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The bond and site percolation models are formulated as the limit of spin models and spin

Hamiltonians are obtained for these models. The order parameters in each case provide generat-

ing functions for the site and bond distributions in the clusters. The form of the site-bond distri-

bution is discussed and sho~n to be extremely narro~ near p, Critical exponents are obtained

near one dimension and shown to be the same for the t~o models.

I. INTRODUCTION

Percolation behavior can occur in a variety of physi-
cal systems, e.g. , random magnets at low temperatures
or conducting networks. Two percolation models are
often considered theoretically —the bond and site
models. In the bond model, bonds connecting
nearest-neighbor sites of a lattice are placed at random
to form clusters. All bonds are independent and p and
I —p is the probability of a bond being present or ab-

sent, .respectively. In the site model, the sites of the
lattice are randomly occupied and p and j. —p is the
probability of a site being occupied or unoccupied,
respectively. Nearest-neighbor occupied sites are con-
nected to form clusters. Reviews of percolation prob-
lerns have been given by Shante and Kirkpatrick' and

by Essam. '
In this paper the bond and site percolation models

are formulated as the limit of interacting spin models.
The order parameters in each case is related to the
generating functions for the distribution of sites and

bonds in the connected clusters. The generating func-
tion is defined by

C(P +) XP e hs gb--
P, b is the probability that a site (occupied in the site
model) lies in a cluster of s sites and b bonds. Only

finite clusters contribute to the sum in (1.1) so that

In this paper we study the form of the generating
functions C and D and the distribution function P, b

near the critical concentration p,
Insight into percolation models is obtained by for-

mulating them as the limit of a spin model. This was

first done by Kastcleyn and Fortuin' for the bond
model and their results were generalized in Ref. 4 to
give information on the distribution of sites and bonds
in the clusters. It is shown here that the site percola-
tion model can also be formulated as the limit of a

spin model and information on the distribution of
sites and bonds in clusters can also be obtained.

%'e first discuss the spin representation of these per-
colation models and derive the spin Hamiltonians in

Sec. II. In Sec. III the mean-field theory of these
models is presented. In Sec. IV the Migdal method is
used to discuss critical exponents near one dimension
and continuum models are derived and used to dis-

cuss critical exponents near six dimensions. The
results are discussed in Sec. V.

II. SPIN MODELS

A. Bond model

On each site of a regular lattice of X sites and —,zN

nearest-neighbor bonds (z is the coordination nuinber)
we attach a q-component spin ), and define a partition
function (we use a subscript 8 for the bond model)

p &pc
C(0, 0) ='ii (1.2)

~here p,. is the critical concentration and P is the pro-
bability that a site (occupied in the site model) is in

the infinite cluster. Also of interest is the distribution
of bonds in clusters of size s and for this purpose we

define a fullctlon

D(s,g) = XP„e "

&& exp h X(5& ~

—1) (2.1)

where v -p/(I —p) and the product is over ail

nearest-neighbor pairs of sites. The two terms in the
curly brackets denote the absence or presence of a

bond connecting nearest-neighbor sites i and j, respec-
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tively. Thus if i and j are connected by a bond the
weight factor is

v~„„exp[g(8„ i
—1)],

Q2e, (h, g) =- lnZB
N 8h Bq

(2.2)

while if no bond connects them the weight factor is l.
These factors then require that all the spins in a con-
nected cluster take on the same value, . There is a fac-
tor e "for each bond in a connected cluster if the
spins A. , ~1 and 1 otherwise. The field h acts on spins
in the states A. , /1. After taking the trace on A. a
cluster of s sites and b bonds is weighted by a factor
vb[1 + (q 1)e

—hs gb]—

When the product in (2.1) is multiplied out all pos-
sible configurations of clusters on the lattice are ob-
tained. It is shown in Ref. 4 that the generating func-
tion (1.1) is given by

The yartition function can be written in the form
—H'B

ZB =Tr),e, where

Ha g (Ke gk, . I + k gb, , l8 II . . t)

—h X(SI, )
—1) (2.3)

qg„) =1+XX"

(2.4)

where g, —= X,", . The Hamiltonian can be written

KB KB+Ih
and e =1+ve ', e =1+v. %'e introduce a
representation where the spins take on the values of
the q roots of unity (X = e' "t', s = 1, . . . , q)

q 5„ I,
= 1 + $ A. ,'X," ',

Hg' =— (Keq + k) — (1 —q)—zN hN B

2g q nn r

I'

——h+-k 1 zk

q "" '1'2 q q
(2.5)

C, (h, g) =1—
r I

9MB

Bq

where

Ma = ($ h. ,')

=Tr, $ h. ,"e /Tr„e

The generating function is

(2.6)

(2.7)

with m =1, . . . , z. A q-component spin X„ is placed
on each bond. This notation for the bond spins is
convenient but not unique as there are two ways of la-

beling each spin depending on which site we choose of
the two attached to a bond. The collection of all the
spins on the. bonds attached to site i is denoted by

{X,}. The partition function is now given by (we use a
subscript S for the site model)

Zs = Tr~ g 1+vh({)I,})exp —g (5„ t
—1)h

z ltn
I11

The Hamiltonian HB is obtained from HB' by setting

q = 1 and omitting constants

H, = K, gx);) v- -k$-X), '~, '

I

xexp L X(5„,—1)
2 ttn'

itn
I

(2.9)

nn r tlt1 t ),t2

—(h+zk) X); . (2.8)

MB is the order parameter for the bond model. The
field k =pg enters the spin Hamiltonian both as a
field acting on the spins and in the coupling between
the spins.

B. Site model

The site percolation model can also be formulated
as the q =1 limit of a spin model. We again consider
a regular lattice of N sites and coordination number z.
We label the bonds attached to site i by subscripts im

where v =p/(1 —p), the product over all sites, and
A({h., })=1 if all the spins {)t,} at site i are the same
and is zero otherwise. The two terms in the large
square brackets denote whether a site is unoccupied or
occupied, respectively. Thus an unoccupied site is
weighted by 1 and an occupied site is weighted by a
factor

vh({X,})exp —X(g& I
—1)h

tt1
I

Thus all the spins surrounding an occupied site must
have the same value and all the spins in a connected
cluster take on the same value. This condition follows
because nearest-neighbor sites have a spin in common
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which then serves to connect up'all the sites in a clus-

ter. .The field h acts on spins in the states A, & 1 and is

conjugate to the number of sites in a cluster. The
effect of the field g is a bit different than in the bond
model. There are three types of nearest-neighbor
bonds: (i) bonds connecting two unoccupied sites
(free bonds), (ii) bonds connecting an unoccupied and

an occupied site (external bonds), and (iii) bonds con-
necting two occupied sites (internal bonds). Free
bonds are weighted by a factor 1+ (q —1)e " (after
taking the trace on k). A cluster of s sites, b internal

bonds, and b, external bonds is weighted by
v*(1+ (q —1)exp[ —hs —g (b + b,)]).

The product in (2.9) generates all configurations of
occupied sites on the lattice. Thus, in configuration

G, if we have NK, b(G) clusters of s sites and b inter-
nal bonds and NB(G) free bonds we can write

Z, -X[1+(q—1)e "] " '

G

x g (v'[1+(q —1)
s, b

—hs —g(b+b ) NK (G)xe e ]) sb (2.10)

where the sum is over all configurations. The follow-

ing results are then easily obtained:

(Zs), -i=(1 —p) N,
»

9 lnZs

N ~q

I

=(1 —p) g ~b»& B(G)e + QK (G)e
s, b

—hs —g(b+b )=Be "+XK, qe
s, b

(2.11)

where 8 is the average number of free bonds and K, b

is the average number of clusters (per site) of s sites
and b internal bonds. (The external bonds can be el-

iminated through the relation zs.= 2b + b, if desired. )
The generating function is given by

Cs(h
8 lnZg

Np Bh Bq

1
H s= QTr„

q-

r

x g 1 + $ p'k, "„,
'

III I'

x Ks +—g (1 —q) + g &,'„,
h'

~q Itt' I'

—hs —g(b+b )
P, be

s, b

(2.i2)

This is not exactly of the form (1.1) (because of the
presence of b, in the exponent) but contains the same
information.

The partition function (2.9) can be written in the
HS

form Z~ =Tr„e, where

»

e " c}Ms
Cs(h g) = „1—

1 —p+pe " Bq
(2.16)

where

Ms = (h((k, )) $k,',„)

The generating function (2.12) then takes the form

=Tr„h( (k, )) X k,"„,e sIITr„e (2.17)

(2.13)
The Hamiltonian H~ is obtained from Hs

'
by setting

q=1,

KS KS—h'
with e =1+ v, e =1+ve ", and h'=ph. A
convenient representation for the 4((X,)) is

h((x, )) =Tr„g 5„„ (2.14) (2.18)

where p, is a q-component spin. Using (2.4) the Ham-
iltonian can be written

The spin models (2.8) and (2.18) for the bond and

site percolation models are similar except that the



4974 GIRI, STEPHEN, AND GREST i6

spins are placed on the sites in the bond model and on
the bonds in the site model. In the bond model only
nearest-neighbor pair interactions occur while the site
model is more complicated because the interaction in-
volves all the spins on the bonds surrounding a site. (b), =zps (3.7a)

The average number of bonds in clusters of size
s, (b) „and the fluctuations around this average are
then given by

III. MEAN-FIELD THEORY
((b'), —(b),')' '

1 2y
(b), zp s

(3.7b)

It is of interest to discuss the mean-field theory of
the two models, (2.8) and (2.18).

A. Bond model

We introduce an order parameter z„= ()(') and from
(2.8) the mean-field Hamiltonian is

s

HaM= —$)(' Ksz„, + zk Xz, +h +zk
r r

Equation (3.7a) gives some information on the
shapes of the clusters near p, For large
z, p, . = 1/z and (b), = s. For large one-dimensional
clusters, we have b = s —1, while for compact globular
clusters, we have b = —,zs. Thus (3.7a) shows that

1

the clusters are more extended than compact. Equa-
tion (3.7b) shows that the root-mean-square fluctua-
tions are small -s ' ' for large clusters. Close to p,
where both s and b are large the distribution (3.6) is

essentially a 5 function

(3.1) P,'ba) = P() (s) 5 (b —zps) (3.8)

From symmetry we may take z, = RB for all r and in

the limit q =1 the self-consistency condition for RB is
The distribution (3.6) is conveniently written in a

scaling form (close to p, .)

B B-zK R —h —zI.
RB=1 —e (3.2) P (a) = r 'd+' f (srph (b —as) r") 0.9)

The generating function Cs(h, g) =1 —Ra and from
(3.2),

(ZSKS) -s(zKS+h+zk)
Ca(h, g) = e

s=i st
(3.3)

From (1.1), (1.3), and (3.3), equating powers of e "',

we find

with v= —,, 5=2, x=1, dimensionality d=6, and

a =zp is a constant. The new exponent x is connect-
ed with the width of the distribution and has been dis-
cussed by Leath. ' Taking f in (3.9) to be even in

(b —as) then (b), =as and ((bz), —(b) )' ' —s" b

(assuming it is independent of rp as rp 0).
The order parameter has the form

(zsKs) —sz(Ka+k)
Da Sg

s
(3.4)

s

R (h, g) =r "d bf h+ag g
fX

1

(3.10)

D (s g) —P (s) e Pz+s'zz 2
(3.5)

where

-sr 2/2
Pa(s) = [1/(2srs')'~']e

is the probability of a site lying in a cluster of s sites,
rp=z(p, . —p)/(1 —p, .), and y= —zp(1 —p —zp). For]

large b the right-hand side of (1.3) is of the form of a
Laplace transform and P, b is determined by inverting
this transform. From (3.5) we find

P, b
——P()(s) (&, exp(a) 1 (b —zps)'—

(4rrsy)((' 4sy

0.6)

The average size of the clusters diverges at

p, (for g =0), and thi.s determines
ZKs, . =z in[1/(1 —p,.)] =1. Close to p, . we are interest-
ed in large values of s and b (i.e., small g), and the
right-hand side of (3.4) can be approximated by

The field g enters with two exponents 5 and x with
5 ) x. Close to p, . the term (h +ag)rp h is more im-

portant and if the term gro is omitted the distribution
P, b is proportional to a 8 function as in (3.8). We
note a difficulty with the mean field theory; the width

y is negative for certain values of p. This difficulty
can be resolved by using a more sophisticated form of
the mean-field theory, e.g. , the )cthe-Peierls approxi-
mation which is exact for a Bethe lattice and gives a
result of the form (3.8), i.e., P,'b' =PB(s)5(b —s+1).

B. Site model

As in the bond model we introduce an order pararq-
eter (A.') =z, and set z, =Rs for all r Amean-fiel. d
Hamiltonian is obtained from (2.18) by replacing X,',„
by R& for all spins except that under consideration.
This form of the mean-field theory neglects all short-
range correlations and gives (omitting constants and
setting q = 1)
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HsM = 2Ks[1 (1 Rs)' ~] X lt"

2h'
1 + (z —1) (1 —Rs) 'z —1

+ [1 —(1 —Rs) = '] g h.
'

IV. CRITICAI, KXPONKNTS IN 1+~ A.ND 6 —~

DIMENSIONS

A simple renormalization-group analysis of the spin
Hamiltonians for the bond and site problems can be
carried out near one dimension using the Migdal ap-
proximation. 6 In each case in one djmension we can
write the Hamiltonian

x g)t" —g X)" . (3.11) H=-$ V() „),), (4.1)

The self-consistency condition is (for q =1)

Rs =1 —exp {—2Ks[l —(1 —Rs)' ']

—2b'(1 —R,) -' —g},
and the generating function (2.16) is given by

e
—h

C, (b,g) = „(1—R,)
1 —p+pe "

(3.12)

and define the transfer matrix

[T({K,})]~,~ =e (4.2)

where {K,} denotes the set of coupling constants in H.
The Migdal recursion relation can then be writ'ten

[T'({K,})]„„=(const)[T({K,'2'-'})]„„, (4.3)

Equation (3.12) cannot be solved exactly, but near

p, , we expand the expo'nential in powers of Rs, h',
and g which gives

roRS+ uRS =g +2h' = g +2p, h (3.14)

(s) =2p, z/ro, (b+b,.) =z/ro (3.i5)

These results give some information about the shapes
of the clusters. Thus for large z, p, —1/2z, and from
(3.15), (b + b, }= z (s). For a large one-dimensional
cluster b + b, = zs, which for a compact globular clus-
ter b+b, , = —,zs. Result (3.15) then shows that the

clusters near p,. are more extended than compact as in

the bond problem.
Equation (3.14) can be solved for Rs,

' I/2'

Rs — 1 —1+—,(g+2p b)
rp 4u
2u fo

(3.16)

The distribution function P, b then follows by substi-
tuting Rs in (3.13) [with (1 —R,)"=1—zRsl and tak-

ing the double inverse Laplace transform

p~
~sb =Z 2' us

~ ]j2
Sf0

2

exp
8up,

t

xg $+$„—
2p(

(3.17)

This is of exactly the same form as in the bond prob-
lern, Eq. (3.8). As we have only retained terms linear
in h and g in (3.14) the width of the distribution is
zel o.

where ro = 1 —2(z —1)Ks and u = —(z —1). The con-1

2

dition r0=0 determines p, . through the equation
—ln(1 —

p, .) = 1/2(z —1). In the disordered phase

(p ( p, .) from (3.13) and (3.14), the average number
of sites and bonds (internal and external) are e(h'i2) 2

I-d e"~2 (ex+"+"+ e"—1)
eh+ 2e~ —2

(g+I, +h)2]-d e2(K+k+h)
e e"+ 2e"—2

(4 4)

In addition to the trivia1 fixed points A =0 and
K = ~, these relations possess the fixed point
k = b =0, K,. = 1/(d —1), which corresponds to the
critical concentration' p,. = 1 —e ' '

The linearized recursion relations near this fixed
point are

(K -K, )'=2'-'(K K,), -

k'+ b' = 2'(k+b)

(4.5)

and give the exponents v = (d —1) ', x =1, and
5 = d/(d —1). These results indicate that the order
parameter

( ud-s)y h+k k
rb, &

' rx
t

and as k —g this is of the same form as (3.10). %e
interpret the exponent x to be connected with the
width of the distribution P, b as in (3.9).

The Migdal approximation for the site problem
gives identical results except that in the linearized re-
cursion relations (4.5) the fields g and h are inter-

where K, '= K,
'
({K,}) are the coupling constants that

occur in the Hamiltonian when the length scale is
doubled.

For the bond model, which is described by the
Hamiltonian (2.3), Eq. (4.3) leads to the following re-
cursion relations when q is set equal to 1:

e +e —1h 2N

eh+ 2e~ —2
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changed. The order parameter is thus of the form
1

(rod I) f-~+g
fX

p p

with exactly the same exponents as in the bond prob-
lem.

%e now brieAy discuss the results of the renormali-
zation group analysis in 6 —e dimensions. The usual

method consists of writing the partition function as an
integral over complex order parameters. For the bond
model ~here only pair interactions occur this pro-
cedure is straightforward and has been described in
Ref. 4. For the site model where we have multiple-
spin interactions a method of passing to a continuum
model is described in the Appendix. The effective
Hamiltonian in both the bond and site problems is of
the form (we use the notation of Ref. 4)

HE $$( ro+k)zikzik /tN Xz~k=o ig Xgz„k z~ k z~ k /S(f1+f2+f3)gk +k +k 0+0(z )
1

(4.6)

where z,& is the Fourier transform of the order param-
eter z„(bond model) and z„„„(sitemodel). In the
third term, A(ri+ri+ro) is I if ri+ri+ri is an in-
tegral multiple of q and zero otherwise, rp- p, , —p,
and h —h +ag, where a is a constant.

Provided (4.6) is a realistic continuum generaliza-
tion of the spin models representing the bond and site
models the two models will have the same critical ex-
ponents near six dimensions. Also to leading order
the fields h and g enter in the combination h +ag
[terms of order gz', gzz, etc. , have been omitted in
(3.6)}. The order parameters will then have the form
((ro( ')f((h + ag)/ro ) and the distribution P, k will be
proportional to a 5 function 5(b —as) close to p, The
distribution P, has been discussed in greater detail in
Ref. 4.

APPENDIX

The Hamiltonian for the site model (for simplicity
we omit the fields) is given in (2.18):

H, (()k,"„,})=—K QTr„ ff 1+Xp, ")k,'„, "

t m

(AI)

%e have indicated explicitly that it depends on all the
spin viriables A, „„.This Hamiltonian is more compli-
cated than the bond one (2.8) because it contains in-
teractions between all the spins around a site whereas
the bond Hamiltonian only contains pair interactions.
To derive a continuum form for the site Hamiltonian
we proceed as follows,

V. CONCLUSIONS
Zso =Trk exP[—Hso((&,"„,})1 (A2)

The bond and site percolation models are formulat-
ed as the limit of spin models and can thus be
described by Hamiltoniqns. Near one dimension the
Migdal procedure gives identical exponents for both
models. The order parameter in each case provides a
generating function for the site and bond distributions
P, I, in the finite clusters. Close to p,., where large
clusters occur, this distribution is well represented by
a 5 function 5(b —as) so that the Auctuations
are small. In order to obtain exponents near six
dimensions it is necessary to pass to continuum
forms of the spin Hamiltonians. It is argued
that the effective continuum Hamiltonians are
the same for the bond and site percolation models.
Then, provided the effective Hamiltonian is represen-
tative of the underlying spin models, the bond and
site models will have identical exponents and behavior
in 6 —~ dimensions.

= C ' Tr, Jt (dz) exp[Hso(()kl„+ z„„,,})

Hso( (lk,"„,})]

where

Sp rm, f0 ({: })

The z„„,=z„„„",, r =1, . . . , q —1 are complex vari-
ables defined at each spin site and the integration is
over all z variables, and for each is over the entire
complex plane. The' equality of (A2) and (A3) fol-
lows by introducing a new integration variable
z„„,' =z„„,+A.,'„, in (A3) and using (A4). The
effective Hamiltonian is then defined by

exP[—Hs((z„„„})]=(I/q -~') Tr, exP[Hso((lk, '„, +z„„„})

Hso((kl })]
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This effective Hamiltonian may be calculated as a
power series in z, by expanding both sides of (AS).
The field terms may also be included in the right-hand
side of (AS). A straightforward but lengthy calcula-
tion then leads to Eq. (4.6).
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