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We present the results ef high-precision electrical-resistivity measurements in the vicinity of the three-
dimensional structural transitions in TTF-TCNQ (tetrathiafulvalene-tetracyanoquinodimethane) and TSeF-
TCNQ (tetraselenafulvalene-tetracyanoquinodimethane). We find a sharp negative divergence in the derivative
of the resistivity (1/p)(dp/dT), which is similar in form to the resistive anomalies observed in metallic
antiferromagnets and suggests the existence of a second-order phase transition at about T, 53 and 29 K in
TTF-TCNQ and TSeF-TCNQ, respectively. A systematic comparison between theory and experiment
including a critical-exponent analysis of the resistive anomaly has led to the following conclusions: (i) For
T—T, ~O+, the resistivity is most probably dominated by an enhancement in the electron-phonon scattering
associated with the critical fluctuations in the q = 2k- phonons. (ii) For T—T, ~0, the resistivity appears to be
dominated by the opening of an electronic gap at the Fermi surface. (iii) The overall structure of the resistive
anomaly including the temperature dependence of p in the high-temperature phase suggests strongly that the
fluctuation growth in these materials is rather isotropic and that for T above T, there dyes not exist a large
one-dimensional correlation length.

I. INTRODUCTION

There has been considerable recent interest in
electronically driven structural transitions in
metals with large one- and two-dimensional an-
isotropy. ' " In the one-dimensional systems,
much of the recent interest has centered around
the possibility of having large regions of tempera-
ture where the physical properties of the system
are dominated by the growth of one-dimensional
fluctuations along the conducting axis. "" The
physical origin of these fluctuations can be under-
stood by considering a hypothetical one-dimen-
sional metal. Peierls" has shown that at tem-
peratures below some mean-field scale energy
T, , a one-dimensional metal is energetically
unstable with respect to a lattice (Peierls) dis-
tortion which induces a gap at the Fermi surface
and transforms the metal into a semiconductor.
However, while it is energetically favorable when
T &T, for the system to distort, it will do so
only when the free energy is lower in the semi-
conducting phase than in the metallic phase. For
a one-dimensional system this occurs only at
T=O." 'Therefore for 0&T«T, ~ we expect large
fluctuations and no long-range order.

Now consider a real three-dimensional material
with one-dimensional anisotropy in the conduc-
tivity. To be specific we restrict our discussion
to a system of weakly coupled one-dimensional
chains. If the coupling between the chains is suf-
ficiently weak, the arguments are similar to those
given for the one-dimensional material. For T
&TMF (where TMF is the scale energy of an iso-
lated chain) the one-dimensional fluctuations grow
and apparently diverge only at T =0. However,

when T becomes sufficiently small, the interac-
tions between the chains may no longer be con-
sidered a weak contribution to the free energy,
and the one-dimensional fluctuations couple to
drive a three-dimensional phase transition (at 7
= &,).

The organic linea r chain complex TTF -TCNQ
and its isostruetural analogs have been the proto-
typal systems for studying the physical properties
of electronically driven one-dimensional structur-
al fluctuations. Their primary advantage over,
for example, the metal chain complexes"'" is that
the former contain no intrinsic structural disorder
and as a consequence have, in general, a well-
defined three-dimensional phase transition which is
absent in the metal chain complexes. " In 'TTF-
TCNQ specifically, recent diffuse x-ray studies"
as well as elastic' and inelastic' neutron scattering
experiments have shown that the metal-nonmetal
transition is associated with a structural distortion
arising from the condensation of a q= 2k~ phonon.
Therefore, while there exists many possible one-
dimensional instabilities, it appears that the
Peierls-distortion picture is appropriate for TTF-
TCNQ. On the other hand, there is as yet little
detailed experimental information about the actual
character of the fluctuations associated with this
distortion and the role they play in determining the
bulk properties of these materials.

In this paper we present a detailed examination
of the contributions which structural fluctuations
make to the electrical resistivity of TTF-TCNQ
and TSeF-TCNQ. While the experimental data and
theory pertain primarily to the immediate vicinity
of the three-dimensional ordering temperature
(T = T,), many of the conclusions presented relate
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to the larger question of fluctuation behavior in the
high-temperature phase {T& T,). In Sec. II we
present our experimental techniques and results.
In Secs. IIIandIV we present a simple model cal-
culation for the electrical resistivity of a highly
anisotropic metal which includes both the enhance-
ment of the electron-phonon scattering near the
three-dimensional ordering temperature and the
density-of-states effects arising from the opening
of an electronic gap at the Fermi surface. In
See. V we present a detailed comparison of ex-
periment with theory and any conclusions obtained
therein.

II. EXPERIMENTAL DETAILS AND RESULTS

The sa,mples, for this study, single crystals,
of TTF-TCNQ and TSeF-TCNQ, were obtained
from and characterized by several different lab-
oratories. " Typical sample dimensions were
0.2-1.0 em long, 0.2-0.7 mm wide, and 0.07-
0.1 mm thick with the long axis corresponding to
the highly conducting crystallographic b axis. Elec-
trical contact to the crystals was made using
0.018-mm-diam gold wire affixed to the sample
surface with silver conducting paint. The contacts
were checked and found to be nonrectifying with a
typical contact resistance on the order of 5-15 Q.
The b-axis conductivity was obtained by wiring
the samples in the standard four-probe configura-
tion with eontaets nearly equally spaced along the
b axis. The a-axis conductivity of TTF-TCNQ
was measured by pla. cing four approximately equal-
ly spaced contacts across the width (a axis) of one
of the wider {-2mm) b-axis crystal. Each contact
spanned the entire length (-5 mm) of the crystal.

The electrical-resistivity measurements were
made using a four-probe ac null technique (at 39
Hz) with a limiting sensitivity of about 2 &&10 "V
and precision of one part in 10 . The driving cur-
rent, typically on the order of a few mieroamperes
rms, and the phase sensitive null were obtained
using a PAR lock in amplifier. The data in the
critical region were taken at a drift rate of 0.4—
1.0 K/h while the sample temperature was con-
tinuously monitored with a carbon thermistor
which had a relative sensitivity of 0.4-1.0 mK and
an absolute calibration to about 0.4 K. 'To insure
temperature homogeneity, the sample was mount-
ed on a sapphire substrate which was glued into
an oxygen-free copper holder which contained the
carbon resistor and other temperature sensors.
The sample holder was designed in such a man-
ner that the mounted sample and substrate were
completely surrounded by the high-thermal-con-
ductivity copper. The sample holder was then
mounted in a copper vacuum can which was main-

tained at a partial pressure of helium exchange
gas.

To minimize the possibility of spurious results
arising from anomalous current flow patterns, the
nested and unnested current-voltage characteris-
tics were measured at both 300 and 77 K." Re-
sults were considered significant only if the un-
nested voltages were less than 5/q of their nested
counterparts.

Temperature derivatives of the experimental
curves were obtained from the primary resistance
versus temperature data. A least-squares fit to
a linear functional form was made, typically, over
five adjacent data points, or over a region 90—
200 mK wide. Local values of the derivative at
each temperature datum is then obtained by sliding
the region of fit over the entire experimental tem-
perature range while analytically computing the
derivative from the fitted linear curves.

Experimental results are shown in Figs. 1-4.
The overall temperature dependence of the b-axis
conductivity of TTF-TCNQ is shown in Fig. 1.
'The solid line through the data in Fig. 1 represents
a least-squares fit of the high-temperature resis-
tivity to the functional form

p(T) = po+AT", (2.1)
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FIG. 1. Temperature dependence of b-axis conduc-
tivity in TTF- TCNQ. The solid line represents a least-
square fit to the functional form in Eq. (2.1),

where p(T) is the b-axis resistivity and p„A,
and n are constants. Equation (2.1) was found to be
a good representation of the high-temperature
resistivity in all of the approximately 20 samples
of TTF-TCNQ analyzed in this study. " The pa-
rameter n was found to be relatively universal
ranging between 2.4 and 2.55 while p, was found
to be extremely sample dependent ranging from
2/0~ p, /p(RT) ~ 15/o where p(RT) is the room tem-
perature b-axis resistivity. Consistent with the
sample dependence of p, we found that the mag-
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nitude of the peak in the conductivity at T =60 K
was strongly sample dependent with p(RT)/
p(60 K) = 28 when po/p(RT) = 2'%%uo and p(RT)/
p(60 K) = 6 when p, /p(RT) = 15%%uo. We will not spec-
ulate on the origin of this unusual temperature
dependence of the electrical conductivity in TTF-
TCNQ, but note that the behavior is similar to
that observed in many anisotropic organic con-
ductors"'" and is consistent v ith model calcula-
tions for the ideal electron-phonon resistivity in
a one-dimensional metal. '4 Many other explana-
tions are also possible. ""

For comparison, the overall temperature depen-
dence of the a-axis resistivity of TTF-TCNQ was
mea, sured and compared with our 5-axis results. We
find (data not shown) that if we force the a- axis data
to Eq. (2.1) we obtain 0.9~ n~ 1.3, with the best-
fit value of n depending strongly on the region of
fit. This temperature dependence is in quantitative
agreement with the a-axis resistivity data reported
by Cohen et al. ," and can be considered as a con-
sistency check on our a-axis data.

We focus in this paper on the critical behavior
in the electrical conductivity which occurs at tem-
peratures below the conductivity maximum as il-
lustrated in Figs. 2-4. In Figs. 2 and 4 we
display the temperature derivative of the b-axis
resistance of TTF-TCNQ and TSeF-TCNQ, re-
spectively, as a function of temperature. In both
cases the divergence is sharply peaked, although
the TSeF-TCNQ divergence is comparatively nar-
rower, more symmetric and somewhat sharper.
In contrast the critical behavior of a-axis 'TTF-
TCNQ, shown in Fig. 3, is somewhat weaker in
that the temperature derivative of the a-axis re-
sistance rises above the ba,se line only half as
much as the b-axis divergence. Figure 3 shows a
broader, more rounded peak than is obtained with
b- iaxTsTF-TCNQ, even taking into B.ccount the
slight variations with different samples. A word
should be said about the reproducibility of these
results. 1o the present we have examined the
critical beha.vior of six different samples of TTF-
TCNQ; four 5-axis measurements and two a-axis
measurements. All of the samples studied had the
qualitative shapes shown in Figs. 2 and 3. Both
the rounding of the transition and the position of

T, were found to be sample dependent with the
sharper transitions occurring in the samples with
higher transition temperatures. Alternatively, the
critical exponents associated with these transitions
were found to be sample independent and within
the uncerta. inties quoted in Sec. V.

The sharp divergence in dR/d(l/T) [or negative
divergence in R '(dR/dT)] is similar in form to the
resistive anomalies observed at the Neel tempera-
ture in metallic antiferromagnetics and occurs in
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FIG. 2. Detailed behavior of the b-axis resistance
R of TTF- TCNQ and its derivative dRd(1/T) in the vic-
inity of the critical temperature.
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FIG. 3. Behavior of the logarithmic derivative of the
a-axis resistance in TTF- TCNQ near the critical tem-
perature.

TTF-TCNQ at the same temperature (-53 K) as
the observed peak in the specific heat. ' Further-
more, at about. 53 K there is a sharp increase in
the intensity of elastically scattered neutrons at
the Bragg pe~s associated with the crystal struc-
ture of the low-temperature phase. ' These facts
suggest the existence of a three-dimensional sec-
ond-order phase transition at about T, = 53 K in
TTF-TCNQ and by a.nalogy at about T, = 29 K in
TSeF-TCNQ. We are led to conclude that the sharp
peaks in the electrical resistivity are manifesta-
tions of the critical fluctuations associated with
the three-dimensional onset of Peierls order, in
which the order parameter (perhaps complex) is
the lattice distortion generated by the condensa-
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divergences in the phonon response functions do
not arise within the second-order perturbation
approximation used to describe the critical scat-
tering. Physically the approximation can be
thought 'of as a scheme for decoupling the elec-
tron and phonon systems, treating only scattering
of electrons from the critical fluctuations of the
phonons while neglecting any collective current
carrying effects which could arise in a self-con-
sistent treatment. ""

The diagonal part of the resistivity tensor can be
written in the Born approximation as"

p~~ ~ d A' d g gf, k~ E" 1—

0.2 x dc' S k& co 5 6«+- 6g+«& —S(d
&

3.1

0
24
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26 28
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where f is a Fermi function, g~ is the electron-
phonon coupling constant, p. is a direction index,
and S(k, &) is the dynamic form factor defined by

FIG. 4. b-axis resistance R of TSeF- TCNQ and its
logarithmic derivative in the vicinity of the critical
temperature T,=—29.2 K.

S(k, v) = — S(k, (u)e'"'.2'

S(k, v) = (p»„(~)p~-(0)),

(3.2)

(3.3)

tion of a q = 2k~ phonon. " In the analysis that fol-
lows we will attempt to explain these critical di-
vergences in the derivative of the electrical re-
sistivity in terms of the above model for the phase
transitions in TTF-TCNQ and TSeF-TCNQ. A

detailed critical exponent analysis of the electrical
resistivity will be presented in Sec. V after the
presentation of a model calculation of the critical
behavior in the electrical resistivity.

III. CRITICAL SCATTERING

In this section we outline a simple approximate
approach for treating the critical scattering con-
tribution to the electrical resistivity. The motiva-
tion for the approximations contained herein lies
in the qualitative similarity between the observed
resistivity anomalies in the linear chain com-
pounds and those seen in metallic antiferromag-
nets. "'" The approach and approximations can
be summarized as follows: The electron-phonon
scattering is treated using standard second-order
perturbation theory while the anomalous tempera-
ture dependence of the electronic response func-
tions are put in by hand using universality argu-
ments near the three-dimensional phase transi-
tion. This approach, while being exactly analogous
to that taken by Fisher and I,anger" and others" "
to describe resistive anomalies in magnetic met-
als, is clearly not self-consistent when applied to
electronically driven transitions since critical

where p» is the Fourier transform of the electron
density. We specifically consider the situation
where S(k = 2k~, w = 0) diverges at T -T„where
T, is the three-dimensional ordering temperature.
For T near T„ the usual critical-slowing-down
argument can be made" by noting that dp„, /dT
is demonated by k= 2k~ scattering and hence by
ds(2k~, &u)ldT. However S(2k~, +) is sha, rply
peaked at +=0 and therefore the frequency inte-
gral is not limited by 5(e; —e.„;,—h~) for any fi-
nite T,. We obtain therefore

pv0
dT

k' d q g.„k„
dS(k)

&& ~(&g —&i+,) ~ (3.4,)

where S(k) is the static or equal-time density-
density response function defined by

s(k) =s(k, ~ = 0) =(p, p'-„). (3.5)

A similar argument can be made for the k integral.
As T -T„dS(k)/dT becomes sharply peaked at
k= 2k+ and hence the 5 function in Eq. (3.4) does
not limit the 0 integration. The validity of this
approximation will be discussed subsequently.
Assuming ~g-„~' is a weak function of k, for k
near 2k~ we obtain
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dp, „ i, „„,[(2k ), + (k')J'

dS(2k~+ k')
X

dT
(3.6)

neglected when the peak in dS(k)/dT about k = 2k~
is much narrower than the finite temperature
smearing of the Fermi surface in k space. In the
extreme incommensurate limit (i.e. , Ez = 5 'k2z/2m)
this requirement reduces to

Defining the order parameter 4~= p,-„,p. and the
order parameter-order parameter correlation
function

g„(T)„E
b 2k, T

(3.11)

x(k) = tl(I &-. I')

where P =1/ksT, Eq. (3.6) becomes

dp„.„lg,g. l' . , [(2k ).+(k').1' dx(k')

(3.7)

(3.8)

For T near T„ the dominant contribution to the
divergence in Eq. (3.8) comes from the (2k~)',
term. Thus

dp..„Ig». l'(2k.): ~, 1 dx(k')

(2k~)'„ lg»z I dx( ) ddkl (3 9)
e

The dimensionality d in Eq. (3.9) is not the di-
mensionality of the fluctuations (which we assume
to be "three" for T near T,), but rather'the di-
mensionality determined by the allowed final states
for scattering. If for example the condition is
limited to chains then d = 1, while if the scattering
is in planes d=2, etc. The critical behavior of p
is simply determined from Eq. (3.9) by power
counting. 'The results are

d
dT 7 (3.10a)

d = 2 —~ —t-(l.+ gv) t-i. oQn

dT (3.10b)

p t-( 1,+ Tj v-v) t-O. 5

dT (3.10c)

where t= (T T,)/T„v is th—e critical exponent
for the correlation length and q is the exponent
for the momentum dependence of x(k) at T = T,.
To illustrate the magnitude of the numbers in-
volved, we have included on the right in Eq. (3.10)
the mean-field values for the predicted exponents
(i.e., q =0, v=0.5). Note that the critical part of
dp/dT depends on the direction p only insofar as
d depends on p, . Equation (3.10c) is just the Sue-
zaki-Mori" result for the temperature dependence
of dp/dT in metallic antiferromagnets above the
Neel temperature.

We now turn to the question of the validity of the
approximations which allowed us to write Eq. (3.4)
a.s Eq. (3.6). The 6 function in Eq. (3.4) can be

where 5 is the 5-axis lattice constant, $„(T) is the
longitudinal coherence length, and Ef is the Fermi
energy. For the organic materials under consid-
eration, (E~/2k~T, )'~'s 6,' and Eq. (3.11) is easily
satisfied for T near T,.

The above formalism is appropriate only for
T&T,. For T &T, one must subtract off the con-
tribution from the onset of long-range order [i.e. ,
( d (x)) e 0] and the scattering contribution to p de-
creases as T decreases below T,." Since the re-
sistivity is increasing as T decreases below T,
(see Fig. 1), it must be dominated for T & T, by
the opening of an electronic gap at the Fermi sur-
face rather than by critical scattering. We now
treat this effect.

IV. THE ELECTRONIC GAP

p = (p(&(x))) (4.1)
where ( ) represents the usual statistical. average
defined by

p= — 5b, x p &x exp
1
z k T (4.2)

where z i.s the partition function, I' is the Ginz-
burg-Landau free-energy functional, and f5&(x)

In Sec. III we estimated the contribution to p
arising from electrons scattering from order pa-
ra,meter fluctuations. A tacit assumption of Sec.
III was that the number of conduction electrons
remained fixed. In this section we estimate the
contribution to p arising from the opening of a
fluctuating gap in the conduction band. As in Sec.
III, the model developed will represent the sim-
plest one -electron picture possible.

Recall that the longitudinal correlation length
g„represents the distance scale for longitudinal
changes in the order parameter h(x). When $„»X
where A. is the mean free path, the conduction elec-
trons (or holes) scatter many times in a region
where the order parameter (and hence the elec-
tronic gap) is relatively constant. It is then pos-
sible to define a local value, p(b, (x)), of the re-
sistivity p. If the one-dimensional anisotropy of
the conduction is large, the conduction electrons
cannot skirt regions where the local gap is large.
In this limit the local resistivities add in series
and hence
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represents a functional integral over all order-
parameter configurations. " For E we choose a
form characteristic of weakly coupled chains. For
example, one might use"

is obtained from (4.7a)

(kBT)' (k T)' g(k)d'k, (4.8)

«'=Pf «Ie. le;(e) I'+e IQ(e) I'+ c„
I
e.e(e) I')

0

+etc f I

e,.e,. I«,
0

(4.3)

E (&g
I
~ I2)x/2 (4.4)

where q~ is the unperturbed free-electron band
structure. The conductivity is then obtained from

(T[h] = = &J(E) dE,
1 —sf

p 6 (4.5)

where o(E) is the energy-dependent conductivity
in the band E, and f is the Fermi distribution func-
tion. Assuming a simple cosine band for c~, we
obtain

1 1 1
p(.)

=
p, 1,(l.lk, T)

1 1 1
p(/) ) p 1+ e I/))BT I B( ~l&k T).

The resistivity p becomes

p= p.[1+(l~l'&/(kBT)'1 {&l~l& &k.»

(4.6a)

(4.6b)

p=p, [1+& ' '"'&] (&I&I» k T). (4.7b)

p0 contains the scattering contribution estimated
in Sec. III and 4p=-(p —p, )/p, represents the con-
tribution to p from the decrease in the number of
conduction electrons. While it is not possible to
analytically evaluate the functional integral in Eq.
(4.7), the temperature dependence of 4p can be
determined in various limiting regions. To be
specific, let us first assume that we are dealing
with a highly anisotropic material with T, «T,
where T, is the three-dimensional ordering tem-
perature. We distinguish four temperature re-
gions: (a) T» T,"F, (b) T =—TMF, (c) T, & T «TMF,
and (d) T &T,.

In region (a) the temperature dependence of hp

where i, j are chain indices, C, and C, are the
intra- and interchain coupling constants, and x0
= r,'(T/T, —1), where r,' and u are constants and

T, is the mean-field scale energy of an individual
chain.

In order to evaluate Eq. (4.2) one needs a, form
for the local resistivity p(A). Since the electrons
s catter many times in a region where 4 is uni-
form, p(A) can be obtained in a simple one-elec-
tron band picture. The excitation spectrum in the
presence of a complex gap 4~ is given by"

gp (e)5&x)l})BF&

=exp +, + ) . (4.9}
8 B

To a good app roximation (
I
b.

I

'
&

= (
I
h

I &
' and the

cumulant expansion in Eq. (4.9) can be truncated
after the first term. The dominant contribution to
(I & I& comes from values of A near the minimum
in E. However, the value of 4 which minimizes

~ s Inst gMF n [(TMF T)/TMF]
Hence

/t'kg &MF
(4.10)

and the resistivity becomes activated. The range
of validity of Eq. (4.10) will be discussed in Sec.
V.

Finally, as T passes below T, into region (d)
there is no anomalous contribution to ~p near T,.
In this region (I 4

I &
=—(6& =—A F = n, Hence

{4.11)

These results are to be contrasted with the be-
havior of a material in which the fluctuate. ons grow
in an isotropic manner such that T, ~ T, . For
such a material, the temperature dependence of
b,p can be obtained from Eq. (4.7a) except below
the three-dimensional ordering (T&T,), when

. (&»kBT, Eq. {4.7b) must be used. We obtain

~p=-&l~l'&/k. T,
(4.12)

~p=—(I~l'&/k, T,
&IeI'}-l(T'-e'.)/7'. I' =-Iel''J

where n is the specific heat exponent and

where y(k) is the order-parameter susceptibility
defined in Sec. III and A is the upper momentum
cutoff. For T» T, a Gaussian approximation for
y(k) is sufficient and (IAI'&-$'„(T)-(T-T, F) ' for
5 (T) 'A and &I&l'&-A--'. ~;, (T) for $„(T)&A.

In region (b) the temperature dependence is com-
plicated, but can be approximated by retaining Eq.
(4.8) while using ( I

6 I'&-A--, Fg'(T) with $„'(T)
—T/TMF

When T becomes much less than TMF as in yg-
gion (c), F becomes highly nonlinear and (I 6 I)
becomes greater than &~T. In this region ~p be-
comes
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gp e(4)/ksr ( T& T

(~) —
( t)' I,(~)& a, T) (4.14)

where P is the critical exponent for the onset of
long-range order.

We should point out that since the temperature
dependence of p presented above arises from the
loss of conduction electrons with p, = const, it
should also reflect the temperature dependence
of the magnetic susceptibility X. Thus It= y, /
(1+ &p) where y, is the Pauli susceptibility. The
linearity of y with 1/$„(T) for T & T," [Eq. (4.7)
and following discussion] was first pointed out by
Lee, Rice, and Anderson, '4 but as we show above,
this linearity does not hold for T «T, F where the
electronic contribution to the susceptibility is
more nearly activated.

V. RESULTS AND DISCUSSION

T /T F&1 (5.1)

b t can be related to the Landau coefficients in

Eq. (4 3)".

4 t= 2 „~ = 0.258, 5.2

We now turn to a compa. rison between theory
and experiment for the electrical resistivity of
TTF-TCNQ and TSeF-TCNQ. First note that
neither p nor" X is activated in these materials
for T & T, as would be suggested by Eq. (4.10).
Furthermore, there is a sha, rp specific-heat
anomaly in TTF-TCNQ at T = T,.' These features
suggest that the fluctuation g'rowth in these ma-
terials is rather isotropic and that for T & T, there
does not exist a large one-dimensional correlation
length along the chains. It may be argued that the
absence of an activated resistivity is indicative of
collective current carrying effects" which have
been omitted in the above calculations. As we will
show below, the critical behavior of the resistivity
argues against this picture. Furthermore, if
$„(T)»$„(0)[where $„(0) is the zero-temperature
correlation length], the absence of an activated
susceptibility would be much more difficult to ex-
plain and would require abandoning the entire idea
of a Peierls distortion in TTF-TCNQ. "

Let us quantify the above arguments. 'The valid-
ity of Eq. (4.10) requires that T/TMr s 1 —b, t,"
where &I; is a dimensionless parameter which is
a measure of the temperature width of the one
dimensional ordering. Therefore, the existence
in TTF-TCNQ of a. large specific-heat peak" and

the absence of an activated magnetic susceptibility
requires that T, be in the vicinity of the smeared
one-dimensional ordering below TMF or

Ioo co
-0

0 0
0 0

05—
I I I I I I I II

IO
T- Tc

Tc

l0

FIG. 5. Critical exponent of dR/dT for T & T, in the
b-axis resistance of TTF- TCNQ. The subtracted back-
ground, B=.R '(dR/dT) ~75 K=0.14, is explained in the
text.

where X is the dimensionless electron-phonon
coupling constant at q = 2&~, E~ is the Fermi en-
ergy, and N(0) is the density of states at the Fermi
energy. The last equality in Eq. (5.2) is obtained
following Allender, Bray, and Bardeen who relate
the Landau coefficients to microscopic parameters
via a mean field decoupling of the Peierls-Froh-
lich Hamiltonian. " Inserting reasonable experi-
mental numbers [N(0) =—3 eV ', ' E~ =—0.1 eV, 4'

a,nd"'" 0.2sX & 1] into Eq. (5.2) one immediately
finds that 4 t can be of order unity and the onset
of one-dimensional ordering occurs extremely
slowly. I'herefore, one cannot expect in these
materials a la.rge one-dimensional correlation
length for T& T,.

We should mention that Horovitz, Gutfreund,
and Weger" have concluded that T, =—T", by com-
paring the magnitude of the specific-heat singula. r-
ity to a model which includes fluctuations in a
Hartree-Fock approximation. We show above
however that while the data is consistent with

T, ~ T, , it is also consistent with T, «T, as
long as (& t)TMr & TMF —T,.

We now turn to a discussion of the critical be-
havior in the electrical resistivity. The argu-
ments given above suggest that in TTF-TCNQ, and

by analogy in TSeF-TCNQ, the one dimensional
order along the chains is not well developed for
T & T, and consequently the critical behavior in the
electrical resistivity is given by Eqs. (4.13),
(4.14), and (3.10). A critical exponent analysis
of our experimental results is shown in Figs. 5-7.
Because of the pronounced temperature depen-
dence for T & T, of the b-axis resistivity in 'TTF-
TCNQ, a background constant was subtracted from
R 'dR/dT to obtain the critical contribution to the
resisitivity. The background value B of (1/R) dR/
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FIG. 7. Critical exponent of dR/dT above T~, in the
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dT was chosen to obtain a straight line on the criti-
cal-exponent plot in Fig. 5 and has a value B
= (R 'dR/dT)

~
z, » K. From Fig. 5 we obtain the

asymptotic critical behavior (1/R)(dR/dT)
—f ""'"or dR/dT- f '""'"(curve not shown).
The uncertainty in the critical exponents reflects
the scatter in the experimental data and the un-
certainty in both T, and the background constant
B. The critical behavior of the b-axis resistivity
of TSeF-TCNQ and of the a-axis resistivity in
TTF-TCNQ i.s shown in Figs. 6 and 7. In both of
these measurements the background temperature
dependence of the resistivity for T & T, was so
weak that the critical behavior was obtained with-
out the subtra. etion of a background constant. The
results are for TSeF-TCNQ, b-axis dR/dT
f '4'" " and for TTF-TCNQ, a-axis dR/dT

g- le 04+0 + 17

To compare experiment with theory we note that

as T- T, -o' the derivative of the resistivity should
be dominated by the exponents in Eq. (3.10) since
these are larger than the specific-heat-like di-
vergence predicted in Eq. (4.13). The choice of
d in Eq. (3.10) is more complicated, however.
One expects that longitudinal (b-axis) resistivity
measurements in highly anisotropie linear chain
compounds would be described by d= 1 in Eq.
(3.10) and dR/dT-t """'—= f ". For measure-
ments transverse to the conducting chains the
electrons have the entire three-dimensional 0
space available to scatter into and if the conduc-
tion is large enough to be described with a band-
like picture, we expect d=3 and dR/dT-f """"

Note however that the predicted divergence
in the longitudinal resistivity (d= 1) is stronger
than the predicted divergence in the transverse
resistivity (d=3). Therefore as T-T„ the re-
sistivity should eventually become isotropic with
a divergent behavior in all directions given by
Eq. (3.10c). The position in reduced temperature
t of the predicted crossover to an isotropic re-
sistivity depends in part on the magnitude of the
anisotropy in the high-temperature conductivity,
and the ability to a,chieve such a crossover in a
given experimental system depends on the tem-
perature size of the inhomogeneity rounding of the
transition. For TTF-TCNQ the anisotropy in the
resistivity is quite large even at T = T, [ p, (T =—T,)/
p, (T =—T,)

—= 1000]"'"and the crossover to an isot-
ropie resistivity is,never achieved. Therefore in
TTF-TCNQ (and by analogy in TSeF-TCNQ) we
conclude that the b-axis resistivity should be c' .-
scribed by Eq. (3.10a).

The agreement of these predictions with the ex-
perimental results given above is mixed. In
TSeF-TCNQ, the b-axis resistivity does indeed
have the critical divergence predicted by Eq.
(3.10a). It is our feeling that this agreement is
more than fortuitous. On the other hand, the
critical behavior of both the a and the b axis of
TTF-TCNQ appears to be described by Eq. (3.10b)
for d= 2. The striking feature of this result is not
the magnitude, but rather the equality of the a-
and b-axis resistivity exponents. The fact that the
magnitude of these exponents is given by Eq.
(3.10b) could quite possibly be fortuitous, but the
equality of these exponents is quite surprising
given the fact that the mean free path for a-axis
conduction is much smaller than a lattice constant
making a bandlike picture inappropriate to describe
the electrical transport.

There are two important features related to the
equality of these exponents which should be men-
tioned. The first of these regards the mechanism
dominating the electrical conduction in the high-
temperature phase. If, as has been suggested,
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1 dR
R dT

-(-t)' ' («&.») (5.3)

and

1 dR —(-t) (t-0 ), (5.4)

where p is the critical exponent for the onset of
long-range order and z is the specific-heat ex-
ponent. Since in mean field theory P =0.5 and

+ =0, the predicted divergence for T & T, is much
weaker than either the predicted or the observed
divergences for T & T,. This is in qualitative
agreement with our experimental results shown
in Figs. 8 and 9.

It is notoriously difficult to obtain good values
for either the exponent z or P from resistivity
measurements on metallic antiferromagnets"
which have the same critical behavior as that
predicted in Eqs. (5.3) and (5.4)." In the organic
complexes studied here, the magnitude of the in-
homogeneity rounding of the transition and the re-
sulting uncertainty in the position of T, makes de-
termination of z impossible. One can only con-
clude that the data is consistent with the small
values of a predicted by well-known theories. "

As T decreases the critical exponents increase
as predicted by a crossover from Eq. (5.4) to Eq.
(5.3). Because of the limited range of validity of

the conductivity for T&T, is dominated by collec-
tive Peierls-Frohlich fluctuations, "'"then quite
apart from the model given in Sec. III, the critical
behavior in the conductivity would arise from
three-dimensional pinning of the collective mode.
Such a model is inconsistent with the equality of
the a- and b-axis critical exponents since the
collective mode can only propagate along the highly
conducting b axis. Second we should mention that
the equality of these exponents is in qualitative
agreement with the percolative model of the metal-
semiconductor transition suggested by Phillips. "
'This is not to say that the domain model of TTF-
TCNQ is quantitatively correct, but merely that
it is consistent with this one feature of the ex-
perimental data.

We should stress that, as discussed in Sec. II,
both the b- and the a-axis resistivity measure-
ments on TTF-TCNQ have been reproduced on a
variety of samples. We feel that the equality and

magnitude of the a- and b-axis critical exponents
are real, sample-independent results which are
not being generated by anomalous current flow
patterns or any other experimental artifact.

We discuss now the critical behavior for T & T,.
The predicted behavior of the resistivity from
Eq. (4.13) and Eq. (4.14) for T &T, can be sum-
marized as follows":

Q b
0
0

5.0—
hbbh h
I: I I I I I II
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/
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~c 52, 4 K
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FIG. 8. Critical exponent for l'& 7', of (]./p)(dp/d7'),
where R is the b-axis resistance of TTF- TCNQ.
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FIG. 9. Critical exponent for T & T, of (1/R)(dR/dT),
where R is the b-axis resistance of TSeF-TCNQ.

Eq. (5.3) it is difficult to obtain more than a quali-
tative value for P. We find P= 0.48+0.06 in TTF-
TCNQ and P= 0.24+0.04 in TSeF-TCNQ. The
quoted uncertainties in P arise primarily from
the scatter in the experimental data and represent
fitting errors only. The actual uncertainty in these
numbers is much greater and arises from fitting
the experimental data to Eq. (5.3) outside its re-
gion of validity. For example, the small value of
P observed in TSeF-TCNQ is characteristic of a
three -dimensional to one -dimensional mean-f ield-
theory crossover" "and most probably arises
from fitting the experimental data outside of the
region of asymptotic three-dimensional exponents.
Therefore, it appears that TSeF-TCNQ has a
comparatively smaller asymptotic three-dimen-
sional region suggesting that the fluctuation growth
in this material is slightly more anisotropic than
in TTF-TCNQ. "

'The below-T, analysis is further complicated
by the existence in these materials of two distinct
conducting chains. " The formalism discussed
above must be genera. lized to allow for two coupled,
complex order parameters, one for each chain. If
the order parameters are linearly coupled, the
critical behavior in the resistivity should be ade-
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quately described by the single chain model given
above. " In such a model, the critical tempera-
ture dependence for T & T, of the a- and b-axis
resistivities would be identical. However, in the
temperature range where the electronic gaps are
large compared to k~T, then even if the order pa-
rameters are linearly coupled, the a- and 5-axis
resistivities will in general have different tem-
perature dependences.

Related to the coupled order parameter problem
is the existence in TTF-TCNQ of a second phase
transition at a temperature T'; where experimen-
tally 46 & T' & 48 K.""We will not discuss this tran-
sition here except to say that the validity of Eq.
(5.3) is obviously limited to T) T . An analysis of
the critical behavior in the a-axis resistivity of
TTF-TCNQ for T (T, has been frustrated by the
large degree of broadening of the transition in the
samples studied and by the near proximity of the
transition at T'. The most definite statement we
can make at this time is that the behavior of the
a-axis resistivity for T&T, is qual:itatively similar
to the b-axis behavior as T- T, -O . Even without
quantitative critical-exponent measurements for
T & T„ the qualitative agreement of the low-tem-
perature data with the predictions of Eqs. (4.13)
and (4.14) gives strong independent confirmation
of our conclusion that short-range one-dimension-

al order is not well developed for T& T,. Con-
tinued work on this problem is presently underway.

In conclusion, our experimental results suggest
that the conductivity above T, i.n both TTF-TCNQ
and TSeF-TCNQ is dominated by an anomaly in
the electron-phonon scattering associated with the
onset of a three-dimensional Peierls distortion.
Below T, the critical behavior in the conductivity
appears to be dominated by the opening of an elec-
tronic gap at the Fermi surface and is consistent
with the notion that the fluctuation growth in these
materials is far more isotropic than one would
expect given the anisotropy in the conductivity.
Finally, it is difficult to reconcile these results
with arguments that suggest the existence of a
well-defined (i.e. , width «&AT) collective mode
at room temperature'"" since the sharp critical
behavior in the resistivity suggests that relatively
long-range one-dimensional order is not estab-
lished even at much lower temperatures.
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