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Two exactly soluble Ising systems with new boundary conditions
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Two Ising systems are investigated with the two extended-mean-field boundary conditions recently considered

by Bolton and Johnson. The systems are N spins on a line with boundary spins on either side and at each
end. The exact solutions are obtained by the use of the modified-transfer-matrix method. A general formula
for the critical temperature is found for each system. The critical temperature is found to take an asymptotic
form similar to that obtained by Ferdinand and Fisher for the two-dimensional planar infinite Ising lattice,
The thermodynamic limits of the results are discussed.

I. INTRODUCTION

In recent years there have been many theoreti-
cal investigations on the equilibrium and nonequili-
brium properties of finite Ising systems. Most of
these analyses have been numerical and have used
computer-simulation methods. ' ' Ferdinand and
Fisher4 analytically studied the finite properties
of a two-dimensional planar Ising lattice with
periodic boundary conditions by using Kaufman's
exact expression for the partition function of the
whole system. Recently Au- Yang and Fisher'
investigated the finite properties of the Ising
lattice with cylindrical boundary conditions by
using finite-size scaling theory.

We are interested here in the physical proper-
ties of finite Ising systems, especially the asymp-
totic behavior of their critical temperatures, with
two new boundary conditions introduced by Bolton
and Johnson. ' The asymptotic behavior for N- ~
is important as an aid to understanding the numeri-
cal behavior of small clusters and possible extra-
polations to the thermodynamic limit (Bolton and
Gruen). ' The physical quantities depend on the
imposed boundary conditions and we seek exact
solutions for some finite systems.

The analytical solution for the Ising lattices
used periodic boundary conditions, but calcula-
tions with other boundary conditions have been re-
cently done; Abraham' used cylindrical boundary
conditions, and Abraham and Martin-I. 'of ' used
"pure phase" (+) boundary conditions.

In this paper we use two other boundary condi-
tions discussed by Bolton and Johnson' which are
called extended-mean-field boundary conditions
using the average which we abbreviate to EA, and
extended-mean-fieM boundar y conditions using
probability which we abbreviate to EP. In EA each
boundary spin just outside the system is replaced
by the average value of the spin obtained from the
system itself. In EP each boundary spin is as-
sumed to take values + 1 such that its probabilistic

average is the same as the average for the sys-
tem itself.

Unlike the EA method, there is no unique way to
treat the boundary spins in EP. We always have to
calculate the partition function by averaging over the
spins inside the finite system. Then we have to
average it over the boundary spins and this "bound-
ary averaging" can be done in two ways. Either
we do it immediately after calculating the partition
function or we take the free energy and then do
the boundary averaging. Though this latter choice
would be of more physical interest it is algebrai-
cally very complicated. We will merely consider
the former choice in detail. Similar types of
averaging occur also in the theories of spin sys-
tems containing impurities where one has either
annealed or quenched systems. In these EA and
EP, the average spin is determined self-consis-
tently. Finite Ising systems with these boundary
conditions exhibit a sharp transition and have a
critical temperature below which the average spin
is finite and above which it is zero. For finite
systems, the critical exponents are classical and
in particular P, the critical exponent for the mag-
netization or average spin, is —,'.

We will discuss here two exactly soluble Ising
systems using these boundary conditions. They
are chain systems and using both EA and EP we
will derive exact expressions for the partition
functions, average magnetizations, and critical
temperatures. We will also discuss the one-di-
mensional analog of these systems where these
boundary conditions act on the'end spins only.

II. DESCRIPTION OF THE TWO SYSTEMS

Consider an Ising chain of X spins labeled
1, 2, . . . , N called "internal" spins with two bound-
ary spins for each internal spin 2, . . . , N —1 and
three boundary spins for spins 1 and N. The posi-
tive interaction energy J acts between each near-
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N

E(s) = —J g s;,s; —3Js(s, +s„)
i=2

N-1 N

—2Zs ps&-mHQ s;,
i=2 i=1

(2.1)

where H is the applied magnetic field and m is the
magnetic moment of each spin.

In model P we assume that each boundary spin
takes the values + 1 with such probabilities that
their average is s, which is assumed to be the
average magnetization of the internal spins. We
define the probability distribution function Q for
each boundary spin s, , by

Q(s» =+1)=-,'(1+s), (2.2)

est-neighbor pair of internal spins and between an
internal spin and each of its boundary spins. Each in-
ternal spinhas aspinvariable s; =+1, i =1, . . . , N.
Letting s, denote a boundary spin, then the con-
figuration of the whole system is denoted by
S iq Sb

Since the models are distinguished by the bound-
ary conditions it seems appropriate to label the
two models bye or P. In modelA we let "ll
boundary spine take some average value s with ) s~

&1. We will eventually determine s by equating it
to the average magnetization of the internal spins.
Just as in the familiar mean-field approximation,
which is A applied to a single site, the self-con-
sistency allows s to be found as a'function of tem-
perature. We can obtain other physical quantities
as functions of s.

The configuration of model A is (s;, s). The total
energy of a configuration for the N spins is

Z»~" ~ = g exp K g s;,s; + 3Ks(s, + s»)
{.s ) i=2

(3.1)

For simplicity, we consider the case when II =0.
The transfer matrix method immediately gives

Z„" =(V„~P"„'[Vg (3.2)

(3.3)~A~ ~A A&
j=1

where ( V„) is a ket vector and P„ is the transfer
matrix defined as follows:

e-2Es

r K{l+2s) -E

A -E K {1-2s) (3.5)

The eigenvalues sA and wA with A, A &A.A of PA,1 1 2
and their corresponding eigenvectors are given
by

tions on the end spins. "'" This technique is ap-
propriate because it treats the first and last spins
differently from the rest of the internal spins. In
the following argument we use the notations K=PJ
=J/ksT and h=PmH W.e adopt the value J/k s=1;
k~ is Boltzmann's constant.

The partition function of model A with N spins
is written

We again get a self-consistent equation for s
which yields the critical temperature and other
physical quantities. Calling s,'. , s,". the boundary
spins of s& (j =2, . . . , N —1) and sj, s,", s,'." (j =1,N),
the boundary spins of s, and sN, then the total
energy of a configuration of model P is

AA
1

= e coshMs + a,
AA

2

( 1

AA1) R I»( f ))I

(3.6)

(3.'1 )

N

E(s) = —J P s;,s; —Js„s,"' Js„s»'—
i=2

N N-J s; s,'+s," —mII s; (2.3)
where

A

e»(a —b) l
(3.8)

with J,H, m defined as i'n (2.1).
It should be noted that because each internal

spin in the chain has at least two boundary spins,
both models are two dimensional. We will return
to this point later.

a = (e'» cosh'2Ks- 2 sinh2K)'~',

b = e sinh2&s,

R ~ = [1+ e (a —g) ]'/

(3.9)

(3;10)

(3.11)

III. DERIVATION OF RESULTS

We use the modified transfer matrix method as ~

usually given in the discussion of a finite one-di-
mensional Ising chain with free boundary condi-

Note that this N-spin system of model A with s = 0
is equivalent to the usual one-dimensional linear
chain with free end boundary conditions. In the
thermodynamic limit, N-~, we have the free
energy per spin f'"i as
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f~")= —u, sin~„.
1

(3.12)

For model P, as we have mentioned in Sec. I,
we are considering in detail averaging the parti-
tion function over the boundary spins simultaneous-

ly with the averaging over the internal spins. This
particular choice of treating the boundary spins
has been applied to small systems and in the
Monte Carlo simulation. ' The partition function
of model P with N spins is then written as

N

Zg~=, g Q(e')Q(e,")Q(e,'")e*"~'i*'l' ")"~e ' "e '"' Q(')l(e") Q(e"')e*' e *'"*'"'~exp h g e),
(s ~,si ) i =1

(3.13)

where Q is the probability distribution for a boundary spin given by (2.2). Again, we are only interested
in the case when H =0. In Eq. (3.13), we sum first over the boundary spin variables and then apply the
transfer matrix method as before. Here, we have

z("'= g ~", 'l(v ly, )j',
j=1

where

(3.14)

/ (coshK+ s sinhK)'l
lv, =l

~&(coshK —s sinhK)'f ' (3.15)

coshh. +s sinhh. 'e cosh'K —s' sinh'K e
P cosh'K —s' sinh'K e cosh@ —s si.nba 'e (3.16)

=8~(cosh'K+s' sinh'K)+ c,
A,P

(3.17)

1
)) (e*(e—d)/(each')e —e'e(el'')e)) ' (3.18)

1 —e (c —d)/(cosh'K —s'sinh'K) '

ly~, ) =~
P 1

c = [e ' (cosh'K+ s'sinh'K)'+ 2s'sinh'2K]'~',

d = se sinh2K,

B~ = [1+e' (c —d)'/(cosh'K —s'sinh'K)']'~' .

Again, in the thermodynamic limit, the free energy per spin is

f' '= —ks7'»&~ .
1

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

IV. EXPRESSIONS FOR THE MAGNETIZATION

We define the ensemble average magnetization s as

' s = g (s;)/N, (4.1)

where (s;) is the ensemble average for the ith spin. The following argument holds for both models and we
drop the superscripts and subscripts A, P. Following the standard procedure and the spectral decomposi-
tion of the transfer matrix, we can write

2

(s,&= g &vip, &(y, l +Is;&s;&s;lyg&y, lv&l,' '~," *z„
S

(4.2)
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s = i&vip, &l'&y, lxly, &+i&vip.&l'&y, lxly. &

+ ~ &vip, &&y, lxly&&y, l v&[1-(g/~, )"]/[1 —(&,/&, )] [i&vip, &l'+(g/~, )"-'i&vip, &i']-', (4.3)

where

X= s ~ s~ s]
S~

The right-hand side of Eq. (4.3) is given by (3.4)-(3.11) for model A and (3.15)-(3.22) for model P. This
is an exact self-consistent expression for s for the two models. In the expression for X, we use

fl (0)
I+& =

] and I-&=I
kl)

In the thermodynamic limit

which, written out explicitly for the two models, yields for model A

s = (1 —C„)/(1+C„),
where

C„=e' [(e'"cosh'2Ks —2 sinh2K)'~' —e sinh2Ks]';

and for model P

s =(1 —C~)/(1+C~),

where

C~ =(e'"j[e ' (cosh'K+ s' sinh'K)'+2s' sinh'2K]'~' -se' sinh2K j')/(cosh'K - s' sinh'K) .

(4.4)

(4.5)

(4.6)

Equation (4.5) has an odd function of s on the
right-hand side because we can write it as

s =[1 —e' (a —b)']/[1+e' (a —b)'],

and using (a —b)(a+b) = e 'x this becomes

s =[1 —e' [e ' /(a+b)]'j/$1+ e' [e ' /(a+b)]'j.

model A: 2E,e' & = 1 K, ' = T, =3.526.

modelP. 2e c 3e c=l. T, =3 465. . . .
(5.1)

(5.2)

Replacing s by —s replaces b by —b [(3.10)], and
the function on the right-hand side changes sign as
required. Similarly, the function of the right-
hand side of (4.6) is an odd function. This is the
same behavior as noted by Bolton and Johnson';
there is a critical temperature below which there
are three solutions + s, 0 and above which the only
solution is s =0. The critical exponent P for mag-
netization is the classical value 2.

Note that model P has a lower critical temperature
than model A. and is slightly closer to the Onsager
value 2.269. . . .

The asymptotic behavior of finite systems can
be explored by using the full expression (4.3).
Calling the critical temperature of the system
with N spins by T„and using K„=T„', we get the
following results:

model A:

V. CRITICAL PHENOMENA
,x„2K„(2—e' ") 1 —tanh"K„

Ne +
N 1 —tanhh. „ (5.3)

The critical temperature is given by expanding
the function on the right-hand side of (4.3) and re-
taining only the term of order s. For Ã=, the
explicit functions in (4.5) and (4.6) yield the follow-
ing results:

model P:
2(2 —e' s) tanhKs 1 —tanh"K„

(5.4)
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We note that tanh K~ - 0 as N - and &~ is finite.
The asymptotic behavior of T~ for large N can
readily be deduced from (5.3) and (5.4):

model A:

1/N = (2K~e'"~ —1)/K„(e'""—2)(e' &+ 1); (5.5)

model P:
1/N= (2e' "—3e' "—1)/(e' "—2)(e' "+1). 3.8

Model A

Model P

a b
Tg T + —+—+''' (5.7)

(5.6)

Since the right-hand side of Eq. (5.5) or (5.8) is
single valued and all the derivatives exist at &N
=K, (or T„=T,), we can therefore express it in a
Taylor's expansion. It yields the asymptotic form
for T~ namely 3.526

3, 5

3,4 65

where for model A.

a&» =+0.4174. . . ,
g(» =+0.2138. . . ,

and for model P
a~ ~=+0.3893. . . ,

&( ~ =+0.2094. . . .

This has the same asymptotic behavior as was
found by Ferdinand and Fisher' for the temperature
of the maximum on the specific heat of a two-di-
mensional N&&N lattice with periodic boundary con-
ditions.

We plot in Fig. 1 the values of T„ for the two
models against 1/N. This strengthens the argu-
ment used by Bolton and Gruen' in their studies

1

N

3 2 i » & I I . I I I

0 0.5 1.0

FIG. 1. Plot of critical temperature T„for the two-
dimensional finite Ising models vs 1/¹

on the asymptotic critical behavior of NxN sys-
tems.

The critical behavior can also be examined
through the two-spin correlation function (s, s,)
for the two internal spins on the sites 4 and L.

Using again the general notations we have

2

(s,s& = p (vip &(o'oI&xl 0 (y, &lxl y, (y,&l
v

(
—')&'

(
—')' '(—')" '

l(vl @,& I'+
(
—')

'
'l(v

I y& I'
0~a~&-&

(5.8)

In the limit, not only N -~ but also 4, l, N —I, ,N - 0 -~. Then the only nonvanishing terms are p = q =z = 1,q
=2 and p=r=1, and

&s„s,& =(I(l'I e, &
I'

I &@, IK I e,& I'+const(~, /~, )' "j(I&l'I 0,& I') '.

Taking the limit Ik —l
I
-~, we see from (5.9) that

»m»m &s.s~& =1&pi Ix I @i& I' = s',

since from (4.4) s = &P, IÃ I P,& for N-
This proves the existence of the long-range

order, and brings us back to the question of the
dimensionality of the models. They are two dimen-
sional because the boundary spins are treated in
some self-consistent way and they simulate the
rest of the two-dimensional plane square lattice.
This is the spirit of the familiar mean-field approx-
imation and indeed our solution (5.3) in this paper

yields for N =1 the familiar mean-field approxima-
tion value K, = —,'. Model A with N =2 and 3 are the
Qguchi" two-spin and three-spin approximations.
We note in passing that our solutions also yield
the pure phase boundary conditions (+). When we
replace s by either +1 or -1 on the right-hand side
of (4.5) we get

s =f(K), (5.10)

where f(K) is a continuous function of K and we do
not have a sharp critical temperature. The critical
exponent P is now not defined.
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2.0
2 tanhrC„ tanh'Z„- 1N

tanbX„-1 (5.12)

).0

0.5

I

0.5
I

1.0

FIG. 2. Plot of critical temperature T~ for the one-
dimensional finite Ising models vs 1/¹

We can now consider the one-dimensional analog
of the N-spin systems described above where EA
and EP act on the end spins only. We then have
the following results:

model A:

In the thermodynamic limit, these systems are
just the usual one-dimensional infinite linear chain.
As expected, T„-0as X-~. In these cases, no
relationship of T„against N as in Eg. (5.7) exists.
The values of T„vs 1/N are plotted in Fig. 2 for
these two systems.

Finally, we discus& briefly the second choice of
treating the boundary spins in EP, i.e. , the free
energy of the whole system is given by averaging
the logarithm of the partition function over the
boundary spins. As mentioned earlier, the calcu-
lations of systems under this boundary condition
get very involved. Only a few simple examples
have been investigated analytically. For a one-
dimensional N-spin system having this boundary
condition acting only on the end spins, it is found
that T„ is always zero for any finite ¹ Moreover,
for one spin with this boundary condition in two
dimensions, one gets T, = 3.089. . . compared with
the corresponding results 4 for EA and 3.915.. .
for EP (the first choice). This result is consider-
ably closer to the Onsager value 2.269. . . than those
of the other methods. A. finite system with this bound-
ary condition is hence a better approximation to the
infinite system.
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