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%e study the helical phase and the Lifshitz point for a model system with competing ferromagnetic and

antiferromagnetic interactions by using high-temperature series techniques. %'e locate the Lifshitz point, and

we find the exponent that characterizes the vanishing of the wave vector $0 associated with the helical phase

as the Lifshitz point is approached. In the helical phase we determine the dependence of $0 on the competing

interactions, and we estimate the structure factor exponent.

Recently, the phenomena associated with helical
order have been the focus of renewed investigation.
Helical order was first discovered independently by
Kaplan, ' Villain, ' and Yoshimori' who used mean-
field theory to study magnetic systems in which
the mechanism for helical order is competition. be-
tween fexromagnetie and antiferromagnetic jnter-
actions. It was found that for a certain range of
values of the exchange interactions, a helical phase
is energetically favored over a ferromagnetic
phase. The helical phase is characterized by a
magnetization that varies sinusoidally in space with
an associated wave vector q, that is a continuous
function of the exchange interactions. ' '

The point in the phase diagram where q0-0,
is particularly interesting. The importance of
this point, the Lifshitz point, was first stressed
by Hornreich et aE.' because a new type of critical
behavior occurs at this coexistence between dis-
ordered, ferromagnetic, and helical phases. Very
recently, there have been several theoretical in-
vestigations which indicate that Lifshitz points can
be attained in liquid crystals, ' " and thi. s appears
to be cogfirmed experimentally. '

In this article we report the results of the first
high-temperature series investigation of a kaodel

system which exhibits a Lifshitz point and a helical
phase. Our studies are the first to show quanti-
tatively the non-mean-field character of the Lif-
shitz, point, and the variation of qo in the helical
phase. %e also calculate T, accurately and show

that, contrary to widespread belief, T, does not
achieve a minimum at the Lifshitz .point.

%e study the model system with the following
Q-vector Hamlltonian

X=-J„y ss sy-Jg s~ ss. -gg sg sy~ 1
Et~3

where the first two sums are over nearest-neigh-
bor spin pairs in the same x-y plane and in ad-
jacent x-y planes, respectively, and the third sum
is over next-nearest-neighbor pairs along the z

RX18.
'The type of ordered phases that occurs in this

model depends on the values of R =8,/Z„and S =-J,'/
J„„;for sufficiently negative 8/~R ~, a helical phase
is energetically favored. In mean-field theory the
helical phase occurs for 8&-—,

'
~&

~
[cf. Fig. 1(a)],

and the wave vector q, (which is along the z axis)
associated with the helical magnetization M is
cos '(-~&~/4S). Near the critical point, fluctua-
tions of wave vector q, become large, and as T-T„ the response of M with respect to its con-
jugate field II diverges in a manner analogous to
the divergence of &M/Sff for a ferromagnetic sys-
tem. Thus a study of e&/eIf is necessary in order
to understand the phase transition in the helical
phase. It will prove useful to write s$1/sH in terms
of the structure factor S(q,),

~M —= S(q, ) = P (s,s;)e'""

808~ 8

In this form we can investigate the Lifshitz point,
where q, -0, by expanding S(q) for small q:

8(q)=Q (s,s;)() + ~, ~ )r
4( 4-=x —-'q'(~') + 4'I (Sb)

The second equality defines the z moments of
(s,s„), and y=S(0) is the reduced susceptibility.
Taking the inverse of (3), we write S(q) ' as a l.an-
dau-like expansion with q playing the role of an
order par ameter,

2(s2) (s2)2 (g4)
S(q) '=y ' I+ '+q' ', — ' +''' . (4)

2X 4X' 24X

When ferromagnetic order occurs, S(q) ' has a
minimum at q, =0, and at T„X '=0. However, if
the coefficient of q' in (4) is negative, then S(q) '

is a minimum at nonzero qo and helical order re-
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FIG. 1. A summary of the qualitative features of the
model system: (a) The competing nature of the inter-
actions for R & 0, S & 0. If spins 1 and 2 are pointing up,
then the effect of the R interaction is to point spin 3 up,
while the S interaction has the opposite effect. To the
right, a, typical example of a helical phase is shown for
Ising spins. Each dot represents one x~ plane, and the
length of the arrow is proportional to the spin expecta-
tion value (s~) in each x-y plane. (b) The dependence
of the inverse structure factor on q for fixed T &T~.
Note the analogy with Landau theory. (c) A schematic
plot of the structure factor S(q, 1'). At high temperature,
the peak of S(q) occurs at qMOF= cos t i- iR I/4S), aud as
T decreases this peak moves to lower q for S& —0.65,
and to higher q for SS —0.65. Extrapolating series for
$(q) gives rise to a line of apparent singularities in the
T~ plane, and the peak of this curve locates qp at T& ~
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I I I
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q'. - «z'&X&(&z'&X —«z'&') .
To study the properties associated with the Lif-

shitz point, we have used linked cluster theory"
to calculate high-temperature series for X, (z'),
and (z') to order 8 in powers of f1 = IlkT for Ising
spins (n=. 1). The series for (z') and (z') are given
in Tables I and II, respectively. " The result of our
analysi. s for the location of the Lifshitz boundary
is shown in Fig. 2. Figure 3 shows that as the Lif-
shitz point is approached, q, -A(x xz) ~ with an
exponent P, of 0.5 +0. 15; here x=SlIf and zz de-

suits [cf. Fig. 1(b)t. The vanishing of the coef-
ficient of q in (4) is therefore the transition be-
tween helical and ferromagnetic order. Thus we
may locate a line of Lifshitz points in A-S space,
the "Lifshitz boundary, "

by the condition (z'&/X = 0
or, equivalently, (z') =0. Furthermore, by mini-
mizing S(q) ' with respect to q', we find asymp-
totically

R
FIG. 2. (a) Schematic phase diagram for the system

modeled by the Hamiltonian (1). The dashed line repre-
sents a first-order transition, while our n =1 data for
the second-order line are shown as a solid line. As R
varies, the Lifshitz point becomes a "Lifshitz boundary. "
(b) Estimates for the Lifshitz boundary based on the two
equivalent criteria (z )/g = 0 and on (z ) =0. The Lif-
shitz boundary predicted by mean-field theory is shown
for comparison.
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TABLE I. The coefficients C,k& in the reduced-second-moment series.

(zz) =g g C~&, tanh ' (PJ~)tanh'(PJz)tanh (PJz).
j~0 j+kz. 2

0
1
2

3
4
5
6
7
8

2
16
80

336
1 264
4432

14 768
47 376

8
96

672
3 680

17 376
74208

294 624

18
304

2 816
19 504

112432
572 464

k=1

32
704

8 256
70208

484 864

50
1 360 72

19424 2 336
197 584 39456

98
3 696 128

8
64

320
1 344
5 056

17 728
59 072

189504

40
480

3 360
18400
86880

371 040
1473 120

112
1 920

17 792
123 008
707 840

3 597 952

232
5 376 400

63 744 11904
542 912 175 680

3471 728 1 807 232

k=2

616
22 528 880

402 304 38 272 1192

32
384

2 688
14 720
69 504

296 832
1 178496

208
3 360 640

30 368 14 336 1 360
206 432 165 696 41 312 2 368

1 176 320 1 385 472 604 096 92 928
5 936 608 9 418 112 6 141280 1 687 808

3 664
177408 5 248

72
1 216

11264
78 016

449 728
2 289 856

632
13 280 2 320

150 240 65 152
1 240 160 913920
8 379 040 9 057 664

5 304
202 008 9408

3 569408 475 008

k=4

14 648

4
5
6
7
8

128
2 816

33 024
280 832

1 939456

1440
37 920 6 352

.523 328 217 088
5 148 064 3 620 672

16 032
747 104 29 120

200
5440

77 696
790 336

288
9 344

157 824

392
14 784

2 760
88 032

1 446 688

4 720
177440

7 448

14416
585 088

28 672

40 584

k=6

k=7

512
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TABLE II. The coefficients D;z& in the reduced-fourth-moment series.

(z ) =P P D~qqtanh' ' ~(p j~)tanh~(p jg)tanh"(p j~).
i=0 j+Ar + l

32
256

1 280
5 376

20 224
70 912

236 288
758 016

2

16
80

336
1 264
4432

14 768
47 376

328
3 936

27 552
150 880
712416

3 042 528
12 078 584

32
384

2 688
14 720
69 504

296 832
1 178496

1 600
26 112

237 056
1 616384
9 227 264

46 628 376

k=o

162
2 608

23 552
160 048
911920

4 602 160

k=1

5 320
111744

1 263 744
10428 992
70 446 752

k=2

512
10496

117504
964 352

6 493 696

13 888
360 960

4 942 080
48 338432

1 250
31312 2 592

421 472 76 928
4 085 968 1 214 592

30 664
956 800 59 968

15 504 640 2 192 396

4 802
164 976

107 080

8 192

512
6 144

43 008
235 520

1 112 064
4 749 312

18 855 936

2 592
41 728

376 832
2 560 768

14 590 720
73 634 560

4 240
67 872

610 976
4 141664

23 561 984
118768 096

24 536
495 968

5489 760
44 618 720

298 241 824

18 688
389 120

4 367 616
35 825 664

240 857 600

115648
2 951 680

39 684 096
382 199296

58 768
1 541 216

21 084 352
205 580 896

k=3

375 384
11926 144

192 732 032

k=4

148 480
4 758 528

77 806 592

963 840
37246464

321424
12 269 568

2 106200

620 800

8 192
167 936

1 880 064
15429 632

103 899 136

92 448
2 286 624

30 337 088
289 959 328

489 280
14 913 536

235 291 904
1 700 640

63 933 536 4 537 088

20 000
500 992

6 743 552
65 375 488

41 472
1 230 848

19433 472

73 832
2 639 616

131072

266 856
7 869 792

122 642 848

643 504
22 139 168

1 364 216

1 603 264
57 193 984

4 376320

6 076 176

k=6

k=7

k=8
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FIG. 3. Helical phase wave vector squared vs x =8/8
for the case of Ising spins and R =1. Shown are the
mean-field prediction qo=cos i(-(R (/48) (da»«). the
prediction based on the location of the peak of T~ (q) vs
q (solid), and the prediction based on minimizing the
smaQ-q expansion of Eq. (4) (triangles). The inset
shows the data in more detail near the Lifshitz point.
The data lie on a straight line of slope unity, indicating
that qo A. (x -x&)~f2.

notes the Lifshitz point. Oux result is consistent
with renormalization-group calculations' which
predict P, =0.5+O(e'), where &=4-d.

To study the helical phase, where q, is not ne-
cessarily small, we calculated and analyzed series
for the full structure factor for arbitrary q for
Ising spins to order 8. %e investigated the de-
pendence of q, one, S, and temperature, by
studyinqthe coefficients a, (q) in the series for
S(q) =Z, ,a, (q)P'. In particular, the series coef-
ficient a, (q) = Z„(4+ 2R cosq + 28 cos 2q) is identical
to a, (q) in mean-field theory, and therefore a, (q)
versus q has a maximum at q, = cos '(-lR l/48).
For the representative case 8 = 1, we find that
for 8& -0.65, the peak of a, (q) vs q occurs at pro-
gressively lower q as l increases, while when
8 » -0.65, the peak of a, (q) vs q moves to higher
q. Thus we find that the peak of S(q) vs q is in
general temperature dependent [cf. Fig. 1(e)j.

Our estimate for q, at T, is based on observing
[cf. Eq. (4)j that S(q,) diverges at T„while for
q 0 q„S(q) extrapolates to an apparent divergence
at a lower temperature. Therefore q, can be found
by locating the peak of T,(q) vs q. Furthermore,
the Lifshitz point may be found, independent of
our previous method, by varying 8 and S so that
the peak of T,(q} vs q tends to zero. From this
method we find the Lifshitz point occurs at S
=-0.271+0.002 for 0=1, and Fig. 3 shows q,' vs x
=S R.

l

- Q.8

—l, 20

FIG. 4. Estimated exponent y' of 3(q} for the case of
Ising spins and 8 =1. The dashed line is the renormal-
ization-group prediction (Befs. 6 and 7).

Finally, we show the results of our analysis for
the structure factor exponent y in Fig. 4. Note
the apparently continuous dependence of y on S.
The interpretation of our data requires care in
light of renormalization-group predictions that
the exponent changes discontinuously at the I if-
shitz point. The origin of the apparently contin-
uous variation stems from the fact that competition
between the interactions R and S sharply reduces
the correlation length in the z direction. This
means that near the I ifshitz point, criticality is
not evident until one probes closer to T, than one
must probe for the case S= 0, and hence longer
series are required to probe the asymptotic be-
havior. This effect is in fact observed upon cal-
culating and analyzing very lengthy series (35
terms) based on an exact solution of (1) in the
spherical, model limit (n- ~ )."This analysis dem-
onstrates that in the ferromagnetic phase, the ap-
parent continuous variation of y with x is spurious.
Thereby we estimate the n= 1 structure factor ex-
ponent to be 1.25+0.5 for lxl & lx l, and 1.35

5 for lxi ~ I»l. These estimates are con-
sistent with renormalization-group predictions"
that for n-component spins the structure factor
exponent for lx l

& lxz, l
is equal to the susceptibility

exponent for 2n-component spins.
For completeness, we have also studied the Ham-

iltonian (1}for planar and Heisenberg spina (n
=2, 3) to orders 6 and 5, respectively. The results
obtained were qualitatively similar to the Ising
case, and therefore the extensive labor required
for longer series was not necessary. In particular,
our estimates for the location of the Lifshitz point
for A = j. are S = -0.263 +0.002 and S = -0.259
+0.002 for n=2 and 3, respectively. For the n =3
system, we find no evidence for the predicted6'
first-order phase transition from the paramagnetic
to helical phases [cf. Fig. 2(a)j.
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