

-0.043 37
-0.13970
-0.220 69
-0.13933
-0.226 69
-0.266 72
-0.100 57

0.000 00

-0.052 59
-0.148 92
-0.232 71
-0.148 55
-0'.238 71
-0.314 33
-0.105 68
-0.398 20

Spip up refers to majority-spin directions and spin
down to minority. Populations in different states used
for the metal are 3ds~, 3d '5 4s ' ~ 4s ' with the
core states completely full.

The 4s state correlation energy listed does not include
4s-4s correlation energy, which is —0.100 32 Ry. Instead
we add free-electron correlation energies to the diagonal
matrix elements as explained in the text.

This represents the Hubbard correlation energy.

A. Correlation corrections freelike electrons

To find the correlation corrections to the en-
ergy of freelike electrons, we have to consider
pair excitations involving the electron in question
paired with each of the other electrons in occupied
states. The freelike electron wave function looks
very much like the atomic 4s electron wave func-
tion near the atom, while in the region in between
two atoms it looks like a plane wave. So to a good
approximation we can consider the core and 34
electron correlations with the freelike electrons
to be represented by correlations of core and 3d
electrons with the 4s electron in a free atom in
the configuration 3d"4s" which corresponds
closest to the metal. The numerical results for
this type of correlation energy can be taken from
many-body diagrams for neutral manganese and
iron atoms" with population adjusted for the co-
balt configuration considered above and appear
in the last row of Table I. Between the two, man-
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ganese and iron atoms, the latter was used in our
calculation because its configuration is somewhat
closer to that of the cobalt configuration of in-
terest to us. For the correlation corrections due

to interaction between freelike electrons, the val-
ues obtained earlier" for a uniform electron gas
are used by choosing the appropriate r, for the
electron density in the metal. This density was
determined by using the number of electrons per
atom as equal to the number of freelike electrons
plus the contribution from the plane-wave com-
ponents of the Sd band electrons to take care of
their delocalization. Thus,

TABLE II. Correlation energy corrections (8&) for
one-electron energies for a uniforxn electron gas. k is
in units of 2m/go and p& is in units of 2 Ry.

y' —2 s

0.00
0.0709
0.1089
0.1292
0.1401
0.1460
0.1527 (=k~)
0.1560
0 ~ 1630
O. 1730
0.2060
0.2680
0.3840

-0.0196
—0.0361
-0.0614
-0.1010
-0.1436
-0.1657
—0.1882
—0.1960
-0.2050
—0.2150
-0.2365
-0.2575
—0.2633

0.00
0.0427
0.0675
0.0819
O.0902
0.0951
0.1018 (=k~)
0.1051
0.1114
0.1197
0.1351
0.1500
0.1800

-0.0166
-0.0273
-0.0432
-0.0680
-0.0956
-0.1092
-0.1410
-0.1478
—0.1631
—0.1698
-0.1783
-0.1829
-0.1894

(Nn, „),ii = 9.0 —Q P3dmp~ 3$mP~g. (3.1)

This number gives an effective r, between 2 and
3 depending on the density matrix elements in
Eq. (3.1) at the appropriate iteration cycle. The
correlation energy corrections for r, = 2 and 3 for
different values of k are given in Table II and for
intermediate values of r, one could interpolate be-
tween these two tables. Since we have, for our
3d-like electrons in the crystal, significant hy-
bridization of the 3d basis states with plane-wave
states, this hybridization causes the 3d electrons
to become itinerant and therefore in the present
procedure, the conduction-electron correlation
approximately includes the correlation occurring
between, itinerant parts of the 3d states as well
as between the latter and the freelike states.

The sum of the atomic-type correlation energies
and the PW type correlation energy considered
above gives the net correlation energy foi a PW
state. In this case, as well as in the others dis-
cussed in this section, we introduce this correc-
tion in the diagonal elements of the Hamiltonian

matrix, and this leads to three advantages over
doing a simple addition of the correlation correc-
tion to the conduction-state eigenvalue. The first
advantage is that, because the actual eigenstate
has different PW's mixed together and the corre-
lation for each of them is different, this is a sim-
ple way to incorporate its effect. The other bene-
fit of this procedure is that the hybridization of
various basis states gets properly readjusted be-
cause of the changed energy values corresponding
to these states, which in perturbation theory means
correcting the energy denominator for self-energy-
like effects. Also, since overlap of 3d-like elec-
trons from neighboring atoms is simulated through
their mixing with plane waves, the correlation en-
ergy between the plane-wave components of the Sd
states simulates the effect of the interatomic 3d
correlations.

B. Correlation corrections for atomiiClke electrons

The core-electron states in the metal are not
much different from those in the neutral atom and
so we can use the results of the atomic calcula-
tion. As mentioned earlier, results are available
for neutral iron and manganese atoms' '" and we
would like again to extend those for iron, which
is closer to cobalt than is manganese, to apply to
the particular configuration of cobalt that we are
interested in. This requires some simplifying as-
sumptions. First we restrict ourselves to pair
excitation results only. The next assumption is
that the correlation energy between pairs of elec-
trons in a subshell of a given spin is independent
of the n~, and n~, , of the electronic states, which
appears to be a reasonable approximation from
pair correlation studies in icon" and manganese
atoms" y.nd ferric ion." The last assumption is
that this pair correlation energy for a given pair
does not change appreciably in going from iron
to cobalt. "

To illustrate theprocedure we have used' for ob-
taining the core correlation energies c'„„that enter
the diagonal components of the submatrix of the
Hamiltonian over the core and truncated 3d-basis
sets, we shall consider a specific example, name-
ly, for an electron in a Sp state. In this case, one
has to combine the correlation energies of an elec-
tron in one of these 3p states with (a) the electrons
in all the other core states, (b} the electrons in
the five other 3p states, and finally (c} electrons
in the 3d and freelike states. For purposes of
studying their correlation with core electrons, the
freelike electrons can be regarded as 4s elec-
trons. The process of obtaining E», then consists
essentially of two steps. The first is to obtain the
pair correlation energies for individual pairs
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( ' tree 'ffreer 3frr4s ' free 3frr4s ' (3.2)

In this equation, N, , N, „,, N, ~, and N,„corre-
spond to the numbers of freelike and 3d-like elec-
trons in the metal with spins in majority and min-
ority directions. These numbers change at each
iteration and are determined initially by the
3d"4s" configuration tha, t was stated earlier.
At any intermediate cycle of iteration, we can
approximately find the number of freelike and Sd-
like electrons by examining the coefficients in the
band electron eigenvectors in Eq. (2.14). If in an
eigenvector, the sum of the squares of the 3d
basis function components is greater than the sum
of the squares of the PW components then we can
count the eigenstate as a Sd state and if the re-
verse is true, the state can be counted as a free-
like state. As examples of some of the pair cor-
relation parameters in Eq. (3.2), one can quote

E d"„= -'(0.16344)Ry,

c;"„=+ '(0.067 02)Ry,
(3.3)

obtained from Sp-Ss shell correlation energies
given for.iron. For the parallel spin pairs, the
pair correlation energies are c3p 3 + c3p 3 while
for antiparallel spin pa, irs, the pair correlation
energies are c3p 3 The first term on the right-
hand side in Eq. (3.2) represents the net correla-
tion energy of a Sp electron arising from a sum
over all pairs that the former can interact with,
from within the 1s'2s'2p' shell, with

c, = ——'(0.200)Ry (3.4)

for all such pairs. The number —' in Eq. (3.4)
160arises from the pairs between the 16 electrons in

the Ss'Sp'Sd'4s' set of shells and ten electrons in
the 1s'2s'2p' set of shells of iron, since only the
total of the correlation energy between these two
sets of shells is available. " For the case of 3p
electrons with spin in the minority-spin direction
(hereafter referred to as down and the majority-
spin direction as up), the correlation energy Csdf

is obtained from Eq. (3.2) by interchanging the
numbers of spin-up states, on the right side, with
corresponding numbers of spin-down states.

from correlation energies between shells in the
iron atom. The second is to sum these pair cor-
relation energies over all the pairs interacting
with a single Sp electron in the cobalt metal con-
figuration. Proceeding in this manner, one gets
Eq. (3.2) for e', df for a 3p electron with spin paral
lel to the majority-spin direction.

&'~ =10~.-+2@3/ 3 + 'c3p 3 +563/ 3p+2c3p 3p

3tf 3d) 3frr 3d 3d 3frr 3d
dir $ gex

The correlation correction to the diagonal ma-
trix elements of the Hamiltonian for a,ll the other
localized states 1s through 3d can be obtained in
the same manner a.s for the 3p state.

For the correlation parameters e~, &
and c~,&,

referring to the conduction-electron states, one
can obtain a similar expression as for the case of
the 3p state. However, this expression will in-
volve 4s-4s pair correlation energy which, in the
case of metal is more appropriately represented
by the pair correlation energy between plane-wave
states, as discussed earlier in this section. Table
I lists all the correlation parameters e„'„used in
our calculations on the metal with two exceptions.
The PW-PW pair correlation energy contribution
to the conduction states which can be derived from
Table II have to be added to the c'„, parameter
to obtain the appropriate correlation energy pa-
rameter. The 3d correlation parameters c',~ do
not include the intraband correlation effect which
has no counterpart in the atom but is rather im-
portant for the solid. This correlation energy
shall be considered next.

C. Intraband correlation for 3d-like electrons

In the metal, pair excitations completely within
the 3d band are allowed and they give rise to
additional correlation energy if the Sd band is
partially filled. These pair excitations cannot be
ruled out by angular momentum conservation rules
because the angular momentum is no longer a good
quantum number, the eigenvectors now involving
mixtures of various orbitals with different m J

components. Since the Sdf band is completely
filled, we do not have any pair excitations in which
both the initial and final pair states are within the
Sdf band. For the Sdf'band, we do have some
empty states available (about 3.44 states out of
5 states per atoxn are filled, for the starting
assumption that the spin magnetization is due to
3d electrons only) which lead to additional correla-
tion. This effect will be treated here through the
Hubbard" formulation for correlation energies in
narrow bands, the adaptation of which to our pres-
ent work follows the same lines as in earlier work
on iron. ' According to this formulation, the cor-
relation correction to the diagonal matrix ele-
ments for the 3d tight-binding states is given by

(3.6)

(3 6)

where

~C4&
eff

f (1 If 1 n)2 1 [
1 (~t +~f )] y ~)l/2

(3.7)



5078 C. M. SINGAL AND T. P. DAS 16

V, being the aVerage Coulomb interaction integral
between two different electrons in the 3d shell for
the atomic configuration closest to the metal. and
~ is the total width of the 3d bands. The behavior
of ~3„& and e3$) in the limits may be seen by noting
that for ~-0, we get V,ff 0 and e3„~, @3~& in Eqs.
(3.5) and (3.6) approach their maximum value. If
6-~, then V,ff becomes equal to V„and Eqs.
(3.5) and (3.6) give zero correlation energy. The
f,irst limit for ~ = 0 'gives the difference in the, en-
ergy per 3d electron between a fully localized
limit for the 3d electron and a fully delocalized or
itinerant electron, except for a small correction
due to the exchange interaction between the 3d
electrons as well. The limit of e'„ in Eq. (3.6)
for g =0 represents the maximum correlation en-
ergy possible' "from intraband correlation, be-
cause in addition to the energy of a fully delocal-
ized Bloch electron it gives essentially the ener-
gy of an atomiclike 3d electron which is what the
band electron approximates to for a band of zero
width. The lower limit of e', ~ in Eq. (3.6)
for g =~ gives zero intraband correlation en-
ergy because in this case, the energy of the 3d
electron is that for a fully itinerant Bloch electron
and the energy difference between the localized
atomic 3d electron and the band electron has the
largest possible value.
. In our present work on cobalt, the majority band

/

is completely full, ' so that —', N„& -1=0. The
minority band is not filled and is the only one for
which intraband correlation effects are to be con-
sidered. The total width g of the minority 3d band
(not just the width of the occupied part of the band)
can be estimated from the density of states plots.
The value of V, using Il,„orbitals is 1.893 Ry. To
estimate V, for the band 3d states we proceed as
follows. The Coulomb interaction between two
3d electrons on one atom would be small if the 3d
wave functions are very much spread outwards
and will be large if they are closely packed. We
estimate the value of V, by calculating the frac-
tional amount of the localized component, corre-
sponding to II,„, per atom, in the crystal as

x =~P3g~p ~ 3gypgp/N3g (3.8)

and then using

U, = 1.893 [—', (1 + 2x)] . (3.9)

The complete correlation energy for a 3d down
spin state is the sum of the atomiclike correlation
energy, discussed in Sec. IIIB for the 3d -state and
the band correlation energy given in Eq. (3.6).

IV. SELF-CONSISTENCY

The importance of the requirement of self-con-
sistency in the band calculation has already been
discussed in Sec. II. The calculation is started

I

with the assumed electron distribution described
in Sec. II, namely, 5.00 3d) elections and 3.44
3df electrons and 0.28 electrons in OPW states
of each spin per atom. The core states were all
assumed to be occupied. The wave functions for
all the atomic orbitals were obtained from a self-
consistent Hartree-Fock calculation' for the
cobalt atom in the 3d' 3d' 4so'5 4so'5~(E) configu-
rations. Using these number s and following the
steps indicated in Sec. II, the density matrices
Pnlmp, n' l'm'p', g & P gamp, K ka were evaluated. Using
these density matrices, the Coulomb and exchange
interaction matrix elements were computed as de-
scribed in Sec. II to get the Hamiltonian matrix.
The & matrix was of order 51 because of 28 tight-
binding functions and 23 plane-waves. The corre-
lation corrections were added to the diagonal ele-
ments of the p matrix according to the steps in
Sec. III. For the estimation of these correlation
corrections, the populations in the truncated 3d
states are needed. These populations were evalu-
ated for the first cycle from the initial choice of
density matrices at the various points in ~~th BZ,
discussed in Sec. II and are given by total trun-
cated 3d part with spin up,

g P~„~ „~=4.540 per atom,

and total truncated 3d part with spin down, (4, 1)

g P~„~ „~=3.124' per atom.
mp

The density matrices used in Eq. (4.1) were de-
termined by the type of eigenfunctions chosen for
the electronic states. Also needed for the Hubbard
correlation is the bandwidth for the down spin
which was chosen to be 0.8 Ry for the first cycle.
This bandwidth was chosen, very roughly, , by
looking at the energy levels at a few points before
incorporating the Hubbard correlation correction.
The other correlation energy contributions involv-
ing the core electrons and the conduction electrons
were incorporated using the procedures outlined
in Sec. III. The pair-correlation effects involving
the core electrons did not change significantly on
iteration. But the pair-correlation energy between
the freelike electrons was dependent on the density
matrix at each iter'ation and was obtained by ad-
justing the ~, at each iteration.

From the diagonalization of the & and S ma-
trices, the eigenvalues and eigenvectors were ob-
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TABLE III. Comparison of the 3d-3d and PW-PW
density matrices in the zeroth and the first cycles. Only
the diagonal sums are considered.

Elements

g Pt

P()

0.4881

Pi

1.2446

Difference(P& —Po)

+ 0.7565

K

0.4772 1.2958 + 0.8486

mp

pt
3dmP, 3dmP

4.5399 3.5600 —0.9799

3dmP, 3dmP
mp

3.1240 2.0208 -1.1032

tained at the 155 points in —,4th of the Brillouin
zone. By summing the number of states below
an assumed Fermi level c~, considering these
points, and adjusting c~ to get the total number of
band electron states per atom to equal nine (18 in
core and S in band), the total number of band elec-
trons with majority spin was found to be 5.313 per
atom and the number of electrons with minority
spin was 3.688 per atom, giving a spin magneti-
zation of 1.625', B per atom. The experimental
value of the magnetizatlon2. 12 due to spin ls 1.56'.B
per atom. So our value of the spin magnetization,
at the end of the first cycle, was quite close to
the experimental value.

An additional and important dimension of self-
consistency requires the eigenfunctions, which
determine the Hamiltonian matrix for the next
iteration, to exhibit similar self-consistency.
From the occupied eigenstates, the density ma-
trices are calculated at the same 155 points in
the BZ. For a self-consistent calculation the new
density matrices, at the output of any cycle should
almost be the same as the ones used in the cal-
culation of the Coulomb and exchange-matrix ele-
ments at the beginning of that cycle. To test this
for the first cycle, we compare some represen-
tative numbers from each set. The input and out-
put density matrices for the first cycle are denoted
by &p and &„respectively. The comparison is
given in Table III and indicates that the consistency
in the density matrix does need improvement. For
this purpose, iterations have to be carried out in
the band calculation, but rather than use the out-
put density matrices from this cycle as the input
for the next, we proceed as follows. We take the
difference of P, and p'p and then calculate the
electronic Coulomb and exchange interaction ma-
trices from the difference density matrices (P,
-Po). The calculation of these Coulomb and ex-

change matrices is done in exactly the same way
as earlier except that one does not have to incor-
porate the nuclear potential matrix elements with
the electronic Coulomb potential matrix elements
in this case since the nuclear potential matrix
does not change in any cycle. One approximation
that we make in the course of this iteration pro-
cedure is that we hold constant all the two-
center parts of the matrix elements. The reason
is that these two-center parts are only of the
multipole type (since all overlap type terms, as
explained earlier, have already been included
through the mixing of tight-binding and plane-wave
basis states) and do not change significantly with
the changes in the density matrices. If we call
the Hamiltonian matrices from the density ma-
trices Pp as rip, and similarly the Hamiltonian
matrices from the density matrices Qy as
then the Hamiltonian matrices obtained from (P,
-P, ) are actually (If, -&,). If we used a. param-
eter q for characterizing a combination of P, and

P, matrices to obtain the density matrices Pp
+ q(P, -P, ), then the corresponding Hamiltonian
matrices are H, + 7I(H, -H, ). The choice of q is
arbitrary and is made to obtain fastest conver-
gence. Thus, we calculate the band structure using
H, +q(ff, -ff, ) for various q and obtain the eigen-
values, eigenvectors, Fermi level, and then the
density matrices from this second cycle, which
we call P, (q). If P,(q) is close enough to P, +q(P,
-P, ), we have near self-consistency. In an in-
vestigative calculation to decide on the choice of

q, the bandwidth needed for calculation of intra-
band (Hubbard type) correlation' "for 3d electrons
was taken as 0.50 By for each of up and down spins.
Also, we chose N, „=5.0, N,'„=3.50, Nq„, +Nf„,=0.50,
the other parameters needed far correlation correc-
tions in Eqs. (3.1), (3.5), and (3.8) were deter-
mined by the choice of q. Also, for this test cal-
culation, a fewer set of 27 points in —,4th of the BZ
were used instead of the 155 points used in obtain-
ing detailed results on the energy bands and wave
functions. The test was carried out for q =0.4,
0.45, 0.50, 0.55, 0.60 and the density matrices
were evaluated in each case. Graphs of the mean
square deviations, (P,(q) —[P, + 7I (P, -P, ) jj'
evaluated from these density matrices, were
plotted versus q. We see from Fig. 5 that the
value of g producing the least deviation is about
0.45. From these calculations, using g =0.45 and
27 points in —,4th BZ, we find that the bandwidths
for both the majority and minority bands are about
0.36 Ry for each spin. Following this analysis,
we calculated the detailed band structure for all
the 155 points in —,'4th BZ using the value of q =0.45
and the following values of the other parameters
for the purpose of correlation corrections:
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FIG. 5. Root-mean-square deviations of the density
matrices vs the g parameter.

g =0.34 for spin down;

(4.2)
Q P»» =1.658, Q P3d~d gdm~ =2.628,
K, o

PPsd mP sdmP
mp

From this band structure, which we call the
second cycle band structure, we have the Fermi
energy equal to -0.3345 Ry and it gives a spin
magnetic moment of 1.582p, ~ per atom in satis-
factory agreement with the experimental value.
Exact agreement was achieved with the experi-
mental value of 1.560'~ for the magnetic moment

by choosing slightly different e~ and &~, namely,
~~~ = - 0.340 Ry and e~ = —0.336 Ry. The difference
between these Fermi energies for different spin
states is too small to attach much physical sig-
nificance to it. However, the fact that this small
difference in e~ and e~ is needed is an indication
of the slight uncertainty in the Hubbard correlation
employed due to the impreciseness of the band-
width L as a parameter.

To study the self-consistency of this cycle, we
compare in Table IV, again, some sample density
matrix elements form Po+ q(P, -Po) with P2(q).
The results in this table show that in the second
cycle itself, with the right choice of q, we have
achieved quite good self-consistency. If further
improvement is needed, one could calculate a new
set of difference density matrices P,(q) —[P,
+q(P, P, )], t—he potential matrix elements as-
sociated with them, and add q' times those po-
tential matrices to H, +q(If, -fI, ), where q' could
in principle be different from g and chosen in the
same fashion as g was. However, we felt that the
consistency obtained here was satisfactory enough
for our present purposes and we did not perform
any additional cycles of iteration. We shall be
using the results from this second cycle to study
a variety of properties of ferromagnetic cobalt.

From @ density-of-states plot for spin-up and
down states, (Figs. 6 and f) we see that the width

of the spin-up 3d-like band is 0.34 Ry and the

width of the 3d-like spin-down band is also 0.34
Ry. Also we see that

Q P3d 3d

K
3d mP

To find the number of 3d-like electrons and free-
like electrons we take the sum of the squares of
the components of an eigenvector, separately for
3d and PW parts. If the 3d part in. an eigenvector
is more than the PW part, we call it a -like

TABLE IV. Comparison of the input and output 3d-3d and PW-PW density matrices in the
second cycle only the diagonal sums being considered.

Elements

Z!g
K

Po + 0 45(Pg Po)

0.8285

P2(0.45)

0.7950

Difference

-0.0335

K

Pt
3dm p, 3dmP

0.8291

4.0990

0.8781

4.1138

+ 0.0490

+ 0.0148

3dmP, 3dmP
2.6280 2.5507 -0.0769
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electron state, and otherwise we label it as a
freelike electron state. Proceeding this way we
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FIG. 6. Electron density of states for majority- and
minority-band states. Fermi energy is -0.340 Hy.

apart from this lowering the requirement of the
orthogonalization of these levels to the lower
ones tries to push them upwards, the two op-
posite moments leading to a stabilized energy.
The convergence was found to be better at the
1 point than what it is at the M point. This is
also expected because the higher length (k +k)
vectors are somewhat more closely bunched at
points closer to the boundary of the Brillouin
zone than that at the F point and so a somewhat
larger basis set is required in the former case.

The band structures in Figs. 8 and 9 for the
majority- and minority-spin electrons are much
more complicated than for ferromagnetic iron. '
This is because of the hexagonal close-packed
structure for cobalt, having two atoms per unit
cell, while iron has a body-centered-cubic struc-
ture with only one atom per unit cell. The total
overall width of the 3d bands is the same, about
0.34 Ry, for the majority and minority spins.
On the average, the minority 3d bands are shifted
upwards from the majority 3d bands by 0.29 Ry,
and the splitting between the mean of the occupied
parts of the majority and minority 3d bands is
0.23 Ry. The splitting between the freelike ma-

~',„=5.033, g,', = 3.490,

~,'„,= 0.248, ~,' = 0.230.
(4.3)

40—
Combined electron density of states

On comparing these with the parameters in Eq.
(4.2) which were used for the evaluation of corre-
lation corrections, we find that the calculations
are quite self-consistent in this respect also. 32-

V. BAND STRUCTURE AND ASSOCIATED PROPERTIES

A. Band structure

The shapes of the bands along the various sym-
metry directions from the self-consistent cal-
culation with g =0.45 are shown in Figs. 8 and 9
for the majority and minority electrons, respect-
ively. The convergence of the energy values was
studied for some special points. Tables V and
VI give the eigenvalues for point M for both the
spin states. The eigenvalues are listed for the
lowest ten 3d-like levels and four freelike levels.
The convergence was studied by taking 4, 8, 12,
20, and 23 plane waves in the basis set, along
with the 28 tight-binding functions. %'e note that
the overall convergence is good to nearly 0.01
Ry for all the band states. It is also clear from
the tables that within the 3d band, for a given
k point and spin direction, the uppermost levels
converge faster than the lowest ones. This is
because any addition of plane waves tries to lower
the 3d levels further. For the uppermost levels,

28
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-O.R -0.6 -OA -0.2 0.0
Energy{Ry)

FIG. 7. Combined electron density of states for both
the majority- and minority-band states. Fermi energy
is -0.340 Hy.
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FIG. 8. Majority-spin
band structure.
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TABLE V. Eigenvalue convergence test (majority spin) for the size of the basis set for
k=(0.66477, 0.38381~ 0.00000) a

Band index Basis size 32 40 44 48 51

14
13
12
11
10

9
8
7
6
5
4
3
2
1

0.6974
0.4103
0.0440

-0.1739
-0.5416
-0.5480
-0.5514
—0.5583
-0.5639
-0.5803
-0.6043
-0.6739
-0.7542
-0.7543

0.6648
0.4103
0.0411

—0.1755
—0.5416
-0.5484
—0.5525
-0.5639
-0.5668
—0.5803
—0.6056
-0.7543
-0.7570
-0.8176

0.4841
0.3720
0.0240

-0 ~ 1843
-0.5416
-0.5490
-0.5526
-0.5730
-0.5803
-0 ~ 6084
-0.6347
-0.7568
—0.7780
-0.8417

0.4337
0.3707
0.0226

-0.1853
-0.5419
-0.5509
-0.5535
-0.5814
-0.6036
-0.6353
-0.6471
-0.7709
-0.7825
-0.8419

0.4795
0.3210
0.0043

-0.1970
-0.5419
-0.5512
—0.5546
-0.6048
—0.6162
—0.6633
—0.7015
-0.8083
-0.8226
-G.8466

0.4787
0.3187

-0.0047
-0.2000
-0.5422
—0.5523
—0.5571
-0.6054
—0.6169
-0 ~ 6662
-0.7015
-0.8145
-0.8226
-0.8467

The number of plane waves was varied from a minimum of four to 23 ~ In all cases 28 tight-
binding functions (1s to 3d) are included. The lowest 14 eigenvalues for majority-spin states
are listed for the basis size indicated on top of the column. Eigenvalues are in units of one
rydberg.



16 ELECTRONIC STRUCTURE OF FERROMAGNETIC. . . I. . . 5083

TABLE VI. Eigenvalue convergence test (minority spin) for the size of the basis set for
k = (0.664 77, 0.383 81, 0.000 00) ao .

Band index Basis size 32 36 40 44 48

14
13
12
11
10

9
8
7
6
5
4
3
2
1

0.7296
0.4223
0.1040

-0.1032
-0.2779
-0.2930
-0.2934
-0.2967
-0.2987
-0.3043
-0.3679
-0.4212
-0.4785
-0.5197

0.675 30
0.422 28
0.1014

-0.1037
-0.2779
-0.2930
-0.2955
-0.2993
-0.3037
-0.3042
-0.3833
-0.4785
-0.5209
-0.5330

0.4975
0.3989
0.0825

-0.1164
-0.2779
-0.2961
-0.2994
-0.3030
-0.3043
-0.3566
-0.3990
-0.4994
-0.5211
-0.5552

0.4966
0.3977
0.0808

-0.1179
-0.2791
-0.2995
-0.3044
-0.3119
-0.3516
-0.3581
-0.4011
-0.5003
-0.5343
-0.5554

0.4743
0.3495
0.0556

-0.1272
-0.2791
-0.3000
-0.3089
-0.3375
-0.3929
-0.4002
-0.4028
-0.5440
-0.5552
-0 ~ 561

0.4722
0.3459
0.0392

-0.1302
-0.2810
-0.3006
-0.3216
-0.3371
-0.3927
-0.4074
-0.4036
-0.5446
-0.5569
—0.5706

The number of plane waves was varied from a minimum of four to 23. In all cases 28 tight-
binding functions (1s to 3d) are included. The lowest 14 eigenvalues for minority-spin states
are listed for the basis size indicated on top of the column. Eigenvalues are in units of one
rydberg.

jority and minority bands is much smaller, the
minority bands being shifted by only 0.02 to 0.03
Ry upwards from the majority bands. This situa-
tion is in contrast to the equal rigid band shift
of 0.126 Ry used by Wakoh and Yamashita' for
both 3d-like and freelike bands to obtain the
majority and minority spin bands. This assump-
tion may also be seen to be unjustified in view of
the fact that the average exchange integral be-
tween two 3d orbitals is 0.46 Ry while that be-
tween a 3d-like orbital and a 4s orbital is 0.066
Ry. Hence the exchange splittings for 3d-like
bands and freelike bands are expected to be quite
different as is the case in the present calculation.
This use of equal rigid band shift for 3d-like and

freelike states is perhaps the reason why para-

magnetic band calculations, ' using rigid band
energy shift usually tend to predict smaller split-
tings between majority and minority bands than
that given by ferromagnetic band calculations. '
Further analysis shows that the splitting between
various symmetry types of 3d bands are also
different for the two spins. This comes about
because of the unequal amounts of the interatomic
exchange interaction and overlap effects among
3deigenstates of the majority spins, in compari-
son to those among the 3d eigenstates of minority
spins. In Table VII we have listed the various
symmetry types and eigenvalues at the I' point
for different spins and the two different combina-
tions involving the sum (A+ B) and the difference
(A —B) of 3d orbitals on the two atoms A and B

TABLE VII. Eigenvalues and the symmetry types of the states at the I" point.

Majority-spin energy Minority- spin energy Eigenf unction Degeneracy

-0.3854
-0.6241
-0.6852
-0.7127
-0.7416
-0.7412
-0.8891
-0.9935

-0.3655
-0.3322
-0.3675
—0.4035
-0.4152
-0.4378
-0.5998
-0.9692

cos(27rz /c)
(xz, yz) antibonding
(xz, yz) bonding
(x2-y2, xy) bonding
(3z —r ) bonding
(x -y, xy) antibonding
(3z —r ) antibonding
constant

The states arising from the 3d atomic orbitals are indicated by their angular components.
The eigenfunction with asymmetric contribution (Pz+f~) from the two basis atoms in the unit
cell is referred to as bonding, and the antisymmetric combination (PA-$~) is referred to as
antibonding. Energy unit is one rydberg.
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TABLE VIII. Splitting among various 3d states at I'
point. ~

Symmetry type
Majority spin
A+B A —B

Minority spin
A+B A —B

C(»~'-y') —C(3z'-r')
(xz yz~ (3z m )

C(xz, yz) F (xy, x2-y2)

0.029 0.138
0.056 0.265
0.027 0.127

0.012 0.162
0.048 0.268
0.036 0.106

Energy unit is one rydberg. The symmetric combina-
tion from the two atoms in the unit cell is referred to as
A+ B, and the antisymmetric combination is referred to
as A —B.

of the unit cell. Table VIII shows some of the
3d-band splittings obtained from Table VII. On
the basis of a rigid band model24 one would have
expected for example, the splitting for the A+B
combination for the majority-spin states to be the
same as for the A+B combinations for the minor-
ity-spin states (second and fourth columns of
Table VIII), but there seems to be definite de-
parture from this behavior. A similar departure
is indicated by the splitting of 0.148 and of 0.185
Ry between the states of (Sz' —r')„+ (Sz' —r')z
symmetry and (3z' —r')„- (3z' —r') szymmetry,
for the majority and minority spin cases, re-
spectively. Thus, the actual ferromagnetic band
structure departs very significantly in several
respects from that obtained by a rigid band shift
of paramagnetic bands.

B. Magnetization

As pointed out earlier, for the single Fermi
energy (-0.3365 Ry) required to accommodate all
the electrons, we get the spin magnetization as
1.582@.~ per atom. This clearly shows that the
present theory is able to explain very well, in a
self-consistent manner, the experimental value
of 1.56@,~ per atom. Also, as mentioned in Sec.
IV, a slight adjustment of the Fermi energies
for different spins, namely, &F and &~ separately
as —0.340 and —0.336 Ry gives the experimental
spin magnetization 1.56@.~ per atom. To study
the composition of this magnetization, we note
that in the metal, the 3d-like and freelike popula-
tions for spin-up and down states are given by
Eq. (4.3)

This breakdown of spin population indicates that
the spin magnetization 1.56'.~ per atom is com-
posed of a contribution from 3d-like electrons
of 1.543 @.~, . and 0.017',~ from the freelike elec-
trons. We expect the freelike electrons in the
metal to be only very feebly coupled, ferromag-
netically, to the 3d-like electrons. Actually this
coupling is a very delicate balance of two opposing

types of interactions, as wiQ now be discussed.
From the value of the density matrices, we see
that the amount of hybridization of minority 3d
electrons (of II3„ type) with plane waves is much
stronger than that for the case of the majority
3d electrons. For an electron in a plane-wave
state with spin parallel to the majority electrons,
the exchange interaction arises mainly from about
4.1 localized (truncated) 3d electrons (II„type)
and also partially from other hybrid and itinerant
parts of the majority 3d-like electrons. For the
plane-wave state with spin parallel to minority spin
electrons, the exchange comes from 2.63 local-
ized 3d electrons and from other hybrid and itiner-
ant parts of the minority 3d-like electrons. Hence,
the localized parts of the 3d electrons tend to
give stronger exchange for a spin-up plane wave.
The net hybrid and itinerant parts, on the other
hand, tend to give a stronger exchange for a spin-
down plane wave. .The latter interaction is sig-
nificant since the exchange interaction of a plane
wave with other plane-wave and hybrid components
is much stronger than that with a localized 3d
state. So the total exchange energy for a spin-
up plane wave is not expected to be substan-
tially different than that for a spin-down plane
wave which probably explains the feeble positive
polarization of the freelike electrons. At the
M point, for example, the magnitude of the ex-
change energy for a spin-up plane wave is only
0.092 Ry more than that for spin-down plane
wave. For the actual freelike electron whose
wave function has mainly OPW. character, the
difference in exchange energies between spin-up
and spin-down states is expected to be further
reduced from the plane-wave value owing to the
influence of the orthogonalization to core states.

Since most of the magnetic moment arises from
3d-like electrons, we would like to discuss what
our results indicate about the source of the mo-
ment on each atom and how the moments on each
atom get aligned. We consider as before the
II,~(r) parts of the 3d-like band wave functions
to represent localized electrons on each site.
The exchange energy of one of these localized
electrons on atom A with the other localized elec-
trons on A can be referred to as intra-atomic
exchange. The rest of the exchange energy of the
localized 11„(r)electron can then be considered
to arise out of interatomic exchange. To esti-
mate the latter, one can proceed as follows: The
angular average exchange energy for a 113~(r)
state (local Sd electron) was found from the den-
sity matrix Ho+ q(H, Ho) in the second c—ycle to
be larger in magnitude for the majority spin by
0.734 Ry at the I' point and by 0.710 Ry at the
M point, as compared to the exchange energy
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(5.1)

The resulting spin-wave spectrum4' for hcp struc-
ture is given by:

Rco = (8D/c2)(1 —cos 2qc) (5.2)

for a minority-spin electron. 'The average ex-
change energy difference for the two spin states
from all points in the BZ, for the localized 3d
electron, is estimated to be 0.712 Ry. The aver-
age exchange interaction of any one 113~(r) elec-
tron with any other average II,„(r) (meaning that
the average is taken over all the five II,~ states)
electron is —0.461 Ry. From the values of the
density matrices we find an excess of II„type
electrons of 1.471 for majority spin over the
minority spin giving an excess exchange energy
of 0.679 Ry more for the localized spin-up elec-
tron than spin down. This value is very close
to the net exchange energy difference of 0.712 Ry
given above indicating that most of the local mo-
ment is stabilized by the exchange energy from
its own site. The difference of 0.033 Ry between
these two values can then be attributed to inter-
atomic exchange and arises from the exchange of
the localized function II3~ on A. and the itinerant
parts of the 3d electrons on other sites, primarily
the nearest-neighbor atoms, these itinerant parts
being constituted by the plane waves admixed
to the tight-binding functions. This picture of
magnetization formation by a strong intra-atomic
exchange and alignment by interatomic exchange
is similar to the conclusion drawn from earlier
work in iron metal' and by Stearns" on the origin
of ferromagnetism in tr'ansition metals. Although
this is admittedly not a rigorous picture, we shall
nevertheless, use here this interatomic exchange
in the Heisenberg model" and make estimates
of the spin-wave spectrum and the critical tem-
perature. A more rigorous calculation of the
critical temperature, in cobalt metal, using the
vertex part procedure" appropriate for the itiner-
ant picture will be reported in a separate article. ~o

For the Heisenberg model we need an estimate
of the nearest-neighbor exchange integral J. As-
suming that the localized part of the spin arises
from 1.471 unpaired electrons obtained from the
difference of the localized spin populations in the
last two rows of the second column in Table IV,
one has a net spin of 8=0.736 at each atomic site.
Considering that there are 12 nearest neighbors
at almost equal distances since c/a is close to
ideal, the exchange between pairs of nearest
neighbors per localized 3d electron is J=0.0330j
1.471 x 12 Ry = 0.001 87 Ry, which occurs in the
Hamiltonian in the Heisenberg model:

for spin waves with wave vectors in z direction,
c being the usual real space lattice constant in
the z direction. The value of D is given by
1.15JSc'. Using our estimates of J and S we get
D= 462 meV A' in good agreement with the ex-
perimental value4' of D=437 +20 meV A'. This
agreement indicates that at least as far as spin
waves are concerned, the picture of 3d electrons
as essentially localized, with the itinerant parts
helping to provide the interatomic exchanges is
essentially correct. The ratio between the 1.471
local unpaired 3d electrons per atomic site and

the net 1.543 unpaired 3d band electrons per site
indicates 95 /o localization of the magnetization
with 5 /o itinerancy. Also, using the theory of
Rushbrooke and Wood,"we can estimate the cri-
tical temperature T, based on this localized spin
interatomic exchange model. For an fcc lattice,
which is very close to the hcp lattice, for the
ideal c/a ratio, they find

8, = (z —I)(0.5VSX —0.0651), (5.3)

where e, =ksT, /8; X=8(8+1), and s is the co-
ordination number, which is 12 for both fcc and

hcp structures. Using J=0.00187 Ry and 8
=0.736, we obtain T, =2184 Y.. The experimental
value" is 1395 'K. The difference in the two
values of T, is reasonable considering the ap-
proximate nature of the Heisenberg model and
the estimation of J in the present case.

It is worth commenting on the role played by
Hubbard correlation in determining the magnetic
moment. The role of Hubbard correlation' is
mainly to reduce the splitting between the majority
and minority 3d bands. Without it, the splitting
would probably have been about 0.6 Ry rather
than the present value of 0.29 Ry, and would have
given a much larger magnetic moment (about
2.5ps per atom). This result reconfirrns the
belief that in HF theory it is easier to obtain a
ferromagnetic state than in a theory incorporating
correlation, which shields the exchange. The
Hartree-Fock limit is the wide band limit as can
be seen from Eq. (3.5), by putting L- ~. If we
put L-0 in Eq. (3.10), we get the most correlated
3d bands (the atomic limit) and the magnetization
reduces to about 1.0p,.~ in the first cycle of self-
consistency. The atomic limit is attained when
there is no interatomic overlap, because, then
the bandwidth can go to zero. In a thought ex-
periment, we see that if the calculation is done
for atomic separations larger than the actual,
the bandwidth would be smaller, the Hubbard cor-
relation stronger and so, starting the calculation
with 1.56', ~ per atom, the magnetization at the
end of the first cycle will be smaller and suc-
cessively decrease at each cycle settling at a
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small value, which will tend to zero at infinite
separation. This clearly shows the role of the
itinerancy or the width of the 3d band in getting
the self-consistent value of the magnetization.
In summary then, this analysis of the spin-wave
spectrum, Curie temperature, and the role of
Hubbard correlation indicates that at low tem-
peratures, the actual state of the system can be
described as intermediate between the localized
and itinerant pictures, being closer to the

first, and it is very important to have the proper
amount of correlation effects" ' on the electronic
energies and wave functions to get the right value
of the average magnetic moment per atom and

its distribution in the metal.

C. Fermi-surface cross sections

From the intersections of the Fermi level with
the energy bands in various directions we have
drawn the majority-spin and minority-spin Fermi
surface cross sections in some of the important
planes. These are shown in Figs. 10 and 11. An

estimate of the cross sections in these planes,

FIG. 11. Minority-spin Fermi-surface cross sections.
Numbers represent the number of occupied bands in
various parts of the Brillouin zone. Scale is 1 mm
= 0.0352.

FIG. 10. Majority-spin Fermi-surface cross sections.
Numbers represent the number of occupied bands in var-
ious parts of the Brillouin zone. Scale is 1 mm

= 0.0352.

TABLE IX. Fermi-surface cross sections.

Plane Nature Area (theor. ) Area (expt. )

I MK
I'MK
I'ALM
I'AHK
I'MK
rMK
I'MK
I'MK
ALH
ALH
ALH
I'ALM
I'ALM
rALM
rALM
rALM
rALM
rALM
rALM
MKHL
MKHL
MKHL
MKHL
I'AHK
1AHK
I'AHK
I'AHK
I'AHK
I'AHK

majority
majority
majority
majority
minority
minority
minority
minority
minority
minority
minority
minority
minority
minority
minority

, minority
minority
minority
minority
minority
minority
minority
minority
minority
minority'
minority
minority
minority
minority

elect.
elect.
elect.
elect.
elect.
elect.
elect.
elect.
elect.
hole
hole
elect.
elect.
elect.
elect.
elect.
hole
hole
hole
hole
hole
hole
elect.
elect.
elect.
elect.
elect.
elect.
hole

0.014+0.004
1.096 + 0.01
1.156+O. O1

1.135+ 0.01
0.314 + 0.01
0.358 + 0.01

- 0.512 + 0.01
0.006 + 0.003
0.044 + 0.005
0.013 + 0.005
0.066 + 0.01
0.012 + 0.004
0 ~ 299 + 0.01
0.328 + 0.01
0.014 + 0.004
0.017+0.004
0.018 + 0.04
0.040+ 0.05
0.215 + 0 ~ 01
0.004+ 0 ~ 002
0.011+ 0.004
0.078 + 0.01
0.265 + 0.01
0.269 + 0.01
0.340+ 0.01
0.012+ 0.004
0.014 + 0.004
0.017+0.004
0.158 + 0.01

0.0095

0.0028
0.0315

0.0059

0.0276

0.0445

0.0035

The units are ao . A graphical representation of
these cross sections is given in Fig. 10 for spin-up
Fermi surface and in Fig. 11 for spin-down Fermi sur-
face. The experimental values are from J. R. Anderson
et al. , Ref. 7.

obtained from these figures, is given in Table
IX. Experimental values are available for the
small cross sections, from de Haas-van Alphen
effect measurements in cobalt by Rosenman and
Batallan, ' and by Anderson, Hudak and Stone.
The minority-spin Fermi surface is very com-
plicated because the Fermi level lies inside the
3d band. The numbers in the Figs. 10 and 11
refer to the total number of band electrons that
are below the Fermi level at the particular point
in the BZ. For majority spin we see just one
Fermi surface which in the extended zone picutre,
extends into the second zone with a large belly
at the IMK plane and a small neck at another
plane parallel to I'MIC at a distance of 2m/c. For
minority spin, we see four electron surfaces
around the 1" point. The comparison between
theory and the experimental values for the small
cross sections is seen to be fairly good from
Table IX.
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D. Work function

Unlike the practice in usual earlier band-struc-
ture calculations, the present work as also the
earlier calculation' on ferromagnetic iron, does
not use an arbitrary zero of energy. The potentials
in this work were always calculated with the po-
tential of free space as the zero of energy. Thus
our value of «~= —0.337 Ry does have physical
importance and should be compared with the nega-
tive of the work function. The experimental val-
ue" of the work function is 0.31+0.015 Ry. Our
value is a little larger in magnitude than the ex-
perimental result. The resolution of the small
difference would require a consideration of col-
lective effects involving the remaining electrons
after the electron is emitted from the metal sur-
face and the role of surface states which could
make the work function for the surface different
from the bulk metal.

E. Electron density of states

For the calculation of the density of states, the
following procedure was miopted. A number of
equally spaced energy levels from —1.2 to 0.00
Ry were chosen and for each of these energies,
the number of states below each was obtained by
a counting procedure in the Brillouin zone ap-
plying appropriate weight factors to the various
sample points. The density of states was obtained
by dividing the number of states in a particular
energy interval by the energy interval. The den-
sity of states obtained in this way for any energy
was averaged over a few energy intervals to re-
move any sharp discontinuities due to the dis-
crete nature of the sample points in the BZ. Fig-
ure 6 shows the density of states for both the spin-
up and down electron states separately and Fig.
7 the combined density of states. The width of
the 3d part of the density of states is about 0.34

Ry for spin-up states and 0.34 Ry for spin-down
states. The exchange splitting between the 3d
bands is seen to be about 0.29 Ry. On the other
hand, Wakoh and Yamashitg. 's calculation' for a
paramagnetic state needed a rigid band splitting
of only 0.126 Ry to explain the right magnetic
moment. Also, the bandwidth in their calculation
is about 0.32 Ry. So, our bandwidth agrees fairly
well with Wakoh and Yamashita's bandwidth. The
exchange splitting obtained in Wakoh and Yama-
shita's calculation is however significantly small-
er, owing to reasons explained earlier in this
section.

The density of states at the Fermi states is
somewhat difficult to obtain accurately, especial-
ly for the minority spins due to the sharp varia-

tions of dn/de at c~ as seen from Fig. 6. The
values we have obtained from our histograms are
1.9 per atom from majority spins and 15 per atom
from minority spins. Thus the electronic con-
tribution to the specific heat, given by

dn~ dn ~

y=(3v'k') ' +
d« d«

is 7.6 x10 ~ cal/mol 'K'. The experimental value~
of y is 11.3 && 10 ' cal/mol 'K'. The difference
between the two values could be partly explained
by the influence of electron-phonon interaction. '

The 3d density of states has a high peak at the
high-energy end of the band and a low value at
the low-energy end. This can be explained phys-
ically by the fact that in a given band, the lower-
energy regions correspond to the states that have
a larger admixture of plane waves in them. When
the mixing of plane waves is weaker, the states
are more atomic like, leading to the high peak
at the high energy end. We may also mention
here that from a quick look at the self-consistent
density matrix sums given in Table IV, it is ob-
vious that the electrons in the minority 3d bands
hybridize more strongly with plane-wave states
than do the electrons in the majority 3d bands.
This is because the density of freelike states in
the region occupied by the minority 3d-band elec-
trons is larger than that in the region of the ma-
jority 3d band. Considering now the total density
of states from majority- and minority-spin elec-
trons, we see that is has a sharp peak at 0.03 Ry
below the Fermi level (e~) and a wide peak at
0.23 Ry below «~. Similar sets of two peaks have
been obtained by Wakoh and Yamashita' and by
Wohlf arth. The latest experimental photoemis-
sion results' show only one asymmetric peak at
0.03 Ry below the Fermi level (ez), in agree-
ment with our first peak. We would like to offer
a possible explanation for the absence of the other
peak in the experimental data. The experimental
data measure a transition from an initial state
to a final ionized state. Energy changes associ-
ated with the relaxation and correlation effects"
in the final 3d hole state, which is fairly local-
ized because the 3d bands are quite narrow, could
move the 0.23 Ry peak towards the first peak
resulting in the appearance of a single broad peak.
Similar readjustments in inner levels following
ionization of inner electrons have been observed
in photoemission spectra. "' This explanation
needs to be explored more quantitatively.

VI. CONCLUSION

We have obtained the self-consistent Hartree-
Fock electronic structure for hcp ferromagnetic
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cobalt. The correlation effects on the energy
level have been systematically included, in a prac-
ticable manner, for all the core 3d-like states and
freelike states, in the approximation of having
electrons correlating in pairs. The success of
the present calculation clearly indicates the feasi-
bility and the usefulness of Hartree-Fock calcula-
tions in metals. This calculation is also the first
one to include the core states along with the band
states in Hartree-Fock band-structure calcula-
tions and the relations of results for these core
states in the metal to pertinent properties of the
metal„will be discussed in subsequent articles.
Further, the treatment of the 3d-band states in
terms of nonoverlapping 3d atomic orbitals and
plane waves has reduced the problem of the eval-
uation of the multicentered overlap integrals to
only one-centered integrals, substantially reducing
the computation time. This has made it possible
for us to carry out some iterations for attaining
self-consistency in the electronic structure.

The effect of the pair correlation on the energy
levels was a lowering of different core and 3d-
like levels by different amounts. For band states,
these energy shifts helped in producing the right
values of the Fermi energy, the spin magnetic
moment per atom, and good agreement in the
Fermi-surface cross section with the ones ob-
tained from experiment. The magnetization in
the metal was found to arise mainly from the
3d-like electrons. The magnetic moment and
associated spin on each site was stabilized by in-
tra-atomic exchange interactions while the align-
ment of spins was produced by the interatomic
overlap and the exchange effects. An approximate
analysis in the Heisenberg approximation of as-
suming localized spins on each site, with no itin-
erancy but still having an interatpmic exchange,
gave fairly good results for the spin-wave spec-
trum and the ferromagnetic critical temperature.
In separate work, ~we shall reportthe evaluation
of the critical temperature based on an itinerant
or band theory of phase transitions.

The present theory indicates two peaks in the

total density of states, one peak near the Fermi
energy coming from the minority-spin states and
the other peak further away from the Fermi energy
arising from the majority-spin states. Experi-
mentally from photoemission measurements, only
one peak near the Fermi energy is observed. A
possible explanation that is suggested here is that
in a ionized state that is localized, correlation
effects among the remaining electrons are differ-
ent" when the emitted 3d electron is from the
majority- or minority-spin state, and, this could
tend to combine the two peaks in the unionized
system into one peak as explained in Sec. V, in the
ionized case.

Finally, we would like to mention again that the
effects of the electron-electron correlation in the
partially filled minority 3d band are quite strong
and their influence on the electronic energy bands
and wave functions have been incorporated through
the bandwidth-dependent Hubbard model. It would
be desirable to attempt to incorporate these cor-
relation effects in a more direct manner similar
to the recent self-consistent perturbation ap-
proach" developed earlier for incorporation of
many-body effects in metals.
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APPENDIX: PROCEDURE FOR EVALUATION OF COULOMB

AND EXCHANGE MATRIX ELEMENTS

The process of simplification of Eqs. (2.34)-
(2.36) for the Coulomb matrix elements and
(2.37)-(2.39) for the exchange matrix elements to
forms suitable for computation is rather compli-
cated. %e shall only outline the basic steps here
and refer the reader elsewhere. "for the complete
expressions.

Thus, consider, as an example, one type of
term, arising only from Eqs. (2.35) and (2.38) con-
sisting of a matrix element in whj. ch all the four
wave functions are tight binding in nature, namely,

(n, l m p k (r );n l m, p k (r )~ (n~l~m3p3k3(r, );n, &,m, p,k, (r,))
12

1 2 In&11 1~1 ~kl 1 ~"2l2~2~2 k2 2 ~ fn3l&et3p3 k 3 1 0'n4l4m4p4, k4 2

with the condition k, +k, =k, +k„ this condition applying to all the six types of terms to be discussed here.
Remembering that our tight-binding functions involve nonoverlapping atomic orbitals, we can express
Eq. (Al) in the form:
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(n, l, m, p, k, (r, };n l m, p k, (r }I In, l m, p,k, (r, );n, l m p k (r )}
12

+2(p, p, ) ''"4 "2" i' P)p(„*, (ri)(t)„( (ri)(p„*, (r, +R,. +p)(!)„, ,(r, +R, +p)].
(A2)

The'terms involving odd numbers of P; factors do not appear- as a consequence of zero interatomic over-
laps. For the evaluation of the one- and two-center integrals in this situation, we use the one-" and two-
center" expansions of 1/&»

and

yl

im 2l+ (AS)

(A4)

where r( and && are the smaller and larger of
x, and &, and in Eq. (AS) (r„0„$)aind (r„&„(p,)
refer to the same coordinate frame. On the other
hand, in Eq. (A4), (r„0„$,) refer to a coordinate
frame at the origin, with respect to which the
position (R/, 0, , (t)/) of the atom j is defined, and

(&, , 0„., Q„) refer to a coordinate frame located
at R& with the coordinate axes parallel to the one
at the origin. The constants 8, , are given by

&i r

(-1)' ™4v
[(21+1}(2l,+1}]+'

(l+l, )!
[(1+m)!(l —m)! (1/+m)! (1/ —m)!]'/2 '

(A5}

The ranges of l and l, in Eqs. (AS) and (A4) are from
0 to ~ and in Eq. (A4), m varies from lto-
l where l is the smaller of l and l, . The two-
center expansion in Eq. (A4) of 1/&(2 is valid for
&, +&„ less than R, , which is satisfied in our case
because of the nonoverlapping nature of th. atomic
orbitals we have used. The d'(8)„refer t( the
rotation matrices. "

Other types of Coulomb and exchange terms that
can be evaluated similarly as (Al), are of two
types, namely those involving three tight-binding
functions and one plane wave or two plane waves
and two tight-binding functions coordinate r, asso-
ciated with one plane wave and one tight-binding
function and coordinate r, with the other plane wave
and tight-binding functions. In both these cases,
one has to use the spherical Bessel function expan-
sion of plane wave, in addition to Eqs. (AS) and
(A4).

The fourth type of term that occurs in the Cou-
lomb and exchange matrix elements also involves
two plane waves and two tight-binding functions,
but now the two functions associated with coordi-
nate r, are plane waves, and the two with coordi-
nate r, are tight-binding functions. In this type
of term and the next two types, we have some
cases where one encounters divergence, namely,
where the wave vectors appearing with density
coming from plane-wave products for one or the
other electron add to zero. We shall first consider
the nondivergent cases. Matrix elements of this
type appear in Eqs. (2.34), (2.35), and (2.39). A

typical example is

d'&(d'&, 0-',"*,-, (ri}4.*(, ,P, ,T, ,(r, } @k,.K,(ri»;(, - o, ) ('2}
12

2x4g 1
(ei (K(-K~)' P/2 p p e-i(K(-K3)' P/2 )

Ik, +K, -k, —K I' 2NQ 2

x+4 ( ) Y, „(k, K, —k, —K)(tl, , —,it , ,„)ftt„, (x)tl„, „(x)t', (lk, +R, -k, -t(lx)kx
0

(A6)
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This evaluation procedure can be used as long as

k1+K, ~k3+K, , (A7)

so that there is no divergence.
The fifth type of matrix element has three plane waves and one tight-binding function. It appears in Eqs.

(2.34), (2.36), (2.37), and (2.39) and can be evaluated similarly as (A6).
The sixth type of matrix element is the one with four plane waves and appears in Eqs. (2.34) and (2.37)

only. An example is

J PW2}2 PW2}2
~1 2 HP 4K ( l)&g +K ( 2} )r Ak3+K3( 1)Ak4+K4( 2} i k K ~2 2~Q K1+K2,K3+K4 kl+k2 k3+k4 '

(AS)

Again this result can be used directly for the nondivergent case characterized by the condition (A7).
Considering the divergent cases, for example, Eq. (A6) with T1, +K, =23+K„one can get the result in

Eq. (A9) below by substituting the momentum equality condition prior to applying the expansion in (A3).
Thus,

l 1 2
1 2 2~Q An 1 22m22k2(22} 3 An4)4m424, k2( 2}

12

J f (2/r)d3r 2&&4)l
&

2l2 2 ~ 2~~n4l2% 2' 2 l2 4 m2~4 2~4 2NQ 12PfQ l2l4™2' P2P4 ~ "2l2 2' 2' ~ "4 2 2'

(A9}

Similarly, the other divergent terms that are encountered from the fifth and sixth types of terms referred
to earlier can be expressed as:

1 1 &-iik2+K2)'r2y (r )d32 (CiK2' P/2 + p e iK2' P/2) d3+2' 20 "4'4 4 ' 2

and

2x4n 1 .- .- .- .- 1(elK2. P/2 + p &- iK4 P/2} )r2e-. 1 2+ K2) r
y (r}d3~12' 2 ' MQ "4'4 4

(A10)

r
1 PW~ 2 PW2A)Q~k()4k+K(r)

Q cos[(K4 —K,}—,p] 2"e"" 2"d'r.
WS cell

As indicated in Eq. (A11), the last integral is re-
stricted to a Wigner-Seitz cell. The integral

f (2/r)dnr appearing in Eqs. (A9)-(A11) extends
over all space and is divergent but it is exactly
the same as the one obtained in Eq. (2.26), while
evaluating the diagonal plane-wave-plane-wave
matrix elements of the nuclear Coulomb potential.
It can be easily seen that if the diagonal plane-
wave-plane-wave matrix elements of the elec-
tronic Coulomb potential in Eq. (2.34) are com-
bined with the diagonal plane-wave-plane-wave
matrix elements of the nuclear Coulomb potential,
the divergent integrals will identically cancel be-

cause of charge neutrality, ' leaving only the sec-
ond terms on the right-hand sides of Eqs. (A9)-
(A11), which are nondivergent. Similarly, we can
combine the electronic Coulomb potential terms in
Eqs. (2.35) with the nuclear Coulomb potential
terms in Eq. (2.22}. The cancellation of divergent
terms in these cases would not be exact as in the
case just considered and w'e write

—d'r = —d'r + —d'r
R~ j-p2

(A12)
where the integrations on the right-hand side of
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Eq. (A12) are performed over Wigner-Seitz cells
around atomic sites R,. —2p or R&+ &p and the ori-
gin for r is at -2p. In this case, on consistently
keeping the lattice summations over the same set
of neighbors in Eqs. (A12) and (2.22), the cell by
cell charge neutrality would lead to quick con-
vergence. The cancellation of the divergent terms
in Eq. (2.36) follows in the same way as for the
divergent terms in Eq. (2.35).

When evaluating the exchange matrix elements
given in Eqs. (2.3'7) and (2.39), divergent cases
also seem to appear, but this divergence is only
an)apparent one. Thus, on carrying out the inte-
gration' over the reduced wave vector k' in Eq.
(2.32), referring to the occupied part of the Bril-
louin zone, the divergent term has the following

form.
r d3u/

~k'+K' —k —K(2

Near the diver gence point k' + K' =k + K, we can
approximate this integral for a small volume

3 7k@ ar ound k + K by

ap (p')ada'4'
(yp)p

4w p
0

(A13)

and thus obtain a finite result which tends to zero
as the radius of the sphere around k+K is reduced
to zero. In actual numerical work, we have used
~p in the range 0.05a ' to 0.1ap over different
regions of the Brillouin zone depending on the
volumes assigned to the sample points in the BZ.
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