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Rare-earth impurities in noble metals induce an anisotropic magnetoresistance and a skew scattering
contribution to the Hall resistivity. These effects are due to anisotropic terms of the 4f—conduction-electron
interaction, but an estimate of these terms based on conduction electrons in plane-wave states gives values
too small to explain the experimental data. We have taken into account the admixture of Sd screening
electrons into the conduction band, and we obtain a 4f—conduction-electron interaction which has large
anisotropic terms in addition to the conventional spin interaction. We have used in this calculation atomic 4f-
Sd Slater integrals, and we also had to estimate the width of the Sd virtual bound state. When we assume
that the Sd electrons are in t, states, we find that our estimate of the anisotropy of the magnetoresistance
and of the skew scattering effect are in fair agreement with the experimental data. However, we find too
large a negative isotropic magnetoresistance.

I. INTRODUCTION

Rare-earth impurities in noble metals give rise
to an anisotropic magnetoresistance and to an ex-
traordinary Hall effect. It has previously been
shown by Friederich and Fert' ~ that these result
from the anisotropy of the 4f-conduction-electron
interaction. In this paper we present a calculation
of the anisotropic terms of this interaction and we
determine their contribution to magnetoresistance
and to the Hall effect. Our basic idea is to explain
the observed anisotropy by the 5d electrons (local-
ized on the rare earth) which are admixed with the
conduction electrons of the noble metal, i.e., by
the formation of a, nonmagnetic 5d virtual bound
state (VBS). The conduction electrons can strongly
feel the orbital anisotropy of the 4f shell because
the admixed 5d states lie close to the 4f electrons.

The formation of a nonmagnetic VBS on a triva-
lent rare-earth (RE) ion in a monovalent noble met-
al has been demonstrated by several experiments~'
and has been used in several model calculations. -

Williams and Hirst' and Chow' were able to account
for the crystal field acting on the 4f electrons (of
the RE impurity) by considering the contribution of
their Coulomb interaction with the 5d electrons of
the VBS and by using the 4f-5d Coulomb integrals
obtained from atomic Hartree-Fock calculations.
Recently Huang Liu et al."interpreted the EPR
g shift and linewidth of RE impurities in silver and
aluminum by taking into account the exchange part
of the same 4f-5d interaction. Our problem is
somewhat different from those treated by Williams
and Hirst, Chow, or Huang Liu et al. in that we
are not directly interested in the 4f-5d interaction

at a RE site but we do use this interaction to deter-
mine its contribution to the anisotropic scattering
of conduction electrons; i.e., we express the 4f-
conduction-electron interaction in terms of the 4f-
5d interaction.

We begin by briefly describing the several mag-
netotransport effects which depend on the magneti-
zation of RE impurities in nobl. e metals.

A. Anisotropic magnetoresistance

For gold ar silver containing RE impurities with
an orbital moment, the dominant contribution to
the magnetoresistance is anisotropic. "' In poly-
crystalline samples it varies as cos'8- —,', where
0 is the angle between the field and the current.
This anisotropic magnetoresistance is mostly in-
duced by the quadrupolar terms of the Coulomb
interaction between 4f and conduction electrons.
When the interaction is limited to the partial wave
with l =2, the relevant quadrupolar term can be
written, in the notation of Fert et al. , ' as

D('i, J(J + 1)
N 3

x Q ( —
)

|;"„(nr)Y, (0-) „-. (

where N is the number of atoms per unit volume.

B. Negative iso tropic magnetoresistance

This second contribution to the magnetoresistance
does not depend on the anglebetweenthe field and
the current. It is a well-known effect which is due
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to the usual isotropic exchange interaction between
the spins of conduction and localized electrons.
When the interaction is limited to partial waves
with l =2 of the conduction electrons, the isotropic
exchange interaction between conduction and 4f
spins can be written, in the notation of Fert et al. ,

4

as

C. Contribution of skew scattering to the Hall effect

This contribution to the Hall effect, which is
proportional to the magnetization of the impurities,
is induced by terms of the scattering potential
which depend on the orbital angular momentum T
of the conduction electrons. For rare-earth im-
purities in noble metals, '' the skew scattering is
due to both the spin-orbit coupling of the conduc-
tion electrons and terms like T ~ L in the exchange
interaction between the conduction and 4f elec-
trons. In this paper we do not discuss the spin-
orbit coupling contribution. The only term of 1 ~ I
which contributes to skew scattering is l,I., ' This
can be written as

Ar2)
&aew =-4s (& -g~)Zz

5d VBS. To obtain the magnitudes of the 4f-con-
duction-electron scattering matrix elements, we
used the atomic 4f 5d-Coulomb and exchange inte-
grals determined from the Hartree-Fock ca,lcula-
tion by Freeman and Mallow. " The half width of
the 5d VBS which enters these matrix elements is
not mell known, but for a reasonable value of this
parameter we obtain a value of the anisotropy in
good agreement with the experimental value. We
are unable to obtain a definitive estimate of the
skew scattering contribution to the Hall effect from
the model calculation, because the P-wave screen-
ing Z, is poorly known. When we used the value
Z, =0.1, we found the skew scattering contribution
was larger than that extrapolated from experimen-
tal data. In both calculations we found that the
numerical estimates improved considerably when
we considex ed the 5d electx on in a cubic-crystal-
field VBS rather than unsplit. This result is in
agreement with the calculations of Williams and
Hirst' and of Chow. 9

II. CALCULATION

We begin by writing down the 4f-5d Coulomb
interaction. Then we use this interaction to deter-
mine the 4f-conduction-electron interaction.

A. 4f-Sd Coulomb interaction

The Coulomb interaction between 4f and 5d atom-
ic electrons on the same center ean be written as

Up to now, experiments on gold and silver contain-
ing rare-earth impurities have not been interpre-
ted' with Eq. (3) but with an interaction of the same
type acting on the l =1 partial waves. We will
show that the l =2 term is much larger.

From Eqs. (1)-(3)we can see that the magneto-
transport properties probe different aspects of the
4f-conduction-electron interaction; i.e., the quad-
rupolar term, the spin exchange term s S, and
the orbital exchange terms ~ L contribute to differ-
ent properties. The EPR g shift and linewidth of
rare-earth impurities in noble metals also have
contributions from the spin and orbital exchange
terms. " Nonetheless, the advantage of the mag-
netotransport experiments is that they single out
different terms in the 4f-conduction-electron in-
teraction.

The magnitude of the coefficients D~'~ and A~'~

calculated on the basis of conduction electrons in
plane-wave states ax"e much smallex than the mea-
sured values. For this reason we have calculated
these terms on the basis of a model which has a

(4)

where I' and G" are the direct and exchange Sla-
ter integrals. The reduced matrix elements of
the spherical harmonics are

(i I I')
(illC" IIE ) =( )'[(2l+1)(» +1)l' '

ILo0 0)
where the expression in large parentheses is a
3-j symbol. The symbol in curly brackets in
Eq. (4) represents a 6-j symbol. " The tensor op-
erators u~ are defined by their reduced matrix
elements'~:

For 4f electrons in states where the total angular
momentum is a good quantum number, the only
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part of the Coulomb interaction, Eq. (4}, that will
be relevant for our calculation of the quadrupole
scattering contribution to the anisotropic magne-
toresistance is the quadrupol. e-quadrupole interac-
tion

H =(v —')(2E'- —G'+—"O'- ' O')u, ' u ' ( )

We note in passing that there are exchange as well
as direct contributions to this coupling. Interaction
(7) is for one 4f electron. The interaction for the
configuration 4f"-5d is arrived at simply by replac-
mg u"'(i) by

+(2)(f)

This operator can be written in terms of the total
angular momentum 4 of the RE ion, e.g.,

u(~!(f) =Po(2'(z), (8

-2
Z 8+1

(13a)

For the determination of the negative isotropic
magnetoresistance we have to consider the spin-
dependent k = 0 term in Eq. (4), i.e.,"

H, = ——,', (3G'+—', G'+ —,", G') s S, (14)

where

s= ps, .

with

A =814cm '.
The matrix elements between Bd states that are
relevant for calculating the anisotropic magnetore-
sistance are given as

(Jll "'liJ)
4 3(2J —2)!

The ratio P can be directly calculated by using co-
efficients of fractional parentage, and has been
given by Kasuya and Lyons" for the second half
of the RE series as

2 I.(S- ~4)

3~0 J'(J ——,') (10)

The exchange integrals have been determined by
Freeman and Mallow" from Hartree-Fock calcu-
lations, but the Coulomb integral I' was deter-
mined from experimental data presented by Con-
don and Shortley for the 4f-5d terms in La'. "
From these data we find"

E'(4f, 5d) = 12 600 cm ' .
By using the mean values of the exchange integrals
appropriate for the heavy rare earths, i.e.,

G'(4f, 5@=10200cm ',
G'(4f, 5d) = 8 500 cm ',
G'(4f, 5d)~6500cm ',

(12}

we find that the quadrupole-quadrupole interaction
bebveen the 4f" shell and the 5d electron is

H =A ~ 0'(J) ~ u('~(d)2 2 J(J g)
2

(13)

n

P= I ~"'s Z Z 0"'
f=g

and the double bars represent a reduced matrix
element. We define the tensor operator 0 ' (J) by
the following reduced matrix element:

s '~ =T/(l()T([l) =[i(i+1)(2l+1)] ' 'T (16)

so that the 4f 5& interactio-n can immediately be
written as

Hy 2++0(4G +~3G QG )L Ty

is the orbital angular momentum of the 4f" shell
and I is the orbital angular momentum. of the 5d
electron.

By using the mean values of the exchange inte-
grals for the heavy rare earths, Eqs. (12), we find

H~ =-A~L T, (18)

By using the exchange integrals given in Eq. (12)
we find

II --A s ~ S

with

A0=2950cm '

To calculate the contribution of skew scattering
to the Hall effect we have to consider the spin-in-
dependent part of Eq. (4) with k =1. The spin-inde-
pendent term with k = 3 in Eq. (4) can also contri-
bute to the Hall effect, but it is shown in Appendix
8 that it do5s not contribute to the initia/ Hall co-
efficient measured by Fert and Friederich. ' Eval-
uating the coefficients in Eq. (4) for 0 = 1, we find
that the spin-independent part is

H =- (3/v'280)(4G'+-'O'- —O')u ' u(' (15)

From the definition, Eq. (6), of the unit tensors
we find
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with

A, =130cm '.
B. Contribution to the scattering potential

from 4f-conduction-electron interaction

We write the scattering potential of a trivalent
RE impurity in a monovalent metal as

V =V+v(J).
The first term, V,, is the spherical term which
attracts about two electrons, mostly into 5d and 6s
states. The second term, v(J), is the Coulomb
(direct and exchange) interaction of the conduction
electrons with the 4f electrons and depends on the
4f angular momentum J. The spherical J-indepen-
dent part of the Coulomb interaction is included in

~p The first term is an order of magnitude larger
than the second and comparable to the conduction-
electron energy. Therefore this first term should
not be treated in a Born approximation, but rather
in terms of phase shifts of the partial waves. The
effect of the second term is then calculated in the
first Born approximation; i.e., we write the T ma-
trix as

Tk, k (J) = T-'„"-„,+ &k' ' lv(J) lk"&, (19)
t

where fk ') and fk( )& are the outgoing and incom-
ing phase-shifted waves.

The matrix elements of T ' as a function of the
phase shifts are given as"

46@0' P e'"& (sinn() Y*, (f}t)Y(-(f~«),

(20)

Here we have neglected the small P-wave phase
shift. However, the P-wave phase shift has to be
considered in our calculation of the skew scatter-
ing.

If we assume that the 5d states are split by the
cubic crystal field of the surroundings and only the

t2~ levels are occupied, ' "the E = 2 terms in the
T(ai matrix Eq. (22) should be replaced by

4e'""(sin)}„) g Y„(0k) Y„(f}k ),
A= 1,2,3

(22a}

where )}2,=
a r and the Ya(Q) are Kubic harmon-

ics,"i.e., basis functions of the representation
t„(I'„)made up from the second-rank spherical
harmonics

Y, = -(i/v 2)( Y, —Y, ,),
Y, =(i/W2)(Y, , + Y, ,),
Y, = —(I/M2) ( Y, , —Y, ,) .

(23)

These harmonics are defined to be real, i.e.,
Y*= Y

To proceed with the derivation of the 4f-conduc-
tion-electron interaction, we assume that the lead-
ing contribution to the matrix elements of v(J) in

Eq. (19) comes from the 5d atomic wave functions
mixed in the perturbed waves fk '& and fki i&.

This follows from the fact that the wave functions
of the 5d electrons are far more localized about
the 4f shell than the spherical Bessel functions

j,(kyar) and the 6s wave functions. According to
Friedel's theory of the nonmagnetic virtual bound

states, "the admixture of the 5d wave functions in
an outgoing f

k(')& or incoming fk' '& plane wave
is written as

where N(E~) is the density of states at the Fermi
level per unit volume and for one spin direction.
The phase shifts gE are related to the l th partial
waves of the screening charge by the Friedel sum

rule

fk«&„= g C'(k) fm&,
m= -2

where

&dfv, lk)
C'(k) = e "~2(sin@2) Y+ (O k ),

(24)

(25)

and

2(2l 1)

ZE —2

(21)
d. is the half width of the VBS, and fm& are the
atomic states.

If the 5d states are split in the crystal field of
the surrounding matrix so that only the t„states
are occupied, Eqs. (24) and (25) are written as

for a trivalent impurity in a monovalent noble me-
tal. In our calculation of the magnetoresistance
we will take Za = 1 (6s) and Z, = 1 (5d), so that where

(24a)

1
T ' =- " —e'"a sing +4e'"'(sing, }

l(a, k'a' N(E~}

x PY,"„(a()F, (a )), (22)

with, according to Eq. (21},qa =-,'v and q, = —,'as.

&dlv, fk)
C„'(k) =e""2~(sing„) Y' (0«), (25a)

and f(k& are the 5d atomic states written in terms
of the Kubic harmonics, Eq. (23).

Now the matrix elements of v(J) in Eq. (19) can
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be written as

= Z & (k')*("(k)& ', 'I (&)I

(26}

By using Eq. (25) for the coefficients C' and by
using the relation

III. CALCULATION OF THE COEFFICIENTS
OF MAGNETOTRANSPORT AND COMPARISON

WITH EXPERIMENTS

A. Anisotropic magnetoresistance

By introducing the matrix elements of the quad-
rupolar 4f-5d term, Eq. (13a), in Eq. (2'I) we ob-
tain the following contribution to the T matrix:

(,), J'(Z+ 1)

we find

48""2sin q,dT tea.f'a' =
~~(E )

x Q(~' —2)F.*{II(,)F, (II) ),

with an effective coefficient for the quadrupole in-
teraction of

m', 0' & J sl, O'

x y,* (Ilk)Z, ,(II(-,). (27)

In the case of a t„ level instead of the 5dwe find

D(, ) L{S-4) d(, )
z(z-, )

1-(S—e) 1 ~ (sin'g, )A,
Z(j——') ff 35 hn(E)e)

(30)

dT k o,k'a'
2$+PSjn2+
s.,N(E~)

x 2 &~'o'l~(J) l~a&

where n(Ef, ) is the density of states at the Fermi
level per atom and per spin direction, and Nis
the number of atoms per unit volume. The result-
ing contribution to the resistivity anisotropy, after
Fert et a/. ,

4 is
x Fee(0%') Feee(QKe) .

%'e can think of these first-order corrections to
the T matrix, Eqs. (2V) and (27a), as resulting
from an effective Coulomb interaction between the
conduction and 4f electrons. In the case where the
5d levels are not split, the effective potential is
written as

2 S l2 sjn2q
Ueff(J }=

( )

8 yg (F
mm

x Fe„(gg)1; .(AP)ap, a-„, (28)

where a(, (ak, ) are creation (annihilation) operators
of plane waves. For example, the spin-dependent
k=O term, Eq. (14), of the 4f-5d interaction yields
a contribution to the effective potential which is
equivalent to the isotropic exchange term, Eq. (2).
If we take terms of the 4f-5d interaction, Eq. (4)
with k &0, the matrix elements involved in Eq. (26)
depend on m and m', and we obtain anisotropic con-
tributions to the effective potential, i.e., contribu-
tions which depend on the orientation of k and k'
with respect to the 4f moment. In the following
section we shall successively calculate the contri-
bution to . f~. from the terms II, H and H, of the
4f-5d interaction.

(E )D(2) sing cos'g2

po sin'go+ 5 sin q2

(31)

~he~e && J,'&& is a thermal and polycrystal average
of the component of X in the field direction.

From XPS measurements the half width of the
5d VBS of Pt in Ag or of the 4d VBS of Pd in Au

and Ag is about 0.5 eV." Optical measurements
on Ag:Pd give a somewhat smaller value;
=0.25 eV." Qther optical measurements give 6,
=0.4 eV for the balf-width of the 3d VBS of Ti in

Ag. ' For the 5d VBS of HE impurities only ther-
moelectric data exist. From Fig. 8 of Ref. 6 and

by assuming Zo-Z2 -1, one finds 6= 0.2 eV; with-
out an a pxkn i assumption on the screening
charges, one finds that 4 is certainly smaller than
0.86 eV. Thus there is some scatter of the results,
but the half width 6 generally amounts to a few
tenths of an eV. We shall assume that the value of
4 is 0.5 eV; by taking f) (E„)=0.15 states/(eV
spin atom) and f), = —„)f(Z, = 1), we find from Eq.
(30)

d2) =0012 eV.

For Ho impurities (S =2, L, =6}, we obtain for the
characteristic energy of the quadrupole interaction

Eqd=51{S—e)d ) =0.09 eV.
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The experimental values' derived from the aniso-
tropic magnetoresistance of Au:Ho alloys are d '
=0.020 eV and E,d=0.15 eV. Thus, we see that
our model —without crystal-field splitting of the
5d states —yields a quadrupolar coupling somewhat
smaller than the experimental one; i.e., our model
predicts for Au:Ho alloys an anisotropic magneto-
resistance smaller than that observed.

When we take into account the crystal-field
splitting of the 5d states so that only the t,~ states
are occupied, we find for the quadrupolar term of
the 7 matrix [see Eqs. (13) and (2'la)]

x=-0.35, . &~ =-20 K.

Prom these parameters and for H=35 ko and T
=1.2 K one finds

((J.')) ——,
' J(Z+ 1) = 24.2.

The experimental value for Ho impurities in gold
at 36 kQ and 1.2 K is 0.0065. The agreement be-
tween the calculated and experimental values is
much better than in the model without crystal-
field splitting of the 5d states,

(P II-P, )/P. = o oo41 (36a)

This tends to confirm the models " in which the
5d electron exists in a t,~ VBS.

When we use this value together with g, &
= —, m

(Z, = 1), a, =0.5 eV, and A, = 814 cm ', we find

(p~~
—p )/p, =0.0057. (36)

x Y„i(Qg i) Y~(Q «) . (32) B. Negative isotropic magnetoresistance

For this case the magnetoresistance has not been cal-
culated by Pert eI; al.' To obtain the resistivity for
the current in the direction of a unit vector u and
for elastic collisions we use the expression4

The contribution of the isotropic exchange term,
Eg. (14a), to the effective potential, Eq. (28), is

V.rr (S) =-2w(g~-1)e'"b I'~"/N

x [('f-k') ~ u) w g « idk d k', (33)
X [(Of+0 f+ —Q «, 0 «)J~

+sk'+s «-J +s«'-s%+ J l

2w
~«« =

~ IT&".-„,.+dT-„'.;...I'6(e. -e. ), (34)

and n is the number of conduction electrons per
unit volume for one spin direction. As we have
seen in Appendix C of the preceding paper, 4 Eq.
(33) gives the anisotropy of the magnetoresistance
correct to first order in the anisotropy of the
scattering potential.

We calculate p-„ in Appendix A by limiting the
development of ~), g to terms of first order in
dT . By comparing the values of p-„ for u parallel
and perpendicular to the field direction z and by
averaging over all field directions with respect to
the crystal axes, we find for the resistivity aniso-
tropy of a polycrystal

P ()
—P, &g (~3) cosq„sin'q„Po» sin g +3sin g,

1.(S —~) A2
(( 2))

Z(J'+ 1)
Z(J ——'} 6 ' 3

For Ho" (L, =6, S =2, J'=8) in gold, the crystal-
field parameters have been extracted from the
field dependence of the magnetoresistance, and
are

with an effective coefficient of isotropic exchange

ri'i =(sin'q, )AO/van(E~).

By using gm
= —,~'n; Ao =2950 cm ', b, = 0.5 eV, n(Ez)

=0.15 states/eV spin atom, we find

r~'~ =0.148 eV.

The experimental value~ derived from the isotropic
part of the magnetoresistance of Au:Ho alloys is
smaller:

1"~'~ =0.042 eV.

Including the crystal-field splitting of the 5d VBS
in the calculation of the magnetoresistance does
not improve the agreement.

C. Hall effect

The expression for the contribution of the skew
scattering to the Hall resistivity has been previ-
ously derived, and is given as'

x (k' ~ v)g4, dk dk', (38)
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p„, 6A, sin'rl, sin(2q2 —ri, ) sinrl, (
po 4 Sin'go+ 5 Sin'q2

(41)

In the low-field-high-temperature limit the ex-
pectation value of the orbital angular momentum
of the 4f electrons is

(L ) = g~(2 -g~P(J+ 1)psH/3ke T,

where u and v are unit vectors in the directions
x and y, and where w'„- „; is the antisymmetric
part of the scattering probability wg k, ,

wing, ,= (2v/k)i T&";,,+ dT„-„f., i'5(e, -e,, ), (39)

where T'" is given by Eq. (20) and dT by Eq. (27)
or (27a). Equation (38) represents the contribu-
tion from non-spin-flip (elastic) collisions, which
has been shown to be the leading contribution for
noble metals with RE impurities', Eq. (38) is
also based on the assumption that the spin-up and
spin-down electrons carry equal currents. Since
the integral of Eq. (38) contains

(k ~ u)(k' v) =-', (v/i)kk'[Y, , (Af) —Y, ,(Qf )]

x [Y»(Q-„,)+ Y, ,(Qp)], (40)

the only parts of the probability that contribute to
the Hall resistivity are those for which the con-
duction-electron variables transform as rank-1
spherical harmonics. If we consider the 5d VBS
unsplit, the only part of the 4f 5d Coulo-mb inter-
action that contributes to the Hall resistivity is
H„Eq. (18). The principal contribution to the
transition probability w~~, , Eq. (39), is T"'dT*
+ T~o~*dT. Since the harmonics in dTta, , Eq. (27)
[with Eq. (18) for v(J)], are even and the harmonics
in Eq. (40) are odd, we must consider the terms
with odd l in T"', Eq. (20), and we shall assume
that there is a finite p-wave phase shift q, 4 0.
Upon placing Eq. (18) in Eq. (27) together with Eq.
(20) with l= 1 in Eq. (39), we obtain the antisym-
metric part of the scattering probability, and per-
forming the indicated integrations, we find that
the skew scattering contribution to the Hall angle
is (see Appendix A)

we find that it is at least two times too large. It
should be kept in mind that our calculated value de-
pends on our estimate of g„ if we lowered this
value, we could obtain agreement with experiment.

Finally, if we consider that the 5d electron exists
in only the t,~ states, then we must use Eq. (27a),
and we find that the skew scattering contribution
is reduced (see Appendix A):

R= a,p/T,
with

2A, p, e sin q„sin(2g„—ri,) sing,
5b, kB sin'go+ 3 sin'g„

xg (2-g )J(J+1). (43a)

In this case the reduction due to the projection of
the angular momentum on the t2~ states outweighs
the increase due to the larger phase shifts q„.
Therefore we find a smaller estimate for the Hall
resistivity when we consider a t„VBS:

screening and we crudely assume Z, =0.1, so that

6o w. By using A, = 130 cm ' and the same values of

~, q„and q2 as before we obtain

a, = 0 80 x 10-8g~ (2 g~) J(J +1}K/G (44}

Hall-effect measurements on gold and silver con-
taining RE impurities have shown that, in the limit
H/T-O, the contribution of the rare earths to the
Hall coefficient is the sum of two terms a, (p, /T)
and a, (p,/T} which vary across the RE series as
g~(2-g~) J(J+ 1) and g~(g~ —1)J'(J+1), respective-
ly. ' The second term is accounted for by the spin-
orbit coupling of the conduction electrons. When

we compare our result, Eq. (44), with the magni-
tude of the first term,

a, =0.34X10 Bgz(2 —gz}J(J +1) K/G

for gold-based alloys

=0.43X10 Bg~(2 —g~) J(J +1) K/G

for silver-based alloys,

and the initial Hall coefficient [R = (p„,/H)„, ] is
written as

a, =0.54X10 'gz(2 —g~) J(J +1) K/G (44a)

R=a,p, /T,

with

2A, ps sin'q, sin(2q, —q, ) sing,
1 ~aB sln2no+ 5 sln2n2

xg~(2 —gq)J(J+ 1).

(42)

(43)

The major difficulty in evaluatmg Eq. (43) is that
the amount of p-wave screening Q1 is poorly known.
It should be much less than the s- and d-wave

Although this result is closer to that found from
the experimental data than the previous one, Eq.
(44), it is still too large.

When we consider the 5d electron in t~ states,
there is an additional contribution to the Hall re-
sistivity from the 4f 5d interaction H„ -i.e., from
the spin-independent part of Eq. (4}with k=3. This
occurs because the projection of the harmonics

on the t~ manifold contains a term that trans-
forms under the cubic group symmetry as I'4, and
this term contributes to the integral, Eq. (38).
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We show in Appendix 8 that this addition contribu-
tion does not enter the term in the Hall resistivity
which is linear in &/T.

IV. DISCUSSION OF RESULTS

We have calculated the size of the magneto-
resistance and the contribution from skew scat-
tering to the Hall effect that is induced by HE im-
purities in noble metals such as gold or silver.
We assumed that these effects arise from the in-
teraction between the 4f electrons of the RE and
the 5d electrons admixed into the conduction-elec-
tron states. To obtain the magnitude of the scat-
tering we used the atomic 4f-5d Coulomb and ex-
change integrals determined by Freeman and
Mallow. " In our calculation the width of the 5d
VBS enters. This width is not well known, but
by using a reasonable value of this parameter me
obtain a resistivity anisotropy which is close to
the experimental value. We are unable to obtain
a definite estimate of the skew scattering con-
tribution to the Hall effect because the phase shift
g, is poorly known. When we used the value of
g, which corresponds to 0.1 screening P electron,
we found the skew scattering contribution was
somewhat larger than that extracted from experi-
mental data. In both calculations (resistivity ani-
sotropy and skew scattering) we found that the
numerical estimates improved considerably when
we considered the 5d electrons in a t,~ VBS. This
result is in agreement mith the calculations of
'Williams and Hirst an.d of Chow. '

From these results me may conclude that the
anisotropic parts of the 4f-5d. interactions, i.e. ,
the parts of Eq. (4) with k o 0, provide a fairly good
estimate of the quadrupolar and orbital exchange
terms of the scattering potential. A calculation in
which the conduction electrons are in pure plane-
wave states gives a quadrupolar interaction which
is too small by almost two orders of magnitude"
to explain the anisotropy of the magnetoresistivity.
Therefore the admixture of 5d electrons (or other
localized degenerate orbitals) in the conduction
states is essential to account for the magnitude of
the anisotropy. One can extend these results and
state that, whenever the conduction band has ap-
preciable orbital character, there mill be signifi-
cant anisotropy in, the rare-earth-conduction-elec-
tron interaction.

Nonetheless, there is one disquieting feature
of our model. When we use it to calculate the iso-
tropic exchange between the 4f and conduction
electrons, we find it is much larger than that ex-
tracted from the negative isotropic magneto-
resistance of gold-based alloys. It is true that
other parts of the 4f-conduction-electron inter-

action contribute to the isotropic magnetoresis-
tance. However, these contributions only increase
the discrepancy between the calculated and ob-
served values. There are at least two possible
reasons for this discrepancy. First, it may be
that the isotropic spin-dependent part of the 4f-5d
interaction, Eq. (4) with 0=0, is wildly' over-
estimated by atomic 4f 5d ex-change integrals.
The other possibility is that the half width of the
5d VBS is considerably larger than 0.5 eV. This
latter possibility is not very appealing, because
our agreement for the anisotropic magnetoresis-
tance and skew scattering would be considerably
poorer. For the same reason it would not be ap-
propriate to simply scale down all the 4f 5d-
atomic intergrals; i.e. , by scaling them down to
obtain agreement with the data of isotropic mag-
netoresistanee, on.e just worsens the agreement.
for the anisotropi, c effects.

The above observations are reinforced by the
calculations of Huang Liu et al. '0 on the g shift
~ and lin. ewidth 4H of the EPB of RE impurities
in noble metals. Their calculation is based on
the exchange part of the 4f 5d interac-tion Ham-
iltonian, Eq. (4), and also used atomic integrals
for this interaction. They give expressions of ~
foranunsplitVBS and a t, VBS and of 4H for only
an unsplit VBS.

By using these expressions for erbium and a
half-width 4=0.5 eV for the VBS we find the 4f-5d
contributions are

~g „=0.218, (off/~, T) „=119.2 6/K

for an unsplit VBS, and

bg,~„=0.228

for a t2~ VBS.
The experimental data for Er" in gold and silver

are

n g„„=0.03, (Ap/n. T)„„=2.7 6/K

for Au:Er, '""and

&g,„„=0.0'?, (AYV/&T), „„=10.5 6/K

for Ag:Er."'" By using the expressions of Huang
Liu et al."for Dy impurities with 4= 0.5 eV we
obtain

(&H/AT)„„= 240.8 6/K,
and from the experimental data for Dy" in silver
we find'

(Mf/nT), „,= 18.5 6/K.
On comparing the exper imental data to the calcula-
ted values we note that the estimates are far too
large (the difference is greater for the linewidth
because the square of the 4f-5d interaction, enters
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this expression, whereas this enters linearly for
the g shift). The major contribution to these quan-
tities comes from the isotropic portion of the 4f
5d exchange interaction (see Tables 4 and 5 of Ref.
10). Therefore we are led to the same conclusion
mentioned above.

From the above we can state that the 4f 5d-
atomic integrals provide a. fair estimate of the
anisotropic portion of the 4f cond-uction-electron
interaction for rare earths in noble metals, but
they greatly overestimate the isotropic portion.
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We can write the scalar product (k u)' as

(k u)'= —', (-', v)'~' Y2O(u) + —,', (A2)

1; y+ dn-„~ =(2m„~2m )*=5 (A4)

=-'(-'v)'~'(2m
~
Y„~2m )

where the spherical harmonic is referred to the
direction of the current u. If we choose this form
of writing (k u)', we must write the other spherical
harmonics on the same axes. This means that
the matrix (2m, ~u' ~2m, ) is also evaluated with
the axis of quantization parallel to the current u.
Since we wrote the scalar product 0 (Z) u' [see Eq.
(13)] in the simple form

0'(J) ~ u'=Q (-) '0' (J)u' (A3)
m3

we have chosen the same axes of quantization for
the operators 0' and u'. This. implies that the
operator 0' (J) is also quantized along the di-

m3

rection of the current.
The angular integrations in Eq. (Al) are readily

evaluated, , and are

APPENDIX A

The integrations that enter the magnetoresisti-
vities are straightforward when the current and
magnetic field are along principal axes of the cubic
crystal. However, for polycrystalline samples the
directions of the current and field assume all or-
ientations when viewed from the local crystal-field
axes. In other words, in the case of polycrystals
it is necessary to perform a, powder average. Here
we show how this is done.

The expression for determining the anisotropy of
the magnetoresistance is given by Eq. (33). As
mentioned in the text, we limit our calculation to
terms that are first order in dT [see Eq. (34)].
Since we assume there is negligible screening
charge with P character about the rare-earth ion,
i.e., g, —= 0, the integrand with (k ~ u) (k' u) vanish-
es upon integration'. By using Eq. (22) for T' and
Eq. (27) together with Eq. (13) for dT we find that
the angular integrations entering the magneto-
resistivity are

(-1) 3O' (Z)(2m, ~u', (2m, )
mlm2m3

y...(n ,.)y,*., (n p-) dn

X Y2 Qk Y2 Q], k ~ u dgk . A1

( )my+1 2 (10)1/2 (A5)-m om1 4

(2m ~u'„(2m, ) =(-) 2
2 2 2

2 3 l

By placing these results in Eq. (A1), summing
over the variables m» m» and m„and using the
relation

(A6)

we find the magnetoresistivity along a direction u
with a magnetic field along another direction H is
proportional to

p (H) - 2
( &g&~2 (02(J u)) (A7)

The angular brackets about the operator 0', denote
the thermal expectation value of this operator for
the rare-earth 4f electrons subject to both a, cubic
crystal field and magnetic field H. The notation
0,(j; u) is used to emphasize that the operator is
quantized along the direction of the current. Fi-
nally, one arrives at the anisotropy of the mag-
netoresistance of a single crystal by taking the
difference in the resistivities for the magnetic
field parallel and perpendicular to the current:
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&0o&Ha= 2 (~v)'"r, (av, 0)&0')Ht-. .

This is the anisotropy for a single crystal. If the
sample is polycrystalline, one must average Eq.
(AB) over all orientations of the crystal-field axes,
i.e., perform a powder average on Eq. (AB).

Instead of averaging over all orientations of the
crystal-field axes, we can hold these axes fixed
and average over all directions of the current and
field:

« o'.»-, ;—&(o:»;,;,

«0.»s.; =- &0!(~:~~)&a;d

Now the operator 0', (2;u) is referred to the crys-
tal-field axes and is written as

00(J;P~) =g D 0'(u)0m (8), (A10)

where D",' is a matrix element of the rotation
operator that takes the direction of the current
u into the C,(z) axis of the crystal field.

After powder averaging over a polycrystal, there
is -no longer any preferred directions other than

that of the applied field and the current. Therefore
the dependence of the powder-averaged expecta-
tion values on the angle between the current and
field is given as

(&o,'» „=g D",'(0„)&(0' »„-„„-=D,',"(ll )((o:»;„:

P~(ff, ) -P;(H, )

—
s 4's)" t& 0o(J' &)&H, u

—&0l(~; ~)&H,a),
(AB)

where

terms of the tensor cubic operators defined by
+allen and fallen":

(A13)

where, for example,

O~:—00.

We note that in this sum n runs over both repre-
sentations f, (I",) and E, (I'~). Also, we write y', (u)
as I;(A). The angular integrations entering the
magnetoreslstlvlty are written as

2 0.(~) 2 «; ~..~
T;& «',

I
I', (I;& «',

I
Tl&

I;(fl) = gD", '(u)I' (2), (A15)

where

D(2) D(2)

and &njm) is a, matrix element of the transforma-
tion from the spherical harmonic to the Kubic-
harmonic basis for rank-2 harmonics i.e. ,

(A14)

We have written the integrations over 0 and k'
in bracket ~otation. . The difficulty that enters the
calculation is that the 5d-electron crystal-field
t„states ~I',& (q=f, j,k) are referred to the cubic
axes (of C, symmetry), while the operator Y,(u)
is quantized along u. Therefore to evaluate the
matrix element we must first rotate the harmonic
I', so it is quantized along a C,(z) axis of the cubic
crystal fieM:

(All)
Pl = Q SZ Q (A16)

where 0„ is the angle of H relative to u. We
have used the fact that for a powder average only
the axial component of the tensor operator exists.
For Q~= p71', P,

D,'P (—,
'

v, P) = (-', v)'~'I;, (2 v, Q) = —2,
so that one immediately finds that the anisotropy
of the resistivity is

( I', ~u
~
I"J& ~A (u)

(r',.
( .. [r5& =w, (I") ~

(j k
(A1V)

By using the Wigner-Eckart theorem we find the
integrals in Eq. (A14) can be reduced:

Pll PJ() '(&.00»H " ' (A12)
and

The full expression of the resistivity anisotropy,
including all the coefficients which precede the
integral over the angles, is given by Eq. (35).

When we calculate the resistivity for the 5d elec-
trons in t2 states we must use Eq. (22a) for T'
and Eq. (32) for dT To make full .use of the cubic
symmetry, we write the scalar product 02 u' in

&I',
i

15& =5„,
where

A.(g)=&r') ~r. (g) ~(1'&.

By using the properties of the Clebsch-Gordan
eoeffieients of the cubic group, we find
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~tr r I"} /r I I"
-~ma ~&. y

Pj if
so that Eq. (A14) reduces to

0 (j)Dlm,l(u)A (u)A„(y).

(A18)

(A19)

In general, the reduced matrix elements A, de-
pend on whether I' is F' or I'. However, when
the operators are constructed from rank-2 har-
monics and when the I' states come from d (l =2)
electrons, one finds

(f.&H=«.)~... (A24)

x &2m, ll'. Ilm & & Im, ll;12m & (A25}

For free Sd electpons we are free to choose our
axes of quantization (z) for the harmonics entering
Eq. (38). When we choose the z axis parallel to
the magnetic field the integrand (k u}(k'. &) takes
on the simple form, Eq. (40), and the angular inte-
grations entering the resistivity can be written as

p,„=', s—g (-}"(L,,&-„(2mjf „,!2~&

A, (u) = -A.,(u}. (A20) where
This relation has been noticed by Abragam and
Bleaney. ' As the reduced matrix elements of
I' ( Y) differ from those of I' (u) only by a constant,
we find for our case the fortuitous result that the
reduced matrix elements can be placed outside the
sum in Eq. (A19), and that the resistivity along the
direction u is proportional to

p„- -A, (u)A, (I') g DI„',l (u)O (J), (A21)

I;=-(I/&2)(y, , —y, ,) =-g &m!x& I;.

~, =(4/~)(I;, , + I„,) = P&-m Iy», ,.
By using the signer-Eckart theorem and recoup-
ling the angular momenta we find

or by using Eq. (A15) we can write this as

pz -A3(u}A,(I')020(J,, u) . (A 21')
p.y(H)--', s&L.&H (1 I I (2llfll2)

Upon evaluating the reduced matrix elements we
find p 4 p4 p4

x (2 III'"ll I)'
IEx y zj

(A22)

A, (y) =-(4 s)'~'( —,
' W.

When we add the factor —,'(4s)'~' in front of the
spherical harmonic in Eq. (A2) and take the ther-
mal average of the operator 0', we find the resis-
'tlvl'ty Eq. (A21 ) ls propol'ilollal to

where

}& Iy&.
kx y z j m 0

(A26}

p „-(H ) ——(W )&O',(Z; )&-. (A23)

On comparing this expression to Eq. (AV}, we
conclude that the effects of the angular integrations
entering the resistivity are such as to only reduce
it for 5d electrons in t„t tsabeysa factor of —,'.
Qne still has to take the thermal expectation value
and powder average of the same operator, i.e.,
only the 00 that enters the resistivity for an un-
split 5d VBS.

By using the above method we can also determine
the angular integrations entering the skew scatter-
ing contribution to the Hall resistivity, Eq. (38). In
the low-field-high-temperature limit the crystal-
field levels of the ground 4f" manifold are equally
occupied and the expectation value of the orbital,
angular momentum is calculated as for a free ion.
In this limit, the angular momentum points along
the direction of the applied field, i.e.,

When we evaluate the reduced matrix elements and
the 3j, 6j symbols we find

I
' ' 'I =-igmm,

(2 III 112) =~, (2 II
I'"

ll I) =(6/4z)'",

!'"' "'!=us.
(x y z j

Upon placing these values in Eq. (A26) we find the
angular integration part of the Hall resistivity

p,„(H) --l «.&-„. (A28)

When the 5d electrons are in t2 states the angu-
lar integrations entering the resistivity are writ-
ten as
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p„,--'. ~ g (-) ~ &L.,&-„&r', ll ., Ir'.,)
mym2

m3 m4

&& &r.', I r„(H )lr', & &r', I y, (H )Ir.', & .
(A29)

f r4 4 4
D(i) H D(i)

g+(o4
I

r I I
™&xy m

(A33)

The t„states have been written in the complex
basis notation which is particularly suitable for
matrix elements of vector operators. It is diffi-
cult to refer everything to the field direction in
this case, because the cubic states &I') referred
to this axis have a complicated form and the ex-
plicit evaluation of the matrix elements is not
simple. Therefore we.refer the states to an axis
of Q4 symmetry and rotate the harmonics quan-
tized along the field direction so they are quantized
along the axis of p4 symmetry:

where we used the fact that the matrix

( r' r' r' )
m5 m6 m4

is proportional to the 3-j symbol

1 1 1

Em, m, m, &

When we sum over the indice m4 in Eqs. (A32) and

(A33) we find

y', (H) =-g d.",(H) 1.(z), (A30) Q ( )L -D (H) = L*(H)
m4

(A34)

where

d.",(H) =- gd".&m I p&,

and p =x, y. By applying the Wigner-Eckart the-
orem we find

or the angular momentum operator quantized along
the direction of the field. By placing the results,
Eqs. (A33) and (A34), in Eq. (A31) and using the
relation (A24) we find that the skew scattering con-
tribution to the Hall resistivity for 5d electrons in

t, states is proportional to

p„(H)- —', ~ g(—) '&L
m4

D( ) & D( )

m5me

x (r'lll llr'}(r'ill'" llr')'

p„,-—', ~&L,&-,A(r', r ')(r'lll llr')
r' r' r'i

x (r'll 1'"llr'}'
I(x y z j

(A35)

4 r4 4

&&A(r'r')
I I

. (A31)
&m, m, m, i

To arrive at this we made use of the following rela-
tion, which is a generalization of one for 3j sym-
bols:

r' r' r' i(r' r' r'i & r' r' r')
P2 3 m, m, m, lcm, ,mme( mm, m, i

p4 4 4

=A(r', r') t i, (A32)

where' is independent of the partner indices and

depends only on the irreducible representations,
i.e., I' and I'. The product of the two matrix
elements of the rotation operator can be written
as one:

fr' I' r'i 1 1 1)
km m m i m m m J

(A36)

we readily find the constantA. . For example, for
m, = -m, = 1 and m 4

= 0 we find

This result is nearly the same as that found for
free 5d electrons; the difference is just in the re-
duced matrix elements and in the factor A (I', I"},
which is the equivalent of the 6-j symbol in Eq.
(A26) for the recoupling of cubic group representa-
tions.

To evaluate the reduced matrix elements and

the constants we need to calculate only the ma-
trix elements for one set of values of the indices
m„m„and m, in Eq. (A32), and take the indicated
sum over the remaining indices m„m„and m3.
Since we know the value of the Clebsch-Qordan
coefficient

tt'- I

g &r.', lf, lr.',&&r', Ir„lr'. ,&&r', Ir, , lr', &
= 6, Tr

I 2 3

Oo O 0-P 0

o ao o o o -a =,„(--',).
IJ (D I D)(D D D)

(A3V)
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By using the value 1/M6 for the Clebsch-Gordan
coefficient, Eq. (A38), it immediately follows that

(r Ill III' )(r'll I'"llr')'A(r', r') =-('; ~(3/87/) .
(A38)

When we use Eq. (A27) for the C lebsch-Gordan coef-
ficient, we find

part I' and a "quadrupolar" portion I' and I"',
and an antisymmetric term I'4:

u ' ~ U '= I'(u ')I'(U ')+ g I', (u ")I',(U&4')
iul ~ 2

g r;(u&'&}r', (U&'&)
i=12223

-'(-2)(f, )H . (A39) + g I";(u'4')I";(U'4'),
iu1, 2, 3

(a4)

We conclude that the angular integrations for the
5d electrons in t, states lead to a Hall resistivity

—,
' that for free 5d electrons.

APPENDIX B

where

rl(u(4&) —
(

7 )1/2u&4 &+ ( 5 }1/2(u&4&+u&4 &)

(BS)

H =0 u~ 'u~4'+4P u~ ' ~ u 4~s ~ s4 4 g b 4 g b g by (B1)

In this appendix, we calculate the contributions
of H, to the anisotropy of the resistivity, Eq. (35),
and of H, to the Hall resistivity, Eq. (44a). In ad-
dition, we show that the spin-dependent part of H4

gives a small and negligible contribution to the
isotropic magnetoresistivity. These interactions
contribute only when the 5d &BS is split by the
crystal field so that the t, or e state is prefer-
entially occupied.

The complete fourth-rank 4f 5d interaction -is
readily obtained from Eq. (4) and is

r3(u(4&) (5 )1/2u(4& ( 7)l/2(u(4&+u(4&}

We have not listed the other portions of the de-
composition, since they are readily found in Cal-
len and Calle@.." The expectation values of these
operators for the 5d electron in t„states, Eq.
(23), are

(r'(u&'&)), =-2/3v30,

(rl(u"')), =-3(~2'1)(3P-2), (as)

where 7=1. Therefore, when we project the fourth-
rank interaction H„Eq. (B2), on the 5d-f„states,
we find

where

—(I/55)1/2[10F4 2 (I 1Gl+ 44 @3+25G5)]

(H, ), =(a, &&(, +4b,P,I ~ f )

x[-(2/3v30)I" (U"')
and P, is obtained by setting E' =0 in the expres-
sion for c(4. For n equivalent 4f electrons this
interaction is written as

H =a (2u"' ~ U"'+4b p u(4' ~ U(4 s4 4 4 g 4 4 g b g by

where

7 II/ I" III,
5=1

(I II U" '
ll I )

(B2)

a4 = -0.636, b4 =0.1595. (a3)

Under spherical symmetry the operator u"'
transforms as a fourth-rank tensor and contri-
butes neither to the anisotropic magnetoresistance
nor to the negative isotropic magnetoresistance.
However, when the 5d electron is in the t, state,
we classify the transformation properties of the
operator u"' according to the cubic group. Under
this symmetry the operator u"' has a "spherical"

4
~~~ ~

~

i(I

~ ~
iI

~

N

I.s Ilgwu(4~s, . II I'
i=1

(I IIU&4&llf)(sllflls)
'

For Ho" we find by using the coefficients of frac-
tional parentage" that

(W)(F:. —,')r;(U, ')+ "]. (B7)

(ss I
r'(U"')8 lss) =-

2 13 x17
in which

(88ISI88) =2. (B10)

The first term in the square brackets is isotropic
in the orbital variables and contributes to the iso-
tropic magnetoresistance

(H,), (I")=-A~s, ~ 5„ (as)

where

A,' = (8/3v 30}b,P,I"(U5" '}.
The size of the contribution from this term is ob-
tained by comparing A,' to the isotropic exchange
constant, Eq. (14a):

A, =2950 cm ' .
As the 4f" electrons are in spin-orbit coupled
states, we must evaluate I'(U(5' ) together with S,
in Eq. (Bs). We are interested in Ho" where J =8,
and to evaluate I'(U )S we consider the ion in a
strong magnetic field so that the state is IZ = 8,
M2 =8). Then we find
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For this state the interaction H4 gives a contri-
bution

p„-p, (, ),~, a,o., sin'q„cosy„
po

7 21 b, t Sln2no+ 3Sln2n2t

1 3 x11
(88 !(H,), I88) = —

1 A,' s, (a) . (Bll)

By evaluating )6, from Eqs. (Bl) and (12) and using
the value, Eq. (B3}for b„we determine A,' and

find

n CX3

(H, ) =—198s, (a) cm '. (B12)
where

From the isotropic exchange interaction we find

(H, &
=——6000s, (a) cm ' . (B13}

On comparing the two values we see that the in-
teraction H4 contributes a very small amount to
the isotropic exchange field acting on the conduc-
tion-electron spins s, (a) for Ho". Therefore its
contribution to the isotropic magnetoresistivity of
Ho" can be safely neglected. Parenthetically, it
should be added that the constant term in Eq. (BV),
l.e.y

-(2/34K)a, o., r'(U", ') =-25 cm ',

gives a very small contribution to the resistivity

p, proportional to

(H) 25cm ' 1
4000 cm ' 200 '

where & = 2 eV is the half width of the 5d VBS. This
value has to be compared to the leading contribu-
tion to the isotropic resistivity, which is propor-
tional to sin qo = 1.

The second term in the square brackets in Eq.
(BV) and the other terms transforming according
to the I' and r representations, Eq. (BV), to-
gether with the spin- independent part a4o. 4, i.e.,

=- (-')'"a o,,(f 2. --,')rs(U',")+~ ~ ~, (B14)

contribute to the anisotropic magnetoresistivity,
Eq. (36). We evaluate a, by using Eqs. (Bl) and

(12) and F =-11600 cm ', "and find o'4 —=2550 cm ',
a, is given by Eq. (B3). By placing Eq. (B14}in

Eq. (27a) and evaluating the anisotropy of the-mag-
netoresistance as was done in Appendix A for the
interaction H„we find that the anisotropy of the
magnetoresistance for a polycrystalline sample is

and

D,~ = P (n' Im') D, (—,
'

w)(m I
o.', &,

i mal'

g4(y4= —1625 cm ' .

where (m!a»& is given in Eq. (B5), i.e., (OIc(»&
=~ and (+4!o»& =-W. The matrix elements of
the rotation D(O~~4 introduce a spurious dependence
(for a polycrystalline sample) in the angle that the
field makes with respect to a g4 axis perpendicular
to the one along which the current points. We re-
move this dependence by averaging the expression
over all angles g. The expectation value (U', )
evaluated for Ho'+ in a strong field is

(Uo ') = (88 IUO4'(L)I88)

(L =6 S =2 /=8 IIU (L)IIL =6 S =2 J =8)
(J =8 IIU'."(J)IIZ =8&

x (88 I
U(4) (Z) I 88)

!

8 8 4f )(8 8 4I
6 6 2~ 'E8 -8 Ol

= 0.126 . (B17)

By placing this value in Eq. (B16') and evaluating
the rotation matrix elements we obtain

The index n' runs over the partners of all the ir-
reducible representations of the cubic group con-
tained in the 3d rotation group representation D'
[see Eq. (B4)], while o., runs over the two partners
of I and n, over the three partners of I'.

We obtain an upper limit for the expression in

large parentheses evaluating it for a single crys-
tal with the current and a strong magnetic field
parallel to a g4 axis. Then in a strong field

p'.".(~') =(—,
' v)'" r,„(0)(r„,(U ))

(B16)

and the expression reduces to
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g I5 1)(~) (rv)]p(2)(
a' n3

-D @ —'7r p„(y' 0.05.
0,'(X5

(B18)

(H, ), =A, l ~ L .

By using the same procedure as in Appendix A, we
find that the term (H,)t, makes the following con-
tribution to the Hall angle, Eq. (41):

Upon placing this value in Eq. (B15) we find that
the ratio of the contribution of the fourth-rank in-
teractionH, to that of H„Eq. (35), is

(H, ) = 8(~,) a,o, sin'&)2t sin(2&)2t -&&, ) sin&),

p, (H, )/p, (H, ) (-0.09. (B19) x —,n '~'y, —H P-' U~ ) (B25)

Thus the fourth-rank interaction makes a small
contribution to the anisotropy of the magnetore-
sistance for Ho'+ impurities.

Finally, we consider the contribution of the octu-
polar interaction H „ i.e., the spin-independent part
of Eq (4) w. ith k =3, to skew scattering. By using
the values of the exchange integrals, Eq. (12), we
find that for 4f" electrons the interaction is

where the operators I'-'(U"') are quantized along a
z4 axis of the local cubic-crystalline field.

In general, the expectation values (r-'(U( &))H do
not vanish in a magnetic field. However, they do
not have a term linear in H/T. This is readily
established as follows, using I',(U(')) as an ex-
ample:

H, =-a,o,u(B) U(," cm-'

where

(Lllg u(') IIL)
Q3-= i=l

(L II
U(" IIL)

(B2o) (U(B)& —Tr(e BHU(B) )/Tr —BH

where

H = V„+gay.BHJ .
The term linear in H is

(B28)

Q3 8350 cm' ~

For example, for Ho", @3=-0.885. From Ap-
pendix A we see that the only terms that contribute
to the Hall resistivity are those proportional to p4:

t 1
Tr(&-Bv rJO cdt et Bvcr J &-t Bvcr U( ))

B a . (B2
kT Tre —B+cr

For high temperatures, i.e., those used in the ex-
periments, V„/kT=-O, so that the trace in the
numerator reduces to

0=x, y, z
(B21)

P, g (JM, I J,U(c' (J) I JM, & . (B28)

where, for example, I'~(u') =u„and the other
terms can be found from Von der Lage and Bethe. "

The expectation values of F,(u') in the 5d-t„
states, Eq. (23), is

We have replaced U,')(L) by U,') (J) by using the
relation

U (L) =)(& U (J),
(u',"),, =-(v —„)m, (B22)

where

(l.), = -m, (B23)

where m =0,+1, while from the interaction H„Eq.
(18), we found (L~IIU'"(L) IILSJ&

(JIIU'" IIJ&
(B29)

Thus the interaction H, has a term which con-
tributes to the Hall resistivity of the form

(H &,, =(J—,)a,a,g I, r,'(U,"'), (B24)

where l, is a component of the fictitious angular
momentum with l = 1." Now, the contribution from
Ql was

But 'the trace (B28) over the spherical basis van-
ishes because the operators J, and Uo') (J) trans-
form under different representations of the 3d
rotational group, i.e.,

(B3o)

Therefore the interaction H, does not contribute
to the term in the Hall resistivity, Eq. (44a), lin-
ear in H/T.
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