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Shunted-Josephson-junction model. I. The autonomous case
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The shunted-Josephson-junction model: the parallel combination of a capacitance, a phase-dependent

conductance, and an ideal junction element biased by a constant current, is discussed for arbitrary values of
the junction parameters. The main objective is to provide a qualitative understanding of the junction behavior

in different regions of the parameter space. Approximate formulas are given for the parameter-space

decomposition into regions of qualitatively different junction behavior corroborated by the associated-phase

plane portraits and also approximate expressions for the corresponding dc currrent-voltage curves are

presented. The case with a time-dependent monochromatic bias current is treated in a similar fashion in the

companion paper.

I. INTRODUCTION

where the voltage has been eliminated using

V =kg/2e. (2)

Most of the recent theoretical work directed to-
wards applications of the Josephson junctions has
been based on the shunted-junction model, with
good reason, since this model seems to account very
well for a large variety of experimental results.
Conceptually this model is the simplest possible
consisting of a parallel combination of current-
carrying elements specified as follows: (i) the
ideal Josephson element carrying a current I,
=I, sing, where I, is the junction critical current,
and Q is the phase difference between the macro-
scopic wave functions on either side of the junc-
tion, (ii) a linear conductance G giving rise to a
current I, =GV, (iii) possibly a phase-dependent
current of the form I, = eG cosP V, and (iv) a. dis-
placement current of the form I4=CdV/dt. The
phase difference is related to the voltage V across
the junction by dQ/dt =2eV/h, a relation involving

only fundamental constants.
In almost every case the junction will appear to

be current controlled, which is the origin of most
of the problems concerning this device. If an ex-
ternal current source is coupled to the junction
this current must equal the sum of currents I,
through I4, and if the externally applied current
contains a dc component Idc and an ac component
at frequency e/2v and amplitude I„, the system
behaves according to the nonlinear second-order
dif ferential equation

I„+Iac sin&et

=(KC/2e)p+(hG/2e)(1+& cosp)&f&+I, sing, (1)

Equation (1) has been discussed in numerous pub-

lications with and without a time-dependent bias
current. In neither case is the equation analytical-
ly solvable. Accordingly, a variety of approxi-
mate methods have been used in parallel with cal-
culations on analog and digital computers. Assum-

ing a dc bias current (I„=0),, the simplest case
C=0, & =0 is readily integrated. Stewart' and

McCumber' discussed Eq. (1}with e =0 and

Cc (0, ~) as a parameter. They found by numer-
ical calculation that the dc current-voltage rela-
tion for the device in a range of bias currents
Idc&I, was double valued, and that the amount of
hysteresis increased with increasing C. Schlup'

generalized their results to include a nonzero
e c (-1,+ 1) approaching the problem using per-
turbation theory combined with numerical calcul-
ations.

A different line of approach has been to bring
the equation into an analytically solvable form by
modifying the individual terms, i.e., either by

approximating the Josephson term I, sing by other
periodic functions of Q, or by replacing the lin-
ear conductance term GV by the nonlinear form
GV" where n=2,"or n-~.' The obtained re-
sults have been qualitatively similar independent
of how the problem was approached.

To date there has been no rigorous theoretical
justification of the shunted- junction model de-
fined by Eqs. (1}and (2). Josephson's original
papers, dealing with the thin-film tunnel junc-
tion, does have current components of the form
stated here, only the coefficients Io, G, and &

are dependent on junction voltage. ' This depen-
dence may be neglected provided the voltage stays
small compared to the energy-gap voltage of the
individual superconductors. A more serious limi-
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tation is that the current terms were derived as-
suming voltage bias of the junction, which con-
trasts with the current-biased situation most often
encountered in practice. Current contributions of
the same general form as in Eqs. (1) and (2) have
been derived also for the thin-film microbridge',
however, also for this case the above mentioned
objections are valid. The third commonly used
Josephson-junction structure, the point contact,
may have partly tunnel junction and partly micro-
bridge character. Nevertheless, the shunted-
junction model gives a good qualitative description
of all these different structures. Accepting the
model as basically phenomenological, it becomes
important to understand the dependence on the
model parameters, and from comparison with
experiments, to extract their values. Presently,
it will be particularly interesting to determine the
dependence on & since the existing theories for
tunnel junctions' and microbridges' disagree with

respect to the sign (e & 0 and c &0, respectively)
and all experiments so far seem to favor a defin-
ite sign (minus)" independent of on which device
the experiment is made.

In this paper we will give a complete qualitative
discussion of the shunted-junction model with a
dc current bias (I„=O, the autonomous case).
The more important case, I„w 0, (the nonauto-
nomous case) will be discussed in the following

paper. " Our aim is twofold; first, to give an
understanding of the junction behavior at various
points in the parameter space, and at the same
time to divide the parameter space into regions
of qualitatively different junction behavior. Sec-
ond, the discussion presented below will intro-
duce some of the mathematical concepts and meth-
ods which will be further elaborated in the more
complicated nonautonomous case." Section II
contains the mathematical foundation for our pres-
ent discussion. The same differential equation
[Eq. (1)] has been discussed extensively in the
literature on so diverse subjects as automatic
frequency control, "electric machines, " satellite
motion, "and the classical pendulum, "and all the
mathematical theorems necessary for our purpose
may be found in the literature. In Sec. III an in-
terpretation of the mathematical results will be
given in terms of the Josephson- junction behav-
ior with particular emphasis on how the param-
eter values affect the dc current-voltage charact-
eristic. Finally, Sec. IV gives the summary and
conclusion of the present paper.

II. THEORY

For the purpose of the present paper where the
discussion of Eq. (1) will be given mainly with

reference to the phase plane (P, P) it is convenient

to write Eq. (1) in the form

=3'p

y = p+ n sings —(1/v P )(1+c cosP)y —sing,
(3)

(4)

where y~,(r, rf&0, y0, 0 0) is the transient response
with the property that it goes to zero as ~ goes to
infinity, and y*(v, g„y0, v0) is a stable steady-
state solution, which is the recurrent trajectory
of Eq. (3) in its phase space (an equilibrium point,
a periodic or almost periodic motion). Hence we

find

(4')

where ( ) denotes time average. The dc voltage

V being proportional to (P) is hence determined

by the stable steady states, and, if more than one

stable steady state exists, also by the initial con-

ditions, and of course on the parameters n, P, &,

Q, and p. The number of branches to be expected
in the IV curve depend on the number of steady-
state solutions.

Thus, in order to obtain the IV curve it is neces-
sarytodetermine: (i) all the stable states of the
system, (ii) the regions of attraction of these
states, and (iii) the range of initial conditions.
This leads us to the standard problem of the quali-
tative theory of dynamical systems, the division
of the system [Eq. (3)] phase space by the steady-
state trajectories and separatrices, aDd the de-
composition of the parameter space into domains
corresponding to the qualitatively different phase-
space structures.

In the present paper we consider the autonomous
case of Eq. (3), i.e., o. =0. The division of the pa-
rameter space for this case has been discussed in

where p =I0,/I„n =I~/I„p =2eI0C/RG', f1 = &/&0,
and time is measured in units of 1/&v0 where ~0
= (2sI,/gC)' '. Here the dot means differentiation
with respect to normalized time.

As already mentioned above there exist param-
eter values for which the dc IV curve (i.e., the

dependence of (&f&) on p) is double valued. For this
reason, and for reasons to become obvious in the
nonautonomous case to be discussed in the com-
panion paper, " it is important to consider the in-

itial-value problem. Thus for a certain value of
the parameter p we are interested in the solution

y(r, Q„y„v0), where p„y0 are initial condi-
tions at time v', .

It is known that any solution to Eq. (3) can be
written in the form

0( & 0'0& yot 0) =ytr( t Pot yot 0)
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FIG. 1. Parameter space decomposition. The bifurca-
tion curves p=p, (P, e) are shown by heavy lines for
values of e as indicated. The dashed line shows the
curve p= p&(P, ~) for a =5 and the dash-dotted line
shows qualitatively the bifurcation for e =- 5. The let-
ters correspond to the different pictures in Fig. 2.

the literature on phase-locked loops"'" and on
Josephson junctions. " The bifurcation curves de-
composing the parameter space are shown in Fig.
1 in the P, p plane for several values of &. The
curves, to be denoted p=p, (P, e}below, are calcu-
lated numerically (the curve for e =-5 is, how-
ever, only qualitative}, and simple approximate
expressions are given in Appendix A. In what
follows, the structure of the solutions to Eq. (3)
will be discussed as p is varied while P and e are
kept constant. Three values of P have been chosen
in Fig. 1, indicated by the horizontal lines marked
with lower case letters which pass through char-
acteristic domains in the parameter space (the
letters on these lines indicate which of the corres-
pondingly marked phase portraits in Fig. 2 apply
to the point or region in question).

For
~

e
~

&1 there are two and only two qualita-
tively different gases to consider. One corres-
ponding to large and intermediate values of P and
the other corresponding to small P [i.e., P&P„
where p, (P, , e) =1]. In the former case the sys-

tern is described by the pendulum equation, "
(where e =0, but the behavior in that case is typi-
cal for any e ~&1}. Following the center horizon-
tal line in Fig. 1 for small p, the phase-plane por-
trait is the stable equilibrium point shown in Fig.
2(a). As p increases and approaches the bifurca-
tion curve [e.g., represented by p, (P, 0)], the
stable separatrix loop appears [Fig. 2(b)]. An ad-
ditional small increase in p generates the unique
stable rotating limit cycle [Fig. 2(c)) which for
p, (P, e) & p &1 co-exists with the stable equilibrium
point. Hence, the system has in this region two
stable steady states, and the phase plane (which
may be folded into a cylinder) is divided into two
regions of attraction by the separatrices which
pass through the saddle point (the unstable equili-
brium point). At a further increment of p the
stable and unstable equilibrium points approach
Q=-,'m from either side, and at p=1 they merge
and vanish through a singular point [Fig. 2(d)],
and the system possesses for p&1 only one stable
steady- state solution: the unique rotating limit
cycle which attracts the whole phase cylinder
[Fig. 2(f}]. The other case for ~& ~&1 is character-
ized by P small, e.g. , at the lower horizontal line
in Fig. 1. Here, region (a) persists up to p=1,
i.e., the stable equilibrium point attracts the
whole phase cylinder [Fig. 2(a)]. At p =1 the
stable and unstable points merge and the separa-
trix loop of the singular point is generated [Fig.
2(e)]. A small increase of p, p ~ 1 generates the
limit cycle and we get the same portrait [Fig. 2

(f)] as before.
When e &1 (a discussion of this in relation to the

Josephson junction will be given in Sec. IV) the

Q i1 b

FIG. 2. Qualitative phase-plane portraits. The letters
correspond to the regions in Fig. 1 and are discussed
in the text.
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behavior of the system differs significantly from
the case i@ i

&1. As shown in Fig. 1 for e = 5, the
bifurcation curve. splits up into two branches in
the region p&(z2 —I)'i'/e (cf Appendix A}. The
behavior of the system as p is varied will in this
case be discussed for a-value of P corresponding
to the upper horizontal line in Fig. 1. As p is in-
creased from zero, the system has one stable
state, and the equilibrium point attracts the whole
phase cylinder [Fig,. 2(a)]. As p reaches the value
corresponding to the dashed curve, to be denoted
p~(P, e), the degenerate semistable rotating limit
cycle appears [Fig. 2(g)]. As p is increased fur
ther this degenerate limit cycle splits up into ~o:
one stable and one unstable [Fig. 2(h)]. Here the
phase cylinder is divided into two regions by the
unstable cycle, the upper region being attracted by the
stable limit cycle and the lower by the stable
point. With a small additional increase in p the
full curve, p = p,(P, e), in Fig. 1 is reached and
the unstable limit cycle is converted into an un-
stable separatrix loop (this case is not shown in
Fig. 2) which disappears by passing p=p, (P, e) so
that the phase portrait becomes the one shown in
Fig. 2(c}. As p is further increased the behavior
of the system is qualitatively the same as for
ie i&1: the equilibrium points merge when p =1
[Fig. 2(d)] and the unique stablewycle attracting
the whole cylinder exists for p&1. The case p&py
is the same as if ie i&1.

For the region e & —1 (the physical relevance
will be discussed in Sec. IV), the behavior of the
system is similar to the case ie i&1 with one es-
sential difference, "in the interval 0~ p & (e'
—1}' '/i@ [the equilibriumpointy=0, P= sin 'p isun-
stable and is embraced by the oscillating stable
limit cycle so that the system has the phase por-
trait shown in Fig. 2(i) rather than in Fig. 2(a) for
small p. This oscillating cycle is compressed as.
p increases but does not disappear until p = (&'
—I)'i'/hei. Whenp)(e' —1)'i'/ieithesystembe-
haves as in the i& i&1 case. If, furthermore, e
&-3 the bifurcation curves have the additional fea-
ture that p,(P„e)=0 is satisfied by a finite value
of P Po as seen in Fig . 1 for & = —5 ." The discus-
sion above still applies for P&P„ i.e., the stable
equilibrium point in Figs. 2(a), 2(b), and 2(c) has
become unstable and instead the stable oscillating-
limit cycle has appeared. For P &P„however, the
system has only the rotating stable solutions. "

III. IV CURVES

the trajectories on the phase cylinder are attracted
by one of two steady-state solutions depending on
the imposed initial conditions. One of these solu-
tions corresponds to finite voltages, and the other
to zero voltage. The zero-voltage branch is ex-
plained as follows. For values of e c (-1,~) and
for any P, one steady state is the stable equili-
brium point implying that the IV curve always
has a branch V=O for 0~ p&1. This is the case
also for e c (-3,-1), even though the equilibrium
point in the region 0( p& (e' —I)'h/(e lisunstable
because the oscillating stable-limit cycle [Fig.
2(i)]satisfies V = (R&u, /2e)(p) =0. Only for the case
e &-3 and P &P, (Fig. 1) the zero-voltage solution
does not exist.

The finite-voltage branch of the IV curve has the
following properties: For ie i&1 or e )1 and p
)(&'- 1)' '/e the voltage is a continuously increas-
ing function of p for all values of p &p, (P, e). For
ie i&1, the voltage curve terminates at V =0, with
zero slope at p=p, (P, e). For e)1 and p&(e'
—1)'~'/e the voltage curve terminates at a finite
voltage, V&0, also with zero slope. This is un-
derstood by the following arguments. The voltage
V is determined by the equation

V = (h&u, /2e)(P) = (k&u, /2e) [2v/T(p)], (5}

where T(p) is the dimensionless time period of the
stable- rotation limit cycle.

For ie i&1 or e &1 and p )(e' —1)'i'/& the condi-
tion p = p, (P, e) corresponds to the separatrix loop
[Fig. 2(b)] in the phase space. Since the time per-
iod of the separatrix loop is infinite, i.e.,

limT(p) =~,
I'" ~c

(6)

V', (p) =-(I~,/2e)[2vT', (p)/T']», (6)

the finite-voltage branch always has a positive
slope. In the limit p- p, (P, e} the stable-limit
cycle approaches the saddle point and the period
T(p) is mainly determined by the limit-cycle mo-
tion in the neighborhood of this point. Using this
we find that for 0 & p —p,(P, c)«1 the period T(p)
is defined by the equation

the finite-voltage branch of the IV curve has its
end point at V =0 when p = p, (P, z). Furthermore,

T',(p) &0 for p) p,(P,e),
since the limit cycle moves to larger values of y
when p is increased. " Since from Eqs. (5) and ('I)

In the interval 0 (p&1, the bifurcation
curves separate the parameter space (cf. Fig.
1) into two regions. Denoting the bifurcation
curves by p = p,(P, e) we have that for p ~ p, (P, e), T,'(p) = -(1/kn)e (10)

where k and a are positive constants. From Eq.
(9) we find



16 SHUNTED-JOSEPHSON- JUNCTION MODEL. I. THE. . . 4857

I el& 1

{b) (c)

)o I 0

V V V

FIG. 3. Typical IV curves.

Inserting Eq. (10) in Eq. (8) we find that V',(p)-~
as T-~, which implies that the finite-voltage
branch has zero slope at V =0. Two typical ex-
amples of IV curves corresponding to P &P, and

p & p, are shown in Figs. 3(a) and 3(b), respective-
ly.

For & )1 and p& (em —1)'~'/c the endpoint of the
finite-voltage branch is due to the degeneration of
the stable limit cycle [Fig. 2(g)] at a finite mean
value of $. This happens for decreasing p when

p = p~(P, e) shown in Fig. 1 is reached; also in this
case the slope of the IV curve at the end point is
zero. The corresponding IV curve is shown in Fig.
3(c). Finally, for e &-1 and p & p, the behavior of
the finite-voltage branch is similar to that for
~e ~&1. Approximate expressions for the IVcurves
are given in Appendix B.

Voltage jumps in the IV curve from one branch
to another are either due to the degeneration of
the steady-state solution or due to the random
jumps in the junction coordinates (Q, y) when, for
example, a steady-state solution is not far from
the boundary of its region of attraction in the
phase space. The first type of jump occurs either
when the system is locked by the equilibrium
point and p is increasing towards 1 [Fig. 3(a), (b),
and (c)], or, if e &1, when the system is locked
by the limit cycle and p is decreasing towards
p=p~(P, &) [Fig. 3(c)]. The second type of jump
can take place when the system with p&1 is locked'
by the rotating limit cycle; as p is decreased to-
wards p, (P, e} a jump from the limit cycle to the
region of attraction of the stable point (which is
close to the cycle) may occur, caused by a small
perturbation of the system. This latter possibility
is not shown in Fig. 3. The IV curve has no voltage
jumps from one branch to another when the de-
generation of the steady state coincides with the
generation of another steady state with the same
mean value of @. This is the case for P &P, as
shown in Fig. 3(b}.

IV. SUMMARY AND CONCLUSION

In the preceding paragraph the behavior of the
shunted junction model has been discussed for ar-

bitrary values of the parameters. This has been
done without imposing limitations on their mag-
nitudes. While P may have any value, we know
from the Hamiltonian calculations on tunnel junc-
tions' that 0&& &1. On the other hand for other
types of junctions the physical mechanism giving
rise to the so-called cosQ term may be different
and at present very little can be said about the
magnitude of E. All experiments apparently gives
a value of E close to -1." Prom the previous dis-
cussion it can safely be argued that E &-1 is un-
physical since the system will go into oscillation
for 0~ p&(e' —1}'~'/~e ~, and hence power would
be dissipated without supplying energy to the sys-
tem. The case E &1 is not a priori unphysical. If
this occurs, the experiment to check it is in prin-
ciple simple; it can be verified directly from the
IV curve which should look qualitatively similar to
Fig. 3(c}. However, this kind of experiment may
not be so simple to interpret since it may be diffi-
cult to distinguish between the jump in Fig. 3(c),
and a jump generated by a noise perturbation as
discussed in Sec. III. Also other mechanisms may
explain the jump which is actually very often ob-
served experimentally. In Fig. 4 is shown two IV
curves for the same Sn-0-Sn tunnel junction ob-,

tained at different temperatures. The jump to
V=O in Fig. 4(a) might be interpreted as evidence
for & &1, but actually the jump occurs because the
junction was locked to an internal cavity resonance
and the lock-range exceeded as evident in Fig. 4
(b) where the cavity induced step is clearly seen.
Finally, the hysteresis in the IV curve may have a
completely different physical explanation, i.e.,
be due to self-heating effects" such that the
shunted-junction model does not apply at all, or
be due to the junction element having a nonsinusoi-
dal current-phase relation. 4

APPENDIX A: APPROXIMATION FORMULAS FOR THE
BIFURCATION CURVES

When the parameters 1/WP and p are small the
system Eq. (3), is close to the conservative sys-
tem

P=y, y= —sing (A1)

with the integral H(P, y) = —,'y' —cos P = h. Hence,
perturbation theory can be used to obtain an ap-
proximation of the bifurcation curves. Using
Pontrjagin's formula" for the averaging, the sys-
tem can be transformed to the form

p — (1+c cos P}(2h+ cos P)' ~' dP —= $(h)dt ~ ~p

for h~ 1. (A2}

The root of the equation P(h) =0, h~, satisfying
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the condition dp/dh I„„2&0 determine the curve

H(y, y) =h~ (AS)

which is close to the unique stable-limit cycle
for y &0. The condition h*=1 gives the approxi-
mate formula for the bifurcation curve

f =f(y)+c,

2 ptan-,' p —1
f(p) =( 2 1),/2 arctan

( 2 ), /2

x e In
I p sin p I, (B2)

-3&& &14
(g2 ] )i/2

E)1, p)
(A4)

which was also derived in Ref. 3. This formula
gives a very good approximation for the bifurca-
tion curve in the case -3&& &1 almost for the
whole range of P. For & &-3, it is invalid. In the
case, & &1, where the bifurcation curve splits up
in the region p &

(e' —1)' '/e Eq. (A4) is still rea-
soriable for the full curve in Fig. 1, another ap-
proximation, well known in the theory of auto-
matic phase control systems, "should, however,
be used for the dashed curve

p2= l~(2P ~))'"/0, ~ », p&(e' I)'"/e (AS-)

where C is defined by the initial conditions.
According to Eq. (Bl), for all le I

&1, f(P) is an
increasing function of Q. Hence the period of ro-
tation, i.e., the time T corresponding to a phase
increment of 2m, can be determined from the
equations

0 =f(v+0)+ C, T =f(3v —0)+ C .

T =sv/(p2 1}'/2 (B4)

and the formula for the IV curve is

Solving Eqs. (Bs}and (B3) we obtain for the period
of rotation T

APPENDIX B: APPROXIMATIONS FOR THE IV CURVES

c — c (p2 1)1/2
P«1

(as)

In the limit of small P, Eq. (3) may be trans-
formed to

(1+a cos p)&f&+ sing = p, (Bl)
where the time is now measured in units of I/&u,
and cu, = 2 ef, /h G.

Equation (B1) has (by direct integration) the solu-
tion

which is identical to the well known formula for the
q =0 case.

For small P and q &1 the formula

V= "'(p' 1)'/'
2e

~1
x 1 ——arctan — E' —1 —1 ' B6

7r P
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can be derived.
For large P, rvhen the system is close to being a

conservative system the approximation for the IV
curve can be determined by Eg. (5) with

dp
2(h*+ cosP) '

where h* &i is defined by Egs. (A2) and (A3).

(a7)
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