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I. Quadrupole scattering by rare-earth impurities in gold*
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%'e report measurements of the magnetoresistance of gold containing rare-earth impurities in longitudinal

and. transverse magnetic fields. For rare-earths with orbital magnetism the dominant effect is an anisotropic

magnetoresistance due to the scattering of the conduction electrons by the electric quadrupole moment of the

4f shell. This effect vanishes for gadolinium impurities (no quadrupole moment). %e present a model of the

anisotropic magnetoresistance induced by quadrupole scattering. From the analysis of the experimental

results we derive the strength of the interaction of the conduction electrons with the quadrupole moment of
the 4f shell.

I. INTRODUCTION II. EXPERIMENTAL RESULTS

Magnetoresistance measurements' have shown

that the resistivity cross section of rare-earth
(RE) impurities in gold or silver is anisotropic,
i.e., different according to whether the current is
parallel or perpendicular to the magnetic moment
of the rare earth. The resistivity anisotropy van-
ishes for gadolinium impurities and changes its
sign at the middle of the series of the heavy rare
earths, between Ho and Er, which shows that the
resistivity anisotropy is due to aspherical Coulomb
scattering and mostly to quadrupole scattering. '
Similar results have been recently found in other
magnetic alldys. "

Vfe present in this paper more extended series
of magnetoresistance measurements on gold con-
taining. RE impurities (Sec. II) together with a
model of the scattering by the 4f quadrupole (Sec.
III). 'Ibe resistivity anisotropy induced by quad-
rupole scattering is shown to be proportional to
[((J,')) ——,

' J(J+ I)], where ((J,')) is the mean value
of the square of the component of the 4f moment
in the field direction. This accounts for the very
different field and temperature dependences of the
resistivity anisotropy which are observed when the
ground state in the crystal field is a triplet (or
quartet), a Kramers doublet, or a singlet, respec-
tively (Sec. IV). In Sec. V, we concentrate on the
Au:Ho alloys. After an analysis of the crystal-
field effects, we derive from the experimental
data the interaction of the conduction electrons
suith the 4f quadruPole. We find that this interaction
is nearly as large as the exchange interaction.
The importance of the quadrupole interaction for
RE ions has been recently suggested by several
theoretical or experimental' works. Our experi-
ments provide interesting data on this interaction.
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FIG. 1. Magnetoresistance of a 0.5-at. g Au:Gd alloy
in transverse and longitudinal magnetic fields at several
temperatures. The solid lines'cori. espond to Ap/po =
—3.98x10 [B„2(gI~H/k~T)] .

%e have measured the magnetoresistance of gold
containing heavy RE impurities at lower concen-
trations than 1 at. go. The measurements were
performed in longitudinal and transverse magnetic
field up to 40 kG and between 1.2 and 36 K. The
preparation of the specimens (polycrystalline
foils) and the experimental setup have already
been described. '

Figures 1-5 show the main features of the ob-
served effects. For gold with gadolinium impur-
ities (no quadrupole) Fig. I exhibits a negative
magnetoresistance which is obviously linked to the
magnetization of the impurities (it vanishes at high
temperature) and which is isotropic, i.e., indepen-
dent of the angle between the field and the current.
This is the usual negative isotropic magnetore-
sistance of the dilute magnetic alloys which is due
to exchange scattering. " The magnetoresistance
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FIG. 6. Resistivity anisotropy (pl] —p~)/po of a
0.25-at. % Au:Ho alloy versus magnetic field at several
temperatures: experimental points (after a small cor-
rection to eliminate the normal magnetoresistance) and
calculated curves (for x=-0.35, C4 = —20 K, d 2l =0.20
eV) .

isotropic part, i.e., to d p, (H) b,p„( H. ) and d p, (H)
can be extracted from the experimental results by
the following obvious expressions:

~p (H) = p (H) -p. (H),

&p, (H) = 3 [p))(H) -p.]+ l [p, (H) p.], -
(2)

(3)

where p~~(H) and p„(H) are the resistivities in
longitudinal and transverse fields. We have plotted
in Figs. 6-8 and 10 the resistivity anisotropy (p, ~

—p~)/p, for Au:Ho, Au:Er, and Au: Tm alloys, and
in Fig. 9, the isotropic part of the magnetoresis-
tance [(p~~ —p,)+2(p~ —p,)]/3p, for a Au:Ho alloy.
Figures 6, 9, and 10 for Au:Ho alloys represent
only the magnetoresistance due to the magnetic
impurities after subtraction from the experimental
curves of the normal magnetoresistance. The an-
isotropic. and isotropic normal contributions have
been found from the Kohler functions of the normal

10 20 30
Magnetic field(kG)

I

40

FIG. 8. Resistivity anisotropy (pl]-pj)/pp of 0 86-at. %
Au: Tm alloy versus magnetic field at several tempera-
tures (raw experimental points; the solid lines are to
guide the eye).

magnetoresistance (determined on nonmagnetic
alloys) and represent only small corrections (for
example, in Fig. 6 the normal contribution amounts
to about 5%%ug of the magnetic contribution at 1.2 K).
The corrections are negligible for the Au:Er and
Au: Tm alloys (Figs. 7 and 8).

III. THEORY

A. Scattering potential

The starting point of our calculation is a scat-
tering potential for RE impurities in noble metals
including Bn isotropic attractive potential, an iso-
tropic exchange interaction, and a quadrupolar

We will calculate the contribution to the magneto-
resistance arising from rare-earth impurities in
noble metals. We shall assume that the conduction
electrons of a noble metal are in plane waves, which
is a common assumption for calculating the mag-
netotransport properties of dilute magnetic al-
loys."
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FIG. 7. Resistivity anisotropy (p]~-p~)/po of a
0.91-at. % Au:Er alloy versus 'magnetic field at several
temperatures (raw experimental points; the 'solid lines
are to guide the eye).

FIG. 9. Isotropic part of the magnetoresistance
I (pl~

—po) +2(p~ —po) j/3 po of a 0.49-at. % Au. :Ho alloy
versus magnetic field at several temperatures: experi-
mental points (after a correction to eliminate the normal
magnetoresistance) and calculated curves (for x = —0.35,
C4 =-20 K, I'~ =0.042 eV).
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FIG. 10. Resistivity anisotropy (pll —pi)/po of gold
with 0.25, 0.49; and 1 at. % of Ho impurities versus
magnetic field at 1.2 K.

Coulomb term:

V= Vo+ V,„,h+ V« ~ (4)

The isotropic potential V, can be developed in
terms associated with the successive spherical
harmonics:

Y, Qk Y, Qk ak ak. , 5
m.k k'a

(6)
where N(Ez) is the density of states (per unit of
energy, unit of volume, and spin direction) in the
conduction band, and where

2(2l + 1)
~1 Z1 ~

where a k (a k) are creation (annihilation) operators
of plane waves. In a monovalent noble metal about
two electrons are attracted by V, around a trival-
ent RE ion, mostly in 6s and nd states'" (the at-
traction of screening electrons into 5d states is
usually. described as the formation of a 5d nonmag-
netic virtual bound state). The partial-wave phase
shifts g, for electrons at the Fermi level are more
physical parameters than the coefficients V(')()k)„
k), ) because they are simply related to the screen-
ing charges Z, by the Friedel sum rule. " There-
fore we shall directly express the part of the T
matrix involving only Vo in terms of the ph3, se
shifts:

T„" -, , = —,', Q e'" (sing)) 1'(* (0k) Y; ( -„),

In our calculation we shall assume for simplicity
that only )), and )), (or Z, and Z,) are different
from zero. We emphasize that T' is the dominant
part of the T matrix, as is demonstrated, for ex-
ample, by the nearly. constant value of the residual
resistivity for all the heavy RE impurities in gold
(or silver), independently of the 4f spin.

V,„,h and V,d are the spin-dependent isotropic ex-
change term and the quadrupolar term of the Cou-
lomb interaction between the conduction and the 4f
electrons. '" V.,&h and V«can also be expanded
in terms associated to the successive spherical
harmonics:

J (&)

V„,„=-4m Y1* Qk Y1 Qg
~k k'

l.(n k'+n k+ n k'- s k-) J
+ a k+a-k J + a k. a -„+J'],

(9)

J J+1
l& 1.

x g )g y'c (lie)y (g~ )&I
l(l+ 1)

mk k'

(10)

where J is the total angular momentum of the 4f
electrons and J„ its component along the axis of
quantization of the spherical harmonics. As a mat-
ter of fact, V,~ is the axial term 0',(J)0',(1) of a
coupling 0'(J)0'(1) between the irreducible tensors
of rank 2, 0'(J) and 0'(1) (1 is the orbital angular
momentum of a conduction electron). The nonaxial
terms are not useful for our calculation. In addi-
tion to the spin-dependent isotropic term, Eq. (9),
and to the quadrupolar term, Eq. (10), the full
Coulomb interaction'" includes several other
terms, such as orbital exchange terms (which are
important for the skew scattering problem" ),
spin and orbital exchange cross terms, and direct
Coulomb terms associated with multipoles of
higher rank than the quadrupole. It can be shown"
that these additional terms do not significantly
contribute to the magnetoresistance of a noble
metal containing RE impurities.

If different rare earths are placed in the same
host, and if it is assumed that the radial functions
of the 4f and conduction electrons are the same for
all of them, the coefficients J ' and D' entering
Eqs. (9) and (10) are given by

Jo) (g 1)Z ())

and

Z1 ——2 0 (8)
(,) (2L+3)(2L+2)(—', -S) (,)

(2J + 3)(2J+ 1)(2L —1)
(12)
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x [(&T+«T+ -s k'-& k-)~g

+«T'+&k-~ +«k ok+~ ]-
d'&, Z(Z+ 1)

Vqg = 4m

(14)

&& g (m2-2)F,*.(n-„)Z;.(n-„.)n-„,.a-„..
mk k'a

B. Anisotropic magnetoresistance induced by quadrupole

scattering

Our calculation of thy resistivity will be based on
the expression

p- —— — k u

x I(k-k') ufw-„k dkdk', (16)

where u is a unit vector along the direction of the
current, n is the number of electrons per unit vol-
ume and per spin direction, f-„ is the Fermi-Dirac
distribution, and u kk is the probability of transi-
tion from k to k'. This expression is only valid
for elastic scattering, and is obtained by using a

in the first half of the RE series and

D«& I'(S 4) «)
z(z --.')

in the second half. In Eqs. (11)-(13), 1'" and d«
are constant throughout the RE series, g~ —1 is
the de Gennes factor, ' and the factors preceding
d(') are similar scaling factors for the quadrupole
interaction. "

The exchange interaction between conduction and
localized electrons is generally assumed to be
limited to its 1 =0 term. In the same way, in a
previous calculation of the quadrupole scattering, '
the quadrupole interaction V,&has been restricted
to its lowest term with respect to L, i.e., the /=1
term. However, the restriction of V«,h and Vqp

to their lowest terms is not very appropriate for
RE impurities in noble metals. Huang Liu, Ling,
and Orbach' have shown that the local admixture
of 5d states into the conduction states makes the
l =2 term of the exchange interaction dominant. In
the same way Pert and Levy" have shown that the
largely dominant contribution to the quadrupole in-
teraction, Eq. (10), comes from the I =2 term be-
cause the 5d admixed states lie close to the 4f
shell and strongly feel the orbital anisotropy of the
4f shell. Therefore we shall restrict Eqs. (9) and
(10) to their I =2 terms:

J.(2)

V,„,„=-4v g I;*.(n-„)F,.(n;.)
mk k'

variational method" with a trial distribution func-
tion

o

fr, =fu-ku „

(16)

in terms of the matrix elements of the quadrupole
interaction between outgoing and incoming dis-
torted waves (i.e., already distorted by the large
attractive potential V,). We obtain (see Appendix
A)

D(2)
g 2

„.„, D, Z(Z 1))
g

x Q (m' —2) Y'g (0«) Y', (QT, ) . (19)

By introducing Eqs. (6) and (19) in Eq. (17) and Eq.
(IV) in Eq. (16) and by integrating Eq. (16), we
find that, for a concentration c of RE impurities,
the contribution to the resistivity p-„which is of
fix'st order ln Vqg ls written as

b,p-„=, sing, (cosq2) ((8„))—o 4mcD&'& . , J(Z+ 1)

(20)

(pq = nk u - Y,o(Q k) .
When the scattering is anisotropie, the trial func-
tion PT, should, in principle, include additional
spherical harmonics of higher rank. In Appendix
C we have done this and shown that such correc-
tions to Pk lead to corrections in the resistivity
that are of second order with respect to the an-
isotropie part of the scattering potential. How-
ever, when we allow for anisotropy in the scatter-
ing probability akk and keep only the isotropic
term in Qk, we obtain the first-order contribution
to the anisotropy of the resistivity. The aniso-
tropic part of the scattering potential is very weak
as (p~~

—p, )jp, s2&&10 '. Therefore we calculate
the anisotropie magnetoresistance correct to first
order in the anisotropy of the scattering potential
by using Eq. (16) and taking into account the aniso-
tropy in the scattering transition probability. We
write wgk. as

o) q"»' —(2vf@ITkk +~~kk I
6('~ -'«') .

(o)
Tkk, given in Eq. (6), is the isotropic and spin-
independent part of the T matrix and dTk k is the

Q

small additional contribution to the T matrix from
the uadrupole interaction, Eq. 15 . In contrast
to Tk k, the small contribution dTkk can be cal-.o/

culated in the'Born approximation or, more pre-
cisely, in the distorted-wave Born approximation, "
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where (J„') is the thermal average of the compon-
ent of J in the direction u of the current in a sin-
gle-crystal grain and ((J„)) is the average of ( J3)
on all the grain orientations. This resistivity
term is anisotropic because ((J„')) depends on the

orientation of the magnetic field with respect to
the current direction u. It obviously contributes
to the resistivity anisotropy hp„(H), Eq. (2), but

not to the isotropic part of the magnetoresistance
Ape(H), Eq. (3). In order to obtain the resistivity

Q
anisotropy we have to calculate Ap-„ for magnetic
fields parallel and perpendicular to the current or,
what must lead to the same result in a polycrystal,
for two current directions u parallel and perpen-
dicular to a fixed field direction z. For u parallel
to z, Eq. (20) becomes

~po)) =, sin@3 (cos7i3) ((J,'))—,(21)o 4mcDi') . , J(J+ 1)
ne'k

2nd for u perpendicular to z, in a polycrystal,

splitting of the ground state directly results in a
contribution to the resistivity anisotropy, Eq. (23).
This contribution is obviously proportional to
(iJ.sH/k~j)3 in the low-field limit. Then one ex-
pects a saturation of the resistivity anisotropy
within the ground state for p. ~H ~k~T and, after
this partial saturation, a generally slow increase
due to the admixture of excited states, up to a
complete saturation (((J', )) = J') at very high field.

If the ground state is a Kramers doublet, J', is
equal to —,J(J+1) for both states of the doublet (as
for a spin 3), and the resistivity anisotropy can
result only from the admixture of excited states
into the states of the doublet by the magnetic field.
It can be easily shown that, as long as p, ~H is
very small compared to the energy difference 4
between the ground and excited states, the quadru-
pole moment induced by mixing is proportional to
p, sH/a and has a different sign for the two states
of the doublet:

Qp

2 ((J,)) + ((J,)) = J(J+ 1)

2mcD " ' . , J(J+1)
sinq3 (cosq3) ((J,'))—ne'0

(22)

((J'. )) —'. J(J+ I-) *i,H-/~.

It immediately results from Eq. (23) that

V II P)( -)V'B ((J ))
OB' (26)

(23)

where n(E~) is the density of states at the Fermi
level (per unit energy, per atom and spin direc-
tion), and p, is the zero-field resistivity that we

suppose mostly induced by T ' and thus given by

p, = 3, , (sin'q, + 5 sin'q3). (24)

We emphasize that, in Eq. (23), ((J,')) is a ther-
mal and powder average of the square component
of J in the field direction.

It follows that the contribution to the fractional re-
si.stivity anisotropy is expressed as

p))
—p~ ) (3) sin'g3 cos'g3

p, sin'g, + 5 sin'g,

where n, and n denote the populations of the states
of the doublet. At low temperature

Pll-Po PB for p, H«k T«d,( H)'

po k~T~ B B

p. ~H for k~T ~ p, ~H «b, .

With respect to the case of a triplet or a quartet
ground state, the initial variation in H'T ' is re-
placed by a variation in H'T ' and the partial sat-
uration for p.~H& k~T by a variation which is
temperature independent and linear in H.

If the ground state is a singlet, the quadrupole
moment is also induced by admixture of excited
states into the ground state. It can be easily
shown that, at low field, the quadrupole moment

appears in a second-order perturbation calcula-
tion:

C. Crystal-field effects on the anisotropic magnetoresistance

The quadrupole-moment polarization ((J,))
3 J(J+ 1) entering the expression of the resistivi-

ty anisotropy, Eq. (23), depends on the field and

on the temperature in very different ways accord-
ing to the scheme of crystal-field splitting for the
RE ion.

If the ground state is a triplet or a quartet, dif-
ferent values of J', are associated with the states
of the triplet or of the quartet, and the Zeeman

(27)

It follows that a resistivity anisotropy proportional
to H' and independent of T is expected, at least as
long as k~T and p. ~H are much smaller than b.

We shall see in Sec. IV that these typical be-
haviors for triplet or quartet, Kramers doublet,
and singlet ground states, respectively, are ob-
served in the experimental results. Of course,
there are some more complicated cases with, for
example, several low-lying levels in a small ener-
gy range.
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D. Isotropic magnetoresistance induced by exchange scattering

V= Vo+ V„,„, (28)

The negative isotroyic magnetoresistance of di-
lute magnetic alloys has been calculated by several
authors. " The conventional starting point is a
scattering potential limited to l =0 terms:

2)

dT„-„-,= 2ve" & (g~ —1) &Z, &

Xgy+ (gk) V, (nk;). (34)

After a calculation exactly similar to that of Beal-
Monod and Weiner, ' we find in place of Eq. (33)

V(0)
Vo= Q H ak, ak,

kk'

J(0)

Vex~h Q 2H [(ak ak —ak, ak )jg

(28)
&pl (H)

= — 5w(g, —1) I'"n(Z~)
Po

sin2 + 5 sin' (35)

+ak' ak-~ +ak'-ak ~ ] (30)

If J is much smaller than V and in the Born
approximation the result of Beal-Monod and Wein-
er' is written in our notation, we have

1
pQ

X coth2(1—
sinh —,z (31)

&p (H)/p, = (&'"/V'"-)'((&,&)' (32)

The calculation of Beal-Monod and Weiner assumes
free localized moments (no crystal f ield). In the
presence of crystal field, Eq. (32) for the contribu-
tion of the non-spin-flip scattering still holds, ex-
cept that, in a polycrystal, ((J,&)' is replaced by

&(&J,&)'& [average of (&J,&)' on all the orientations
of the crystal axes with respect to the direction 0,
of the field]:

&p, (H)/p, = —(J'"/V'")'&(&&,&)'& ~

However, for RE impurities in noble metals, the
scattering potential cannot be limited to the l =0
terms and, at least for its isotropic part Vo, can-
not be treated in Born approximation. For the iso-
tropic pazt Vo we have to introduce the matrix ele-
ments Tk-'k„Eq. (6), in place of V~"/N in Eq. (29).
For the exchange interaction, Eq. (30) is to be re-
placed by Eq. (14) and, as is shown in Appendix A,
its contribution to the non-spin-flip elements of T
matrix is

where a =g~ p.eH/keT. The first term in the square
bracket arises from scattering without spin-flip by the
part s,J, of V,„,h. The second term arises from
the spin-flip processes and generally is much
smaller. For example, in the high-field limit,
the first term equals J and the second ~ J. The
first term is still more predominant at low field.
As Eq. (31) is to be applied to RE impurities with
large values of J and specially to Ho" (J =8, J'
=64, —,

' J = 2), we can neglect the second term of
Eq. (31) and write the simplified expression

IV. DISCUSSION OF THE EXPERIMENTAL RESULTS

A. Sign of the resistivity anisotropy

From Eqs. (13) and (23) the resistivity aniso-
tropy is expected to be proportional to L(S ——,)
for heavy RE impurities. We just observe in the
experimental results (Figs. 1-8) that the resis-
tivity anisotropy vanishes for Gd impurities (L =0),
and is positive for Tb, Dy, and Ho (S&—,) and nega-
tive for Er and Tm (S&4). This agreement dem-
onstrates that the resistivity anisotropy is mainly
due to quaChuPole scattering. It can be noticed
that the contributions from multipoles of higher
order should not present more than one change of
sign in the series of the heavy RE. These con-
tributions are apparently too small to modify the
typical variation of sign of the contribution from
quadrupole scattering. We also point out that the
resistivity anisotropy observed for Au:Yb is nega-
tive, in agreement with what is expected. How-
ever, the model of this paper should not be ap-
propriate for Yb impurities in Au for which a
strong interaction from covalent mixing exists.
A different model based on the covalent mixing
mechanism also predicts the negative sign. It
will be presented elsewhere together with the ex-
perimental results for Au:Yb.

B. Crystal-field effects

Figures 1-8 show the different behaviors observed
for different schemes of crystal-field levels.

The temperature and field dependence of the re-
sistivity anisotropy (p~~- p~)/p, of Au:Ho alloys
(Fig 6) is simi. lar to what is expected for a triplet
or a quartet ground state: variation in H'T ' at
low field and saturation (within the ground state) at
high field and low temperature (H &20 kG at 1.2 K
in Fig. 6). This behavior is accounted for by the
crystal-field level scheme found. by Murani": a
I',' triplet lies a few tenths of K above the non-
magnetic ground state and therefore is populated in
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our experimental temperature range. In Sec. V
we will determine the crystal-field parameters
from the field and temperature dependence of the
resistivity anisotropy of the Au:Ho alloys.

The resistivity anisotropy of Au:Er (Fig. 7) is
approximately proportional to H'/T at low field;
then, at least at low temperature, between 1.2 and
4.2 K, it is approximately proportional to & and is
weakly temperature dependent. This is the be-
havior expected when the ground state is a Kra-
mers doublet, in agreement with the existence of a
I 7 ground state for the Au: Er system. '

The resistivity anisotropy of Au: Tm (Fig. 8) is
temperature independent below 4.2 K and approxi-
mately proportional to H below about 20 kG. This
is the characteristic behavior for a singlet ground
state at low temperature and low field, in agree-
ment with a ground state for Tm in Au (Ref. 19}
(our results suggest that ~ is small).

The behavior of the resistivity anisotropy of
Au: Tb (Fig. 2) is not really similar to one of
three typical behaviors described in Sec. III C.
This is certainly related to a complicated level
scheme with several low-lying levels in an energy
range of few K."

The resistivity anisotropy (p~~
—p~)/po of Au:Dy

alloys strongly depends on the concentration of Dy.
We will discuss these concentration effects in Sec.
IV C.

C. Concentration effects

We have generally observed that the resistivity
anisotropy of our alloys is approximately indepen-
dent of the RE concentration. However, concentra-
tion effects are observed in some systems.

Figure 10 shows the resistivity anisotropy at 1.2
K for gold alloys containing 0.25, 0.49, and 1 at. %

of Ho impurities. It can be seen that the resistiv-
ity anisotropy of the lower concentrations (0.25
and 0.49 at. %%uo ) isnearl y independen t of th econ-
centration (which is expected for noninteracting
impurities). Concentration effects become ap-
parent for 1at. %%uoof Ho: theresistivityaniso-
tropy is smaller and increases more progressive-
ly.

Similar concentration effects are observed for the
Au:Dy alloys: for a 1.4-at. % concentration (Fig.
3) the resistivity anisotropy is approximately lin-
ear in H and temperature independent for large
enough values of H/T, which is consistent with a
Kramers-doublet ground state; in contrast, for
a 0.3-at. % concentration we have observed a larger
anisotropy, with a tendency to saturation above
30 kG at 1.2 K, which rather suggests a quartet
ground state.

Our results on Au: Dy alloys are apparently in

agreement with those of Chelkowski and Qrbach
They interpret concentration effects on the mag
netic susceptibility of Au:Dy by a small change of
the crystal-field parameters and a resulting re
versal of the ground state from a TP quartet at
low concentration into a I, doublet above about
0.5 at. %% . Howeve r, suc ha n interpretatio ncould
not account for the definite concentration effects
that we have observed in Au:Ho alloys: we have
computed that, in this case, a small change of the
crystal-field parameters weakly affects ((J',)) and

the resistivity anisotropy. We are rather inclined
to ascribe the concentration effects to a noncubic
"crystal field" due to the lattice distortion by the
neighbor impurities. Such a noncubic component
would split triplet or quartet levels. This could
explain the importance of concentration effects on
the resistivity anisotropy when a triplet (Ho) or a,

quartet (Dy) is involved.

V. ANALYSIS OF THE MAGNETORESISTANCE

OF Au:Ho ALLOYS

We consider the experimental results obtained
for Au:Ho alloys in the concentration range (below
0.5 at. %) where the magnetoresistance induced by
the Ho impurities is practically concentration in-
dependent. Figure 6 shows the anisotropic part of
the magnetoresistance, i.e. , the resistivity aniso-
tropy (p~~

—p~) po, and Fig. 9 shows the isotropic
t N pii-p. }+2(p. p.

&l»&E-'

quationss (23) and (35) give the anisotropic and

isotropic contributions to the magnetoresistance
from quadrupole scattering and from exchange
scattering, resPectiveiy. In order to fit Eqs. (23)
and (35) with the experimental results of Figs. 6

and 9 we have calculated ((J,')) and(((J, ))') for
several values of the crystal-field parameters x
and g4. This calculation is described in Appendix
B. The best fit with the experimental field and
temperature dependences is obtained for

x =-0.35, C4=-20 K.

The agreement is good for both the anisotropic
part, Fig. 6, and the isotropic part, Fig. 9, of
the magnetoresistance. The crystal-field param-
eters are close to those obtained for Ho in Au by
Murani" from susceptibility measurements. The
magnitude of the experimental effects is accounted
for by putting in Eqs. (13), (23), and (35) n(Ez)
=0.15 states per eV, atom and spin, qp z+ 7f2
= —,', n (i.e., Z, =Z, =1),"and

$i"=0.020 eV (anisotropic part),
I'' =0.042 eV (isotropic part}.

The values found for d'" and P'' do not strongly
depend on the choice of x, Cg Zp and Z, . For
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example, if C4 shifts to -30 K, the variation of
dt" and I ') is smaller than 10%%u&, and if x varies
between -0.3 and =0.4, the variation of d ' and
I 2) is smaller than 5%. In the same way, if Z,
varies between 0.5 and 2 (Zo varying between 1.5
and 0), d +) varies between 0.018 and 0.026 eV and

I " varies between 0.041 and 0.058 eV; if a screen-
ing charge Z, = 0.2 is introduced (with Z, =Z, = 0.9),
the variation of d ' and I' " is smaller than 10&&.
We remark that the values of I ') found for Gd im-
purities in Au are not very different: 0.041 eV
from the magnetoresistance and about 0.11 eV
from EPR data (see Sec. VI}. Finally we point out
that, because of a numerical error, we gave in a
previous publication' an erroneous value of d"':
0.049 instead of 0.020 eV}.

VI. ANALYSIS OF THE ISOTROPIC MAGNETORESISTANCE

OF AU:Gd ALLOYS

iip&(H) see( "k(z ) sing, cosy,

}po sin q, +5sin'g,

(36)

The%&est fit of Eq. (36) with the experimental re-
sults of Fig. 1 has been obtained by using the val-
ues of Z„Z„and n(E~) already used in Sec. V and
Z' =0.041 eV. This value of Z'' does not st ongly
depend on the choice of g, and g, . It can be noted
that this value of the exchange coefficient I " is
not very different from the value found for the Ho
impurities in Sec. V.

We can also compare the value found for F ') with
the values derived from reflection electron spin
resonance (RESR) experiments on Au: Gd alloys.
If we assume with Huang Liu et al. ' that the pre-
dominant term of the exchange interaction is the
l =2 term, the exchange interaction can be limited
to its I =2 terms and is given ' by Eq. (9). The
exchange broadening and the g shift of the unbottle-
necked resonance is then given, after Davidov et
al. , by

,' (vks T/g p ~) [TI—2)n(@~)]',

hg = —', I' ' n(E ) .
(37)

(38)

The Au:Gd alloys (Fig. 1) exhibit the conventional
negative and isotopic magnetoresistance induced
by exchange scattering. For Gd impurities (J = —, ,
go=2) we write

(Zg) =OB,g2(2lj.s H/'ks T),
where B,&,(x) is the Brillouin function for J = —, ,
and Eq. (35) becomes

Chock et al."give for the RESR of Qd impurities
in gold

gff/g T = 8 K/G, g = 2.0 5 (b,g = 0.05),

which, in their interpretation of an unbottleneck
resonance, yields, after (37) and (38), F~') =0.11
eV and F "= 0.13 eV [note that (37} and (38) still
hold if the RESR signal is identified with a high-
wave-vector resonance, as in the similar Ag:Gd
system" ]. The values of.I " found from RESR
are about three times larger than the value derived
from the magnetoresistance of Au: Gd. However,
the introduction of an exchange constant I" for the
s partial waves in the analysis would bring the val-
ues of F ) derived from the RESR much nearer to
the value derived from the magnetoresistance (be-
cause the contribution from Z"0) would be much
more significant to ~/6 T and to ag than to the
magnetoresistance b,pz, as can be easily shown).

VII. DISCUSSION

We will mainly discuss the data obtained on the
quadrupole interaction. We have found in Sec. V
di' =0.020 eV and F~" =0.042 eV for Ho impurities
in gold. The direct comparison of the magnitude
of d ' and I'' is not very significant, because the
quadrupole and exchange interactions, Eqs. (10)
and (9), respectively, also involve large numerical
coefficients. It is more relevant to compare the
amplitude of variation of these interaction terms,
i.e. , the characteristic energies

Z„=5L(S--,')d'", E...„,„=5SI'".
For Ho impurities we obtain

Eqd eV, E is. exdI. 0.42 eV ~

We have also calculated Eqd and E;„„,„ for the
other heavy-RE impurities by assuming that the
scaling laws (11) and (13), with I " and d~2 con-
stant in the RE series, are obeyed (which turns
out to be approximately observed in our experi-
mental result). The values obtained for @ d and

E;„„,„are plotted in Fig. 11. The interesting re-
sult is that the quadrupole interaction has the same
order of magnitude as the spin-dependent isotropic
exchange interaction (the quadrupole interaction is
even larger for Tm impurities). We have seen in
Sec. V that reasonable changes of the other param-
eters entering the analysis do not strongly modify
the values obtained for d ' . It follows that our
results reliably demonstrate the importance of the
quadrupole interaction for RE impurities in gold.
The orbital exchange interaction (of I ~ L type),
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on this magnitude should be useful to understand
the role of the Ruderman-Kittel-Kasuya-Yosida
biquadratic interaction in the magnetic properties
of the rare-earth metals and compounds.
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FIG. 11. Characteristic energies of the quadrupole
interaction (Eq&) and of the isotropic exchange interac-
tion (E;„.,„,j, ) for heavy-RE impurities in'gold. We have
presented in a previous paper (Ref. 3) an erroneous plot
in which the values of Eq~ have to be scaled down by a
factor 2.4.

APPENDIX A

In the distorted-wave Born approximation" the
contribution to the T matrix from a small scatter-
ing potential dV added to the main scattering po-
tential Vo is written as

dT'ff =&x-„ ldYlxf' &„ (Al)

where y„-" /~i ') are outgoing (incoming) distorted
waves. If the incident waves, before being dis-
torted by V„are plane waves, and if g, are the
phase shifts associated to the scattering by V„
X&" are written as

which has been determined in the same alloys from
the skew scattering effect, is found to be smaller
by about an order of magnitude. ' Thus the quad-
rupole interaction turns out to be the leading aniso-
tropic term and the only one which reaches the or-
der of magnitude of the isotropic exchange.

The quadrupole interaction has also been de-
termined for RE impurities in gadolinium by Azo-
moza et al.' and has been found to be several times
smaller than the isotropic exchange. What is the
origin of the specially large quadrupole interaction
found for RE impurities in gold? Fert and Levy"
have accounted for this large quadrupole interac-
tion by the admixture of 5d states (localized on the
RE) into the conduction band: because the 5d elec-
trons lie close to the 4f electrons, the conduction
electrons can strongly feel the orbital anisotropy
of the 4f shell.

VIII. CONCLUSION

Rare-earth impurities in gold (with the exception
of Gd} induce an anisotropic magnetoresistance
which is clearly due to quadrupole scatter'ing. The
analysis of the experimental results provides in-
teresting information on the interaction of the con-
duction electrons of gold with the 4f electrons. We
find that this quadrupole interaction has the same
order of magnitude as the exchange interaction.
Other studies of scattering by 4f quadrupoles would
be of interest to obtain the magnitude of the quad-
rupole interaction ih various systems. Information

yf" = 4m Q i' e'"& rp, (k, r) Q Y,* (Q„-)Y, (Qp) . (A2}

With respect to the similar expansion of a plane
wave, i.e.,

X-=4m+i'j, (kr) Q Y( (Q-)Y, (Qp), (A3)

the distorted radial functions q&, (k, r) replace the
Bessel function j,(kr} and phase factors e""& turn
up.

If dV is, for example, the l = 2 quadrupole term
of the Coulomb interaction of the conduction elec-
trons with the 4f shell, the matrix elements of
V,~ between plane waves and distorted waves are,
respectively,

&xP l Y,glxf&= »

x g (m' —2)Y,* (Q„.)1', (Q-„.), (A4)

d~f; =&XI 'IV,.IX '&

N " 3

x Q(m' —2)1',* (Q„-)Y, (Qp), (A5)

where Dp'„' and DD'„' are related to Coulomb inte-
grals which involve, respectively, Bessel func-
tions and distorted radial functions. Our calcula-
tions of Sec. III B is based on Eq. (A5), and there-
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fore, throughout the paper, the coefficient D'"
(or d"') is the coefficient Dn'„' (or d~„' for distorted
waves. In the same way the contribution to the T
matrix to the non-spin-flip exchange scattering is
written

Z (2)
dT,~, = 2we""'(gJ —1) (J,) P Y,* (0„;)Y, (0;),

m

(A6)

where I'"' is associated with exchange involving
distorted radial functions.

Fert and Levy" show that, for 4f ions in noble
metals, the l = 2 Coulomb and exchange constants
calculated with distorted waves are much larger
than those calculated with plane waves.

APPENDIX 8

By using the notation of Lea et al. ,
"the crystal-

field Hamiltonian in cubic symmetry can be written
as

o„=T r(pTa')

= Tr p g &' (&u)T"

(a7)

(ag)

(d p~
q'=-k

where B,'., (&u) are the matrix elements of the rota-
tion operator. In the special cases considered
here, where q=0, one finds

+0 4 y/2
ol= p (-)'

2k 1 Y„(~)p,
q'=-0 +

(alo)

where Y~, are usual spherical harmonics.
For polycrystalline samples in which the applied

field takes all directions with respect to the crys-
tal-field axis, one must perform an average over
all these directions. In practice we considered
9 x 16 directions. As a test of the accuracy we
considered 36 & 16 directions for a given magnitude
of the field and we observed that none of the re-
sults changed by more than 1%.

(a2)

We call u and E„ the eigenstates and energies of
H.

We expand the density matrix of the level J in a
tensor -ope rator basis, "

We have the axis of quantization along the fourfold
axis of the crystal. When an external magnetic
field H is applied, the full Hamiltonian is

H=H, +gp~J ~ H.

APPENDIX C

Here we consider the resisitivity due to scatter-
ing by an anisotropic potential and apply the varia-
tional method of Ziman. " In presence of aniso-
tropic scattering, the trial function P„- must include
spherical harmonics of rank higher than 1. For
simplicity we assume that the anisotropy is due to
an interaction with quadrupoles of axis x with the
current along z. The trial function to be used in
this case is written as

or

p= T J p~ (as) 4g=n, 4, +n,4, ,

where

(C1)

p~= Tr(pT;) . (a4)

(a6)

As the density matrix is diagonal in the eigenstate
basis, we can write it as

P, = cos8„--k u- Y»(Q„-),

Q, = cos8~ sin'8„-cos2$„-- (Y, ,+ Y, ,) .
(C 2)

(cs)

According to Ziman, the application of the varia-
tion principle in the general case, i.e. , for Q„-

=Q, t7, g„yields the following expression for the
conductivity~:

where p„ is the population of the state u. This is
given at each temperature by the Boltamann factor: pi X. P i.,X, . (G4)

exp (-E„/ks T )

g„exp( E„lksT)- (a6)

It should be noted that the densities p~~ are taken
along the quantization axis z and not along the
direction of the magnetic field. Therefore to de-
termine the densities along the direction of the
field we must perform a rotation zv. The tensor
operators T„'are transformed into T~", and the
densities referred to the field direction, i.e. , 0~,
are given by

The matrix P and the vector X are defined by
Ziman. " In our case we have

X,- cos 8„-'sin'8„- cos2$„-d8 dgI,

cos2$-„dP~ = 0.

Then, the expression for the conductivity reduces
to
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X2
cr= p '= (X,)'(P ')„=

P11 12/ 22

where P» is given as

(C5)

o= p '=X'/P (C7)

However, if se„-„ includes an anisotropic term, P»

P» - (cos 8„- —cos 8-.)

xw~-„.(cos 8„-sin'8& cos2$&

—cos8„.sin'8~, cos2$„.) d-Q„de-„.. -(C6)
U w». is isotropic, it is easy to show that P» is

zero, and Eq. (C5) reduces to

is nonzero and proportional to the anisotropic part
of the scattering potential. When we limit our cal-
culation to terms which are first order in the
anisotropic part of the scattering potent'ial, we can
neglect P~»/P» in Eq. (C5). By allowing for ani-
sotropy in the transition probability zv~~. in 'Eq.

(C7), i.e. , Eq. (16) of this paper, we obtain an
anisotropic contribution to P which is first order
with respect to the anisotropic part of the scatter-
ing potential.

In the general case (no special orientation of the
quadrupole) P, is a more complicated combination
of spherical harmonics, but one arrives at the
same conclusions.
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