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We suggest that low-temperature spin waves in classical spin systems can be understood in
terms of a "fixed-length" hydrodynamic theory. A theory is constructed along these lines which is
exactly soluble in one and two dimensions for models with an easy-plane anisotropy. The results
should apply at low temperatures to one-dimensional ferromagnets such as CsNiF3, and agree with
a microscopic truncated-spin-wave theory proposed by Villain. In two dimensions, we expect the
calculations to be valid in a band of temperatures for XY magnets with an underlying hexagonal
symmetry. The calculations should describe in addition the long-wavelength, low-frequency
dynamics of third-sound propagation in films of 4He and *He-*He mixtures. We also show that
the critical exponent v is v = 1/2\/; for XY models in 2 + € dimensions. Some results for dynam-

ics in three dimensions are presented as well.

I. INTRODUCTION

There has been considerable progress recently in
understanding the low-temperature static critical pro-
perties of n-component fixed-length spins near two di-
mensions.! One implication of this work is that the
usual long-wavelength or "hydrodynamic" picture of
magnetism? changes drastically for d <2. Specifically,
the Landau-Ginzburg expansion of the free-energy
functional in powers of a local course-grained »-
component magnetization M (T), namely,
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must be replaced by
Fo-—1k [ar(IM), (1.2a)
IM@@|*=1 (1.2b)

in one and two dimensions. Indeed, this "fixed-
length" hydrodynamic description is implicit in the
work of Ref. 1, and has been shown to be stable
against small perturbations by Amit and Ma.’ The
coupling K in Eq. (2a) is expected! to be inversely
proportional to temperature. Although (1.2) can be
regarded as the continuum limit of a microscopic
model of fixed-length spins on a lattice,!* it is rather
striking that the fixed-length character is preserved
even in a long-wavelength description. In contrast,
the "hydrodynamics" of microscopically fixed-length

16

spins in three dimensions is almost certainly described
by (1.1).

For XY models (n =2), in the continuum limit the
static theory summarized by (1.2) neglects phase-slip
singularities in one dimension and vortices in d =2.
Although it is easy to show that phase slips give only
exponentially small corrections in d =1, vortices are
known to be of critical importance in two dimensions
above a critical temperature 7,.°~7 Below T., howev-
er, Kosterlitz’ has shown that vortices are irrelevant
variables, and can hence be neglected in the long-
wavelength limit. Consequently, we expect that Eq.
(1.2) pertains to two-dimensional XY models below
T., in a "phase" describable by a line of critical points
with continuously variable critical exponenfs.*~’ The
calculations described in Refs. 5 and 6 suggest that the
two-dimensional XY model will also have a conven-
tional high-temperature phase, characterized by corre-
lations which fall off exponentially at large distances.
Order parameter correlations fall off as power laws
below the T, of this model. We shall not have any-
thing to say about dynamics in the high-temperature
phase.

In this paper, we build on these results for the static
low-temperature properties by constructing a
phenomenological model of XY spin dynamics using
methods developed in studies of dynamic critical
phenomena in 4 — e and 6 — € dimensions.®>® Accord-
ing to the prescriptions described and developed in
Refs. 8 and 9, a long-wavelength dynamic theory can
be constructed by first determining the Landau-
Ginzburg free-energy functional appropriate to the
problem at hand. One then constructs dynamical
equations from this functional which are consistent
with the conservation laws, contain all allowable dissi-
pative terms and display the nondissipative couplings
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implied by the "Poisson-bracket" relations.®® One
looks for a stable dynamical fixed point, and discards
those couplings which are irrelevant with respect to it.
Usually, the resulting equations are nonlinear and
difficult to solve. In contrast, the model we have ob-
tained in this way for three-component spins with an
easy-plane anisotropy turns out to be exactly soluble.
Small deviations from the exactly soluble model are ir-
relevant variables at low temperatures in one dimen-
sion, which allows us to produce the universal limiting
(small g and ) Fourier-transformed spin-spin correla-
tion function S(g, @). This structure function exhibits
spin-wave peaks for ¢ ¢ > 1 and relaxational behavior
for g ¢ < 1, in qualitative agreement with experiments
on one-dimensional ferromagnets.!®!! For small g
and w, our results coincide with a microscopic
truncated-spin-wave theory proposed by Villain.!?
This theory was found to be in qualitative accord with
inelastic-neutron-scattering measurements on CsNiF;
at low temperatures.'*!* Our analysis provides a "hy-
drodynamic" interpretation of Villain’s results, and
suggests that they should apply quite generally in the
low-temperature limit. ’

One might wonder about the relationship between
our work and the body of exact results for the quan-
tum spin-% XY model in one dimension (these are re-

viewed in Ref..11). We believe that no comparison is
possible because exact calculations have not yet been
done with the quantum analogue of the M, self-
coupling displayed in Eq. (2.1a). Indeed, the dynam-
ics for classical spins is totally different if we suppress
this coupling by, say, setting g =0 in Egs. (2.5a) and
(2.5b). For small values of g, we observe a rapid
crossover to the limiting behavior described in the
preceding paragraph. .

Deviations from the exactly soluble model are also
irrelevant in two dimensions. We find that the limit-
ing form of S (g, w) in this case displays temperature-
dependent power-law divergences at the spin-wave fre-
quencies, signalling a breakdown of the usual hydro-
dynamic picture.!® Other correlation functions have
the standard hydrodynamic form, however. We em-
phasize that these results apply throughout the low-
temperature phase of isotropic two-dimensional XY
systems, up to and including the critical temperature.
Villain has proposed a microscopic spin model'? in two
dimensions which is equivalent to ours in the long-
wavelength limit, but was only able to obtain an
order-of-magnitude estimate of the order-parameter
correlation function. Blank et al.'® obtained results
very similar to ours for the XY model in 4 =2 simply
by postulating that the phase of the order parameter
obeys a wave equation. It is interesting that the hy-
drodynamic approach presented here ultimately gives
rise to an identical dynamical theory.

Although isotropic XY critical behavior may be rath-
er rare in nature,’ it has been suggested®’!” recently
that this behavior should persist over a band of tem-

peratures in two dimensional magnetic systems with
an underlying hexagonal symmetry. The expected
phase diagram® is shown in Fig.1, as a function of
hexagonal-crystal-field strength hs. The dynamic
theory presented here should describe the long-
wavelength long-time behavior in the band of tem- .
peratures bounded by T'(he) and T,(h¢). Because of
strong dimensionality crossover effect,’ it may be rath-
er difficult to actually produce the phase diagram
shown in Fig. 1 in real, quasi-two-dimensional, mag-
netic crystals.

To the extent that the long-wavelength properties of
superfluids are describable by an XY model,'® our cal-
culations should also apply to third-sound propagation
below the transition temperature in “He films. Third-
sound propagation in films made of mixtures of ‘He
and *He is also treated briefly. In Appendix B, we
show that the finite superfluid density p,(T) at T,
predicted by Kosterlitz’s theory is consistent with the
Josephson relation evaluated in 2 + € dimensions. In
particular, we demonstrate that the critical exponent v,

v=>1/2Ve 1 +0(Ve)l, 1.3)

ind=2+e.

“hs

FIG. 1. Schematic phase diagram for a two-dimensional
XY model in the presence of a hexagonal-symmetry-breaking
field hg. For hg=0, a line of critical points with continuously
variable critical exponents runs from 7=0outto 7=T7,. On
lowering the temperature at any finite hg, one first passes at
T,(hg) from the disordered phase into a phase with the con-
tinuous symmetry and variable exponents of the isotropic XY
model. Upon lowering the temperature still further, there is
a second phase transition at T,(h¢) into a phase with the
discrete symmetry of the hexagonal crystal field. The dynam-
ical theory constructed here should apply in the region of the
phase diagram marked by asterisks.



16 DYNAMICS OF CLASSICAL XY SPINS... 4947

Although the calculations presented here are limited
to XY models, we expect a qualitatively similar picture
for n =3 antiferromagnets in one dimension.!® In
particular, we expect that spin waves above T, in such
systems are due to the fixed-length nature of the
underlying hydrodynamics, and that dynamic scaling
results such as (3.4a) hold with z =1. .

In Sec. II we introduce the basic model, and discuss
the relatively simple properties of the defining linear
equations. Results for order-parameter correlations
are derived in one and two dimensions in Sec. III.
Section IV discusses the applicability of the analysis to
superfluid *He films, while the generalization of the
model to *He-*He mixtures is considered briefly in
Sec. V. The derivation of the two-dimensional order-
parameter correlation function is presented in detail in
Appendix A, while the continuation of the static re-
cursion relations of the XY model into 2 + € dimen-
sions is relegated to Appendix B. Some results for the
three-dimensional case are contained in Appendix C.

II. MODEL

If the course-grained magnetization M (T) entering
(1.2) is taken to have two components, we expect this
Hamiltonian to describe the long-wavelength static
properties of three component spins with an easy plane
anisotropy. This has been shown in detail in 2 + € di-
mensions by Pelcovits and Nelson,?’ who treated a
fixed-length three-component model with a small qua-
dratic anisotropy term favoring, say, the xy plane.

This anisotropy.grows20 under repeated iterations of a
renormalization transformation until the x and y com-
ponents of M (r) are effectively fixed length, and the z
component M,(r) can be explicitly integrated out of
the problem (this integration was not actually carried
out in Ref. 20). ‘We are left with a two-component
fixed-length problem.

Because M,(T) plays an important role in the spin-
wave dynamics we shall not integrate it out, but consid-
er instead the Hamiltonian

— H - =

K=—%7 =1k [ (IM)+(TM)? + M2,
(2.1a)

MXT) + MA(T) =1. (2.1b)

The analysis of Ref. 20, which shows that this is
indeed the long-wavelength form in d =2 + € for spins
with an easy-plane anisotropy, is easily extended to in-
clude all dimensions d <2. An additional coupling of
the form (VM,)? was found to be irrelevant? at low
temperatures. We have rescaled M, (T) and M, (T) so
that the sum of their squares is precisely unity, and
have rescaled M2(T) (which is effectively uncon-
strained at low temperatures) so that it appears with
coefficient %K in (2.1a).

Equation (2.1) simplifies considerably upon making
the standard substitution

M, (T) =cos8(T), M,(T)=sind(7), 2.2
which gives

_H __1g J'd?[(w)2 +M2).

23
T 2 (2.3)

The partition function and static correlations associat-
ed with (2.3) can be obtained by calculating the func-
tional integral of e3¢ over 6(T) and M,(T), as has
been done by Wegner?! and Berezinskii.?? Fluctuations
are enormously important at low dimensionality in, for
example, M,-M, correlations,

Cum (T-T') = = (cos[8() —0()])
=S expl—3((6(F) —0(F1)). (2.4

Because of strong-fluctuation effects, the correlation
function (2.4) falls off exponentially at large distances
in d =1 and as a power law in d =2.

The equations we propose to describe the dynamics
of the local fluctuating variables 6(T,7) and M,(T,?)
are

30 5H , 8H

—_— ] — + ———— + ) .
YRR TR YV (2.5)

M, 8H _ 8H

T2 v 2 2y, 2.5
o MV eM, ¥ee (2.50)

where the Gaussian fluctuating noises {(7,t) and
Y (T,1) satisfy

T LUT,1))y=2kg TTH(T-T)8(1 — 1),

(2.5¢)
(YT Y(T',t))==2kg TAV2(T-T)8(t — 1),

(2.5d)
C(TOY(T",1) =0. (2.5¢)

According to Eq. (2.5a), 0(T,¢) relaxes toward equili-
brium at a rate I', and precesses about the local z com-
ponent of the magnetization. The conserved variable
M, (T,t) exhibits a diffusive self-coupling in addition
to a Larmor precession term. The correlations
between noise sources are consistent with the fluctua-
tion dissipation theorem, and ensure that 6(T,¢) and
M, (T,t) relax toward an equilibrium distribution given
by e 8T, Although Egs. (2.5) were derived for fer-
romagnetic couplings between nearest-neighbor spins,
identical equations should hold for XY antiferromag-
nets as well, where cos8(T,t) and sin8(T,¢) now
represent the components of a staggered-two-
component order parameter. The variable M,(T,t)
still represents the conserved z component of the uni-
form magnetization. Our model can be considered a
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fixed-length version of the model E employed by
Halperin et al.?’ in 4 — € dimensions.

Equations (2.5a) and (2.5b) are linear and, of
course, exactly soluble. They display hydrodynamic
spin waves very similar to those found below T. in
three-dimensional magnets,'? although here these ex-
.citations occur, for example, in magnets above T, for
d =1. In sharp contrast to the situation near four di-
mensions,?® neglected nonlinearities in (2.5) are ir-
relevant variables, for 7 20 in one dimension, and
along the Kosterlitz-Thouless line of critical points in
d =2. In fact it is straightforward to check that the
dynamic couplings I and X in (2.5) are also irrelevant
at small wave numbers and frequencies in these tem-
perature ranges. A consequence is that the Fourier-
transformed M,-M, and 6-0 correlation functions
display sharp peaks at the spin-wave velocities. Using,
for example, methods described in the book by For-
ster,'S we find, in the limit ', A —0,

Corlg, ) = [ are T [ dr e~ (9(7,0)0(5, 0))

=T<1;—2[8(w—cq)+8(w+cq)], (2.6a)

J

A.

In one dimension, we obtain

CMzMz(q' ) Efdf‘elaﬂ_r.f dte™'*!
x (M,(T,1) M,(0,0))

=T [5(w—cq) +8(w+cq)].
K
(2.6b)

The spin-wave velocity ¢ which follows from (2.4) is
just

c=kpgTgk. 2.7

ITI. ORDER-PARAMETER CORRELATIONS IN ONE
AND TWO DIMENSIONS

In addition to Cg4 and CMzMz’ we are, of course, in-
terested in the order-parameter correlations CMxMx
and CMyMy. It is in these quantities that one sees very

strong-fluctuation effects in analogy to the results
found by Wegner?! and Berezinskii? for the statics.
As in the static case,?!"?? Cu, m, and CMyMy are readily

obtained from the 6-6 correlations.

1

S(r,t) = (M (T,0) M (0,1) + M, (T,1) M, (0,1)) = (cos[8(T,1) —0(D,0)])
=exp {—% ([6(F,1) —0(0,01%) )} =exp[—(1/4K) (|x —ct| +|x +ct ], 3.1

upon setting A and T to zero. According to (3.1),
S(r,t) remains fixed at its static t =0 value for times
t <x/c. Fort>x/c, a spin wave has had time to
propagate between the two spins, and S(r,f) begins to
decay exponentially in time. It is very easy to Fourier
transform (3.1) and obtain the structure factor

8«?/c
[k?+ (w/c — @)U+ (w/c +¢)1°

S(g, w)=

(3.2)

where we have defined an inverse correlation length,
K= %K“. Thus, «is proportional to temperature as
T —0, in agreement with the exact results of
Wegner?! for an XY model on a lattice.

The structure factor (3.2) has poles at the complex
frequencies,

ws(g) =%cqg +ick; (3.3)

The imaginary part represents a g-independent fluctua-
tion contribution to the damping. As shown in Fig. 2,
S (g, w) exhibits fluctuation-broadened spin-wave
peaks for ¢/k > 1, but displays dissipative behavior
for ¢/k <1. We note that the frequencies (3.3) [as

:avell as S (g, w) itself] satisfy dynamic scaling,* %°
w:(q) =¢°Q:(q/x), (3.4a)
where
z=1, Q.(x)=c(x1+i/x). (3.4v)

In fact, it is not difficult to show that the dynamic ex-
ponent z, which is expected to be z = %dfor d>23°

locks into the value unity for d =<2. Accepting the
result z =1, the contribution of the damping propor-
tional to « follows from the dynamic scaling assump-
tion (3.4a) and the requirement that w.(q) ~ const.
as ¢ —0 (M, and M, are not conserved quantities).

As mentioned previously, our results agree with
Villain’s analysis'? of a microscopic truncated-spin-
wave theory in the long-wavelength, low-frequency
limit. The approach taken here makes it clear that
(3.2) should be the universal form of S (g, ») at low
temperatures for small ¢ and w in one-dimensional XY
magnetic systems. This universality, which is associat-
ed with a zero-temperature fixed point, applies only to
classical spins. At sufficiently low temperatures, quan-
tum effects will, of course, invalidate the results given
here.
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FIG. 2. Universal structure factor S(g, ) (Fourier-
transformed order-parameter correlation function) for one-
dimensional XY spin systems, plotted in arbitrary units. The
structure factor exhibits spin wave peaks for g/« > 1, but
purely relaxational behavior for ¢/« < 1.

B. d=2

The hydrodynamic theory should apply in a range of
temperatures below 7. for two dimensional XY mag-
nets. The result for the static-order-parameter corre-
lation function in this regime is?!-??

CMXMX(') ~1/r®) = oo, @3.5)

where r is measured in units of the lattice spacing.

The exponent n(K), which describes the decay, is
proportional to temperature

n(K)=1/2nK. (3.6)

Because power-law decay of correlations is associated
with systems at a critical point, the "ordered phase" of
an XY model in d =2 should actually correspond to a
line of critical points with continuously variable, tem-
perature dependent exponents such as n(K). As
shown by Kosterlitz,’ the only effect of vortices is to
renormalize K slightly. Here, we assume these renor-
malizations have already been incorporated into K.
Vortices do eventually cause the line of critical points
to terminate,’ at a "temperature” K.”! such that

n(K.) =+ (3.7

The calculation of the structure factor proceeds ex-
actly as in the one-dimensional case. Although 6-6
and M,-M, correlations again have the standard form
(2.6), the order-parameter correlations are now given
by

S(r,t) =exp(—([8(T,1) —6(0,0)]1%)}

=expl-I(T,0)], (3.8)
where
1 1 Rroors
I(r,t) = A’k fdzq 7[1 —e'% " cos (cqt)].

3.9

As was the case in d =1, we have set the irrelevant
variables A and I" to zero.

In one dimension, we could ignore effects due to a
finite lattice spacing and convergently extend the in-
tegrals over g space to infinity. In d =2, however, an
ultraviolet cutoff is necessary to ensure a finite result.
It is convenient to impose this cutoff after performing
the angular integral in (3.9), by replacing /(r,t) by

frny=—1— fo“’ i’é‘L (1 = Jo(gr) cos(cqt)] e,

27K

(3.10)

Here, r and ct are measured in units of the lattice
spacing, while a is a dimensionless inverse cutoff of
order unity. Of course, our results should not depend
on the precise form of the cutoff in the limit
r, ¢t >>a.

As explained in Appendix B, Eq. (3.10) can be
evaluated analytically, with the result

1
47K

I = Int{la + AP+ [ct +4_(r,0]3),
(3.11a)

where
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A1) = (RU@? = 22 + 1) +4a2c2] 2

i%(az—-czﬂ + ) (3.11b)

This expression simplifies considerably in the limit
r, ct >>a,

(/2aK)Inr, r >ct,

It = (1/27K) Inlet + (22 =)', r<ect G.12)

It follows that S(r,#) can be written in scaling form in
this limit

S(f,t)=e_i(r.l)=7;’%K—)d)"(£r£] , (3133)
with
1, y<1,
®,(») = b+ (2 =112 5 5 (3.13b)

For any finite value of a, (3.13) will be a good approx-
imation to (3.11), provided |c2t> —r?| >> a2 This
condition will, in general, be satisfied for large ct and r
unless cz =r. Thus, the result (3.13b) for the scaling
function ®,(y) will always be inaccurate near y =1,
but in a region about this value which vanishes in the
scaling limit. We have normalized S (r,t) such that
®,0) =1.

As in the one-dimensional case, S(r,7) remains
locked at its static value for times ct < r. It decays in
time after a spin wave has had time to propagate
between the two points, corresponding to a "light cone
singularity" in ®,(y) at y =1. Although S (r,¢) ulti-
mately decays as a power law in time, we note that
there is a square-root cusp in ®(y) for y=1*. For
any finite a, this cusp will be rounded off. It is only
present in the scaling limit discussed in the previous
paragraph. Similar remarks apply to the one-
dimensional problem in the presence of a cutoff.

We have also computed the Fourier transform of
S(r,1), which is, of course, directly relevant to
neutron-scattering experiments. This can be written
in the form

4 * _
S(q, @)= —CE— J:) dr r2%) o (gr)

X J; dy cos

’—‘;’Zlcp,,(y).

(3.149)

In Appendix B, we show that the integrals which enter
(3.14) can be evaluated in terms of an infinite series
of hypergeometric functions. This allows the singular-
ities in S (g, w) to be determined analytically, and a
convenient numerical evaluation of the function for
various values of n(K). The structure factor can be
written in a scaled form

S(g, w) = ——q3—11)(K) v,

ﬂ] , (3.15)
where the scaling function ¥,(y) depends on . The
function ¥,(y) for n =% (corresponding to T=T,)
and 7 ==% are shown in Fig. 3. The plots for other
values of 7 are very similar. The function ¥, (y)
diverges at the spin-wave frequencies according to an
n-dependent power law

v, () ~1/|]1 =21, (3.16)
as y — x1. The large-y behavior is
V() ~1/|y]P0, |y| = e, 317

while ¥, (y) is analytic in y? about y =0. Evidently,

S (g, w) exhibits spin wave "peaks" at w ==*cq for all
temperatures below 7.. These peaks are very sharp,
are not describable by a simple hydrodynamic pole of
S (g, w), and exhibit an n(K)-dependent fluctuation
induced broadening. The divergence of S(q, ) at the
spin-wave frequencies can be traced back to the
square-root cusp in ®,(y). Effects due to finite values

20

40—

¥n(y) (ARBITRARY UNITS)
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O 1 1 1 1 T
00 02 04 06 08 10 12 14 16 18 20

FIG. 3. Universal scaling function T,,(y) for spin-wave
dynamics in two dimensions. Plots of ¥,(y) (measured in
the same arbitrary units) are shown for 7 =% and n= %.
Plots for other values of n are very similar: If the noncon-
servation of M, can be neglected, the function ¥,/,,(»)
should describe the dynamics along the line T (h¢) in Fig. 1,
while ¥, ,4(y) will control the dynamics along the line T,(h¢)
in this figure.
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of A and T and a finite lattice spacing which smooth
out this cusp will round off the divergence in S (g, ).
The height of the resulting peaks will, however,
diverge as ¢ and o tend to zero.

C. Hexagonal symmetry breaking

As T varies from zero to T, in an isotropic XY sys-
tem, results such as (3.13) and (3.15) should hold
with n(K) varying smoothly from 0 to % (The pre-

cise relationship between m and temperature is
nonuniversal, however.) As was mentioned in Sec. I,
isotropic XY static critical behavior should appear in
two-dimensional magnets with a hexagonal-
symmetry-breaking field in a band of temperatures
(see Fig. 1). However, a strong hexagonal coupling
changes the dynamics drastically, because this interac-
tion breaks the conservation of M.. If M. is no longer
conserved, we expect the order parameter dynamics to
be dominated by Eq. (2.5a) with g =0 and finite T.
The purely diffusive dynamics which arises in this case
has been treated by de Gennes?® (who was interested

in nematic liquid crystals), and should describe the
long-wavelength behavior in the region between
Tz(h(,) and T|(h6).

Provided the nonconservation of M. can be neglect-
ed, the spin wave results of Sec. III B may apply in an
intermediate range of wave numbers and frequencies
even for finite hs. Results such as (3.14) would then
hold in the shaded region of Fig. 1, with n(K) varying
smoothly from n =—;— at T,(h¢) to n=% at T (hy).

As k and o tend to zero, however, this spin-wave
description must eventually break down, and reduce
to the diffusive dynamical theory associated with a
nonconserved M,.

IV. APPLICATION TO TWO-DIMENSIONAL
SUPERFLUIDS

The analogy between superfluidity and XY magne-
tism goes back to work by Matsubara and Matsuda,?’
and has been exploited and reviewed in Ref. 18. As
in the discussion of model E by Halperin et al.,”* we
expect (2.3) and (2.5) to represent a long-wavelength
description of superfluidity, where M, and M, are the
components of the superfluid order parameter. In
three dimensions, M, represents an appropriate linear
combination of the superfluid mass and energy densi-
ties.2? On comparing Eq. (2.5) with the Atkins hydro-
dynamic treatment of propagating excitations in
films,?® we are lead to identify M, with a linear combi-
nation of deviation of the film height from equilibri-
um, and the mass and energy densities. With this
identification, spin-wave excitations in the magnet
correspond to third sound?® in *He films.

According to the results of Sec. III B, we expect a
linear dispersion relation for third sound as k£ —0,
with a velocity that remains finite even as T — T,
from below. The corresponding prediction in the
Kosterlitz-Thouless description of the static critical
properties is that the superfluid density p,(7) should
remain finite as 7 — T,”. Indeed, a particularly beauti-
ful consequence of this theory is that the ratio
p,(T)/T should approach a universal constant as T
goes to T, from below.?’ In Appendix B, we show
how the finite value of p,(T) at T, is also suggested
by the Josephson relation evaluated in 2 + € dimen-
sions.

V. He-*He MIXTURES

It is possible to generalize the model described in
Sec. II so that it provides a long-wavelength descrip-
tion of dynamics in films of 3He-*He mixtures. We
shall follow closely the treatment of dynamics in *He-
“He mixtures near four dimensions by Siggia and Nel-
son.”® For small concentrations of *He, we expect the
static features of the superfluid transition in the film to
remain unchanged. The analysis presented below ig-
nores the possibility of a tricritical or first order transi-
tion, which could occur for sufficiently large concen-
trations.

The new feature associated with *He-*He mixtures
is a conserved concentration variable ¢ (T,¢) in addi-
tion to combination of the concentration and the con-
served densities present in the pure system, which we
call ¢(T,t). We will build a dynamic theory from a
"Hamiltonian" functional which depends on
q(T,t), c(T,t) and a phase variable (T,t), namely,

_H 1
keT ~ 2kgT
xfdzﬂkBTK(\79)2+q2+c2]. (5.1

A convenient normalization has been chosen for ¢
and c¢. The dynamic equations we propose are

30 SH . SH , &H

99 __pdH  BH L OH . 5.2
Y 0 T8 T8, T (5.22)
dc 2 0H 28” SH

¢ _\2¥H 0 3H L\ (5,
Y, Be 5q  °' 50 (5.2b)
8 _ g 3 3H 5.2
3t 5q s S7pp 7O (20

The fluctuating noise sources {(T,t), Y(T.t), and
¢(r,t) obey

&) g(r',t))y=2kg TT8(T-T")8(t — 1), (5.3a)
Y(T.O)Y(T', 1)) ==2kg TAV2S(T—-T)8(t — 1),

(5.3b)
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(DT S(T',1)) =2k TK V26(F—~T)8(r —1'),
(5.3c¢)

(Y(T,0)d(T',t"))=—2kz TL V28(T-T")8(t — 1),
(5.3d)

while all other noise correlations vanish.

The justification of Eqs. (5.2) and (5.3) for a mix-
ture in d =2 is very similar to the analysis for bulk
mixtures given in Ref. 30. The principle difference is
that the propagating modes which arise in (5.2) (see
below) now correspond to third sound,?® rather than
the second-sound excitations present in bulk mixtures.

As before, more complicated dynamical couplings
which could, in principle, appear in (5.2) are irrelevant
variables, and the model as it stands is exactly soluble.
Dissipative couplings such as I', A, L, and K are also
irrelevant and will again be set to zero. Using, for ex-
ample, the methods of Kadanoff and Martin,?! it is
straightforward to show that the c¢-c and g¢-g correla-
tions have the standard hydrodynamic form in the dis-
sipationless limit

2
K
812 8(w—ck)

2
K
Ceelk, @) =n[ﬂz—s(m+ck) +
c c

+

2

2
1- 25;‘1( ]s(w)l, (5.42)

2 ZK
Coalk, @) = ‘n'[g—zzlg-S(m +ck) + 22 5(w - ck)
c c

2K
+ 1—2";2 S(w)], (5.4b)
where
c2=kpTK (g} +g3). (5.5)

There is a sharp peak at w =0 in addition to peaks at
the third sound velocity ¢ given by (5.5). This central
peak is absent, however, in phase correlations in the
dissipationless limit

Cos(k, ) = (m/Kk) [8(w + ck) +8(w — ck)]. (5.6)

Consequently, the results presented in Sec. III B can
be applied directly to the order-parameter correlation
function, S(k, w) in the mixtures. One need only in-
sert the third-sound vélocity (5.5) into (3.14) to ob-
tain the long-wavelength form of the structure factor.
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APPENDIX A: EVALUATION OF INTEGRALS
IN TWO DIMENSIONS

To evaluate the integral

I(r,t) =2nKi(r,t) = J;w iqq.

x [1 =Jy(gr) cos(gct)le™.

(A1)

It is convenient to first add and subtract the quantity
J; %ie‘“"cos(qct). (A2)
The equation for  can then be written

T =l m_iq_ —(a+ict) _
I(r1) > J; p e~arend[] — Jo(gr)]
+2 . 0 ¢~temeaft —Jo(qn)]

+f0 —qq-e 9[1 —cos(gct)]. (A3)

The first two integrals in Eq. (A3) may be evaluated
by first differentiating with respect to @ = ict and using
the standard result??

1

The third integral can be evaluated trivially after
differentiation with respect to a. It is then tedious but
straightforward to derive the expressions (3.11) for
I(r,1) by integrating these results with respect to
a xictor a.

To calculate

fo " e=xJo(Bx) dx = (A4)

4 = _
S(g, @)= —cl J; dr r=7%) Jo(qr)

* wr
x J:) dy cos[Ty ®,(),
(3.14)
it is convenient to write the y integral as
- 1
L dy cos(ay) ®,(») ==J; dy cos(ay)
1

+ fl dy cos(ay)m

=1 7 axcsi —nx
o j:) dx sin( acoshx)e™

=1G,(), (AS)
a
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where a=wr/c, 'G,(a) is defined by the last equality, to solve Eq. (A6):
and we have made the substitution y =coshx and in-
tegrated by parts. We first note that G,(a) satisfies Fr+yrd-m sin%‘nn
the differential equation G,(a) = - Jo(a)
L,G.(a) =1*G,(a) — ysina, (A6) (—pyr )
oo _1 n J n
where L, is Bessel’s operator +27n 2 22 H(‘: (A8)
o i @Qn+1) -
2
L,=a’ S R A ) (AT The remaining integrals over r in (3.14) are tablulated
da da
in Ref. 32, and lead to the result
We can now expand sina as a Neumann expansion in S(g @) =g /c)¥, () (A9)
integer order Bessel functions and use the small « ’ L
form of the integrals in (A5).as a boundary condition where.
e 3 1
2 1cos| Tnin? 3 . Sl
2 i Qn+1)—y? Qn+1)!
3.1 3_1 2
XFn+2 2'ry,n+2 21;,2n+2,y , y<l1, (A10)
w4w=<
. 1
v i sin(57n) G2=1)"" | g2
(A +n)sin(myn)  pyi+ y3m
= T(n++—=+n)
x 3 (=) ——F(+3—3m, —n+s—2n,1)Y, y>1
§ n=0 T(n+5+5m)
¥
This function has a singularity at y2=1 of the form The formidable-looking expressions in (A10) are easi-
~2em o ) et ly evaluated numerically: We have used a Taylor
¥, () =2 mysin(Gan) P =) Y2 =17 (Al1) series in y2 for y < 1 and have made use of Gauss’s

There is also a lower-order singularity proportional to
|y2 -1 |n—1/2'

Both of these singularities and their amplitudes can be
determined quickly by analyzing the large « effects of
the square-root cusp in the y integral in Eq. (3.14),
and by identifying singularities in ¥, (y) with the
large-r behavior of the second integral.

For small y, ¥,(y) is given by

INCEE L
— i T |, 2772
lll,,(O) =2%"cos Tn]nZT
—47n? as n—0 , (A12)
while for large y,
1 _ =
¥,0) — e [23 "I (1 —n)nsm[;n]
11
PRV ik )
ra +77])
- 27in? as n—0. (A13)

yi

recursion relations for hypergeometric functions for
y > 1. Six or seven terms of the second series yields
about 1% accuracy for n = %

APPENDIX B: XY CRITICAL EXPONENTS
IN 2 + e DIMENSIONS

It is interesting to consider the finite value of p,(7T)
at T, in the context of the Josephson scaling rela-
tion,>’ which asserts that

'ps(T)~|T_Tr|(d_2)v (Bl)

as T — T, from below. As shown by Kosterlitz,’ the
exponent v is infinite in precisely two dimensions, so
(4.1) is indeterminate in d =2. The Josephson rela-
tion becomes useful, however, if we first continue the
theory into 2 + € dimensions and take the limit € —0.

Kosterlitz derived differential recursion relations for
K and a parameter y, which measures the probability
of exciting a vortex pair.® Initially,

—n2K /2
,

y=e (B2)

but under the action of a renormalization group
transformation K and y evolve according to*®
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dK~' (1)

o =ATY (D00 (B3a)
%(IL)‘ =2-7K Oy +0G D). (B3b)

These equations display a line of fixed points
(corresponding to a line of critical points) at y =0.
Although vortices are irrelevant for K Z 2/, the
fixed line becomes inaccessible due to relevant vortex
perturbations when K <2/7.

The nonlinear terms in (B3) represent fluctuation
integrals evaluated in precisely two dimensions.>*® To
a leading approximation, these terms can be retained
as they stand in d =2 + ¢, provided one takes into ac-
count that K is no longer dimensionless in (B3a). Itis
not necessary to account for the corresponding change
in the dimension of y in (B3b), because the fixed
point value of y will turn out to be of order Ve. Thus,
the only modification of (B3) required in d =2 + € is
the replacement of (B3a) by

dK~'() _

T —eK7N(1) +473y2(1), (B4)

while (B3b) is unchanged.

Hamiltonian flows generated by (B4) and (B3b) are
shown in Fig. 4. There is a nontrivial critical fixed
point at

K*=2/m+0(e), y*=(e/87)/'"*+0(e), (BS)
with eigenvalues

Ae=%2Ve+0(e). (B6)
It follows®® that the correlation-length exponent is

v=>1/2Vall1 +0 (eI (B7)

for XY systems in 2 + € dimensions. Insertion of this
results into 35 (B1) suggests that p,(T) —const as

2my |

0.5+

©2/TK

FIG. 4. Hamiltonian flows for an XY model in 2.08 di-
mensions. Both a zero temperature (K = o) fixed point and
a nontrivial fixed point at 2/7K =1.0, 27y =0.2 are shown.
The static critical properties are controlled by the nontrivial
fixed point.

T — T,” in precisely two dimensions. Corrections to the
Kosterlitz result® 7 =% at T, in d =2 are of order ¢,
the values of other critical exponents in d =2 + € fol-
low from 7 and v by use of the standard’® scaling rela-
tions.

APPENDIX C: DYNAMICS IN THREE DIMENSIONS

Although the bulk of this paper is concerned with
the dynamics of XY models in the one and two dimen-
sions, it is interesting to tabulate the predictions of the
model defined by Egs. (2.5) for d =3 as well. Because
fluctuations are not particularly important at low tem-
peratures above two dimensions, the results are very
similar to the standard hydrodynamical treatment pro-
posed by Halperin and Hohenberg.!* We shall see,
however, that the model does display interesting coex-
istence curve singularities.?’

The predictions for Cyy(g, w) and CMzMz(q’ w) are,
of course, independent of dimensionality and simply
given by (2.6). For order parameter correlations, we
find an equation analogous to (3.8),

S(r,t) =M¢ expQ(r,1) «n
where
1 ®
M} =exp[[—— =y ]fo e «dq]
=exp N (C2)
2wiKa

and

o(rt) =

TS J; aa

qr

sin(gr) cos(cqt) ]e—aq ]

(c3)

An exponential cutoff has again been imposed. It is
easy to evaluate the integral in (C2):

Q(r,t) = (1/4wKr) larctan((r +ct)/a)
+arctan((r —ct)/a)] . (C4)

At very large values of r, S(r,t) decays to a nonzero
value which we identify with the square of a nonzero
spontaneous magnetization.

It is interesting to examine the longitudinal and
transverse correlation functions, given by

Sr(r,t) = (sin0(T,1) sin6(0, 0))
=M¢ sinhQ (r,1) , (C5)
and
S, (r,1) = {cos8(r,1) cos8(0,0)) — M}
=M¢[coshQ(r,t) =11 . (C6)
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It follows from (C5) and (C6) that S7(r,0) and
S, (r,0) fall off as power laws at large r,

Sr(r,0) ~1/r, S.(r,0) ~1/r% . n

This slow decay is related to the coexistence curve
singularities discussed in Ref. 37. As t — oo with r
fixed we find

ST(V,t)""'I/[, SL(T,l)"'l/tz . (C8)

This power-law falloff in time is very similar to the
long-time tail phenomena associated with the Navier-
Stokes equations in three dimensions.*® In both cases,
the slow decay of correlations in time signals the
breakdown of conventional hydrodynamics which will
occur in two dimensions and below.
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