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An elastic-continuum description of the long-wavelength motion of an infinite vortex lattice pro-

vides a model for the dynamics of a rotating superfluid. In the classical limit, the resulting

differential equations reproduce the ordinary hydrodynamics of a rotating inviscid fluid; in general,

however, they include the lowest-order effects of the quantized vortex array, This formalism is

used to calculate certain collective modes of rotating superfluids in cylindrical containers.

I. INTRODUCTION

The equilibrium configuration of an unbounded ro-

tating superfluid consists of a two-dimensional tri-

angular array of quantized vortices. ' ' Such a lattice
can support small-amplitude oscillatory collective mo-

tion, ' ' and the calculation of these collective modes
is a straightforward matter, at least in principle. For a

bounded fluid, however, determining the equilibrium
vortex configuration itself is already too difficult for
more than a few vortices. Unfortunately, most sys-

tems of interest contain many vortices, precluding an

exact calculation of the equilibrium configuration and
the resulting collective motion.

Elasticity theory suggests an alternative approach to
the long-wavelength motion of a dense vortex array.
We first consider plane-wave disturbances in the
infinite vortex lattice. The equilibrium configuration
is known, and the dynamical equations for the plane-
wave amplitudes can readily be solved in the limit of
wavelengths long compared to the intervortex spacing.
The resulting equations for the plane-wave amplitudes
can be treated as the Fourier transforms of local

differential equations that constitute the basis for a con-
tinuum description of the vortex array. In this way,
we approximate the vortex lattice by an elastic contin-
uum that reproduces the correct long-wavelength
dynamics of an infinite system. This elastic'descrip-
tion is assumed to remain valid for long-wavelength
phenomena in finite systems of rectilinear vortices.
As a result, solution of the differential field equations
subject to the appropriate boundary conditions deter-
mines the long-wavelength collective motion of finite
rotating superfluid systems.

We begin by considering the dynamics of infinite
vortex arrays (Sec. II). Much of this material has ap-

peared previously, ' and only an abbreviated account
will be presented. One new feature is our retention of
the full three-dimensional character of the vortex

dynamics, whereas previous work ignored motivn

along the vortex axis. ' ' For infinite systems, this ax-
ial motion makes no dynamical contribution and is

therefore superfluous. For finite systems, however,
the three-dimensional character of the motion be-
comes crucial.

After considering the dynamics of vortex arrays, we

specialize to long-wavelength phenomena (compared
to the intervortex spacing), where the continuum limit

becomes appropriate (Sec. III). Correspondingly, the
equations of motion of a rotating superfluid contain
the classical hydrodynamics of ordinary inviscid fluids

but with added corrections that reflect the quantization
of circulation (Sec. IV). Finally, we consider some
simple examples of collective motion in superfluid sys-

terns and discuss further applications of this formalism
(Secs. V and VI).

II. VORTEX LATTICE DYNAMICS

Consider an infinite incompressible superfluid of
mass density p containing a system of rectilinear vor-
tices with circulation ~ = h/m aligned along the z axis.
The equilibrium position of the jth vortex is denoted
by the two-dimensional vector r, =x,x+y,y. Each
vortex is assumed to undergo small displacements
about its equilibrium position, with the provision that
the vortex bend only slightly. We denote this small

displacement by the three-dimensional vector u;(z;).
The velocity Geld induced by the vortices at the point
R is then given by

ds, x (R —R,)

, 4~ fR —Rf

where R, = r, + z, z + u, (z,), and the line integral is

along the vortex axis. Since each point on the axis of
a vortex moves with the local fluid velocity, we can
immediately derive the equation of motion for any
vortex
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8U;(Z„t) —, , K=v(R;) =

t' ds, x(R, —R)
J

I K —RJI

where X,
' omits the term i -j in the sum, ignoring,

for the moment, any self-induced motion.
For simple vortex arrays, Eq. (2) predicts that the

equilibrium array will rotate uniformly about the z
axis. ' Since we are interested in small displacements
with respect to this equilibrium configuration, we
transform to a preference frame rotating uniformly
about the z axis with angular frequency 0, redefining
u;(z; t) to be the small displacement measured with
respect to an equilibrium configuration at rest in the
rotating frame and linearizing in these small displace-
rnents. Upon carr'ying out this procedure, we obtain6

4, "-- iK,', ['
4w „(uj Uj) (zj zj) U j

[
K„'i'

3r;, [R;, (u; —u, )] u, x r;,
(3)

where r;, —= r; —r, , R„—= r;, +(z; zj)i—, and u; =Bu;(z;)/Bz.
The first term in the integrand is independent of u, and it must vanish in order that the equilibrium configuration

be at rest in the rotating frame

(4)

This condition determines 0 self-consistently; for a triangular lattice, Eq. (4) is satisfied if 0 =, ~n, where n is the

number density of vortices in the xy plane. ' The equation of motion then becomes

fiu;(z, )
at

2

tt i t ( Uj Uj) (Z) ZJ) 'll Jzx
4

~
--, IK'I'

3r;, [R;, (u;-u, )] u, xrj
K,', i'

i K,', i'
(5)

(6)

Within the linearized theory, Eq. (5) is exact. To proceed, we shall assume that the equilibrium configuration of
a rotating superfluid is a triangular lattice of N vortices of length L occupying an area A in the xy plane. We impose
periodic boundary conditions and use the contihuous translational invariance in the z direction and the discrete
translational invariance in the xy plane to expand u;(z;) in plane waves

u;(z, ) =(NL) ' 'Xxe 'e 'u„-, ,
k

where k =2rrs/L (s =0, + 1,... ) and 1 is a vector in reciprocal lattice space lying within the first Brillouin zone.
Substituting (6) into (5), and using translational invariance to shift the origins of the sums and integrals, we. obtain

2

il r. . il r.
auk l K ~, t 1 —e' 'e ' ikze'"'e

lt 417 k (i +z)/ (i +z) /2

ikze
rj—3(z x r)(R, u„-,) 2+ 2) Si2

'I

kl (r2+z2)3 2 (7)

The z integrals can be done be recalling the integral
representation of the Bessel function

I (v+ —,) (2r)" coskz dzK„(kr) - . (8)
k"f (-') 0 (z'+I')"""

2

Using this result, translational invariance, and the
symmetry of the triangular lattice, we find that many
of the lattice sums in Eq. (7) vanish. Then, the
Fourier transformed equations of motion in Cartesian

coordinates become
t

= (Q'g —q+ () (u„])y + 0.(Uk])„,
, x

uk I = ((1'g —
v)

—() (u„-, )„+a(u„) )j, (10)
y

=2 [,(u„-,).—.(U„-,),].
, at, .



4848 MARK R. WILLIAMS AND ALEXANDER L. FETTER i6

where we have defined the lattice sums'

Q'k = Q + $' Kp(kr, ),
77 J

]ck il r.X' (1-e )K,(kr, ),
4m.

(12)

(13)

the system, it becomes appropriate to study Eqs.
(9)—(11) in the long-wavelength limit. If we define
b - (n m) 'I' to be the mean intervortex spacing, the
long-wavelength limit corresponds to taking kb (& 1

and Ib ((1 in the lattice sums (12)—(17). The lattice
sums can be evaluated' through order b':

X'(1 —e i) ', ' K,(kr, ),
4m f~

a e 2 r, ,

]ck
v, = X'(1 —e ')—'K~(kr, ),

4m J f~

]ck
v» = X' (1 e»—) K) (—kr»)

4 f~

(14)

(15)

(16)

(17)

Qk = Q[2+(kb)zCo],

vi = Qlz(l'+kz) ',

g = Q (I' —I') [(I'+k') ' ,
' b']-, —

a =2QI»(„[(l'+kz) ' ——b'],

v„= i Q I„—k [(I + k ) ' —C„b ],

v» = i Q—l»k[(l +k ) ' —C„b'l.

where C~ and C„are constants defined by

(1g)

(19)

(20)

(21)

(22)

(23)

For an infinite array, it is clear from Eqs. (9), (10),
and (11) that the x and y equations of motion deter-
mine the entire dynamics. Therefore, previous work
has omitted Eq. (11).' ' ln general, however, the z

displacements of the vortex cores are nonzero, and

Eq. (11) is essential in maintaining the incompressibil-

ity of the fluid. Further, if applications to finite
geometries are anticipated, the boundary conditions on
the z component of the vortex displacements will

affect the xy motion in a nontrivial way.
To this point, we have dealt only with a model con-

sisting of idealized filamentary vortex lines. This
model is unphysical due to the divergence of the velo-
city field near the vortex axis. We must modify our
treatment by considering the structure of the vortex
core. Since a finite core gives rise to self-induced mo-
tion, we expect that our dynamics will be slightly al-

tered. We are primarily interested in long-wavelength
phenomena, however, and do not expect the details of
the core structure to be critical.

As a simple model, consider a core of radius a con-
taining p (p )) 1) identical elementary vortex fila-

ments with circulation n/p. Equation (5) may be ap-

plied to the system of vortex cores in a triangular lat-

tice by considering the motion of each elementary fila-

ment. The collective motion of a given core is then
found by averaging the motion of the filamentary vor-
tices over the core. This procedure is straightforward;
in the case of a uniform distribution of filamentary
vortices within each core, the only modification of
Eqs. (9), (10), and (11) is the replacement of Q', by

Qk = Q'k+nkz(4n) '[ln(2/ka) —y+ —],

where y =0.5772 " is Euler's constant.

III. LONG-WA VELENGTH APPROXIMATION—
CONTINUUM LIMIT

In the case of a dense vortex lattice where the inter-
vortex spacing is small compared to the dimension of

1 b 1 1
Co = —ln—

2 a - 4 8

+—X'[E~(r, b ) +r, b zexp(r»zb i)]1

J

= —ln ——0.244,
1 b

2 a
(24)

C„=—+—X'exp(r b ) =0.330.1 1

4 J
(25)

+ Co (Ukl)»
k b

x yI I

l2+ k2

b'l„l»
( )kl x (26)

fi(u -) ('+ k'
kl » 2Q + b ((z (z)

8t I'+ k' 16

+ Cn (u/]~x
k b

+ xyI I

I +k
b2lxly

(uk7)» (27)

+ C„l„kb' (uk-, )»
Ixk

I'+ k'

+ C,„I»khan (u„-,)„. (28)
I +k

These quantities give the equations of motion of the
Fourier coefficients, correct through order b'.

fi(u -)„ I'+k'kl
2 Q

I» b ((p (z)
Bt I +k 16
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We can now take the continuum limit by interpret-
ing the displacements as continuous functions of posi-
tion rather than defined only at discrete lattice posi-
tions. This transformation is accomplished by the

substitution u;(z) u(r). If Eqs. (26)—(28) are mul-
tiplied by (l'+k'), inversion of the Fourier transform
readily yields the differential equation of motion
satisfied by the vector field u(r },

b2('70 —VxVx) " ' =20 Vx'7x(zxU)+ —Vx'7x 7x['7 (u —u zi)]i
at 16

1

+ p' —i V—'('7 z x u)+16C„z—V'(0 i x u)
Qz

"
az

'I

+8C„(VV —'7 x V x) i xu
dz2

(29)

This equation has several noteworthy features.
First, it is first order in time derivatives and thus re-
quires only the initial configuration to determine the
subsequent motion of the system. This is because the
interaction between vortices affects the vortex velocity
and not the acceleration. Second, the most straight-
forward approach to this problem would have been to
attempt a direct expansion of Eq. (5) in powers of b.
The form of Eq. (29) shows, however, that V' Bu/Br,
not Bu/Bt itself, has a simple expansion in powers of
the intervortex spacing. Third, the terms proportional
to b' constitute the lowest-order correction due to the
existence of the vortex lattice. As shown in Sec. IV,
the classical equations of motion for a rotating fluid
can be recovered simply by letting b' 0. This
dependence on b' is the only remnant of the
quantum-mechanical nature of the vortex system.

[l„(u—„-,)„+ly(u„~~)y+k(u„-, ),]
at "

=2&b'[—„(l,'+I.') + —,(Cn+2C„)k']

x [l„(ul, i)y-l~(u„-, ).]. (32)

Inversion of the Fourier transform yields

Q2
V —u = —2Qb2 —— +

9t 16 gx2 gy2

1 82+ —(Co+2C„) (i '7 x u).
2 ez2

(3-3)

This equation simplifies Eq. (29) to the form

. IV. CLASSICAL LIMIT

2

Vx Vx "+20z xu-
Bt 16

It is interesting to recall the linearized form of
Euler's equations in a classical inviscid incompressible
rotating fluid. " Conservation of momentum yields
the classical relation

+2Qi x v (r, r) = 'Vp 'P(r, r), —
at

where v (r, t) is the fluid velocity and P is the "re-

duced pressure, " given by P = (P —
—,pl 0 x r ~' —V).

Here P is the hydrodynamic pressure and V is any
external potential that couples to the fluid mass. The
continuity equation has the usual form

V x [0 (u —u zi)]z+(16C„—1)

x —('7 i xu)i+8Co z xu =0,8 8
Qz QZ

(34)

which can be satisfied whenever

Qu 2 20b

'7 x t, "7 (u —u zz)]z + (16C,—1)
'7 v(r, t) =0. (31}

Motivated by Eq. (31), we consider the combination

—[l„(u„-,) +l, (u„-,), +k(u„-, ),].
at "

Using Eqs. (26)—(28), we have

x —(V z xu) z+8Co z xu - CTF, —A ~ A

az BZ2

(35)

with F an arbitrary scalar function. Equations (33)
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v ( r, r) + [u ( r, r) 0 ] v ( r, r) =
Qt

and, in the linearized regime, we have simply

It is now possible to connect Euler's equations with
the equations of motion of the vortex syst . Fsys em. irst

i erentiate (35) with respect to time, and then re-

p ace 8U/8t by v (r, r) in Eqs. (33) and (35) to obtain

9 v(r, r) =O(b'), (36)

and (35) f) form a system of four equations in four un-
knowns (u u u F)„, ~,u„J') which must be satisfied subject to
the appropriate boundary and initial conditions.

Comparison of Eqs. (30) and (31) with Eqs. (33)
and (35) is su& is suggestive. %e must, however, relate the
displacements u (r, r) to the fluid velocit v (r, r). I
essence, our reliance on the displacements u (r, r)
constitutes a Lagrangian description of the fluid, '2

where we follow the motion of a given element of the
flui as it moves through space. Hence the, e position
o t e element of fluid initially at r is given at a later
time by r+u (r, r). This view differs from the usual
Eulerian description, which focuses on a given ele-
ment of space. Since each element of fluid moves in
space with the local fluid velocity, the relation between
t e agrangian and Eulerian descriptions is given bn

v(r+u(r, r), r) = 8"(").
9t

For small u, we have

vo=-20(li+kt) 'Ii.. Each vortex experiences bending
along its axis and undergoes elliptical motion in the xy
plane with a given element of fluid executing circular
motion in the plane perpendicular to the direction of
propagation. For fixed k, the system exhibits the
unusual property that the frequency decreases with in-
creasing I; equivalently, the group velocity for propa-

I. T
gation perpendicular to the rotation axis is Op@0 't t
. The dashed curves in Fig. I illustrate this feature of

t e classical system, showing that ra 0 as k/I 0.

the underlying vortex structure modifies this classical
picture. %'hen the wave propagates n 1ear y perpendic-
ular to the rotation axis (k/I 0) th

th x

~~

~

~

~~

e vortices remain
es entially undeformed, executing elliptical motmo ion ln

xyplane. For k/I=0, these solutions Tk
c enko waves; they are nondispersive with

v~ = vg = —Qb, . and have no analog in a classical fluid,

where b =0. Such Tkachenko motion alters the
dynamical spectrum, as seen by the solid curves in

ig. I; the terms proportional to b' in Eq. (38) dom-
inate as k/I 0, and the dispersion relation for fixed
nonzero k has a minimum as a function of I, markedly
reducing the low-frequency density of modes. '4

As a simple example of a finite system, we consider
a rotating superfluid in a rigid cylinder of length L and
radius R. The equations of motion (33) and (35)
must be solved subject to the boundary condition that
the normal component of u vanish t th b d
o the cylinder. %e seek a solution of the forr

8v (r, t)
Qt

+20z X v+0(b') =— (37)

Since b = fvlnt 0, the classical-limit (b' 0) is obtained

, an i enti yingby taking b' 0 in (36) and (37) a d'd f '

t = p P. In this way, we exactly reproduce the
classical equations of motion. 0.8

V. APPLICATMNS

(26—
For an unbounded fluid, the equations of t'

) —(28) for the Fourier coefficients predict a plane-
wave dispersion relation'o

rut =40~[ kz+ —I4bi
16

I+ —,Co(I'+2k')k'b'](I'+k') ' (38)

& 0.6

3

0
0 I0 20 30

In the classical limit (b 0), these solutions become
t e famihar transverse left-handed circularly polarized
inertial ~aves of a rotating Quid'3 th d'e ispersion rela-
tion for these waves is given by co' = (20n z)',
where n ~ (1+kz) (I2+ k~) '~' is the direction of wave

propagation and i is along the axis of rotation. The
system is highly dispersive, with the phase velocity
v~ vo{ ~ ~)B and the group velocity
vg ~ vo[z (n ' z) n] = v02 —vp, where

FIG. 1. Dis er ''
p sion relation for a plane wave in an infinite

rotating Quid. The curves show th 'd

ao 20 for wav

e' imensionless frequency

/ or wave number I perpendicular to the axis of rota-
wave num er @parallel to

t e axis of rotation. T
tion; they are labeled with the fixed wave b k

'on. The dashed curves represent the classi-
cal limit (b 0 ' ti ); the solid curves include the lowest-order
modification due to the quantizat' fion o circulation in a typical
sample of He II (g = I sec ' —l0—3 2 —]sec, tc — cm sec
b = 1.3 x l0 cm, a = I x 10 8 cm).
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u (r, t) = [ u, (r) cos(kz) r"

+ uo(r) cos(kz) $+ u, (r) sin(kz) i]
x exp(im cb —i cot),

where
k p=n'/L, p =0, 1, 2, . . . , and m =0, ~1, ~2, . . . .
The resulting system of coupled differential equations
is dificult to solve in general, and we only consider
the two special cases of axisymmetric modes and Tka-

chenko modes.
Axisymmetric modes (m =0; p =0, 1, 2, ...). If u (r)

is independent of $, then the equations of motion
(33) and (35) lead to a fourth-order differential equa-
tion for u, (r). This differential equation can be fac-
tored into two commuting second-order differential
operators acting on u, (r). It is then straightforward to
solve this equation subject to the boundary conditions
that u„(R) vanish and u„(0) be finite. A rather
lengthy calculation yields the eigenfunctions

c

2

( )
. 2iQ Jl+b 8C pu ~ocr,.t ,

= r —
'i 16 n

I
c

T

Jl, tt

J'
r p 7Tz J l, nLJ]i [,It

—z'" R L pmR

b2 2Q j] „x 1 ——
16 cop p R

c

c c

+ (8Cn+16C„) 'Jo j t „—sin P e
L '"R L

09)

Here, the eigenfrequencies are given by

+ b p C.+ " "" + ' "" I+ ""
L 2 prrR 16 pm R i prrR

(40)

where n =1,2, . . . , p =0, 1, 2, . . . , and j „ is the
nth zero of the mth Bessel function.

The spectrum is obviously discrete, but the modes
are similar in other respects to the plane-wave modes
in the unbounded fluid. In particular, as b tends to
zero, the modes approach the classical inertial modes
in a rotating cylinder, "and as p/n approaches zero,
the modes approach the axisymmetric Tkachenko
modes appropriate for this geometry. The motion in
the xy plane is again approximately elliptical, the @-
motion being exactly out of phase with the r motion.
Further, while the axisymmetric modes of the classical
system (b =0) become dense near co=0 as p/n 0,
when b &0, the Tkachenko motion of the lattice
dominates the spectrum as p/n 0 resulting in a
discrete isolated lowest-frequency axisymmetric mode
(n = l,p =0).

General Tkachenko modes(m =0, ~1, + 2,...;p =0).
If we consider motion with no z dependence,
we generate Tkachenko modes. For the axisym-
metric case the eigenfunctions and eigenfrequencies
can be found from Eqs. (39) and (40),

2iQ bz
U„o o(r) =

'ir 1—
~n, p, p

c

4 Jcii.—, (41)
R ' R

co„o o= Qbj ~, ,/2R.

For m AO, we must return to the differential equa-
tions, where we find

c

(42)

u„o(r, t) =
c

1 . r—J jm m, n R

—i' —+
r 20

Jm, n
r

mR

IxJ jm m, rt

c

Jm, n

mR

fx Jm —] jmn

x exp[i(mcus —co„, , ot)],

co„o= Qbj „/2R.

(43)

(44)

It is interesting to note that the Tkachenko modes for
m =0 and m = 1 are degenerate in this geometry,
even though they correspond to physically distinct
solutions.

For laboratory conditions in cHe (cc = 10 ' cmz/sec,
R = 1 cm, 0 = 1 sec '), the lowest Tkachenko
modes have periods on the order of a few hundred
seconds. We are unaware of any direct laboratory
observations of these modes, although they
should, in principle, be observable in photographic ex-
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periments that detect the position of quantized vor-
tices in rotating superfluids. Alternatively, Ruder-
man" has proposed that Tkachenko modes within the
core of a rotating neutron star might provide an expla-
nation for the long-period phenomenon in pulsars ob-
served after a glitch. For the unphysical, but tractable
cylindrical neutron star considered here, the predicted
period is on the order of months, in rough agreement
with apparent time scales.

VI. DISCUSSION

We have constructed a model of the dynamic
behavior of a rotating superfluid based on the continu-
um limit of an infinite dense array of quantized vor-
tices. The model not only reproduces the usual
results of classical hydrodynamics but also predicts the
leading corrections due to the underlying vortex lat-

tice. This description is useful in studying the collec-
tive motion of finite rotating quantum systems since it

avoids a detailed calculation of the equilibrium vort'ex

configuration. For cylindrical geometries, it is possible
to obtain explicit normal-mode solutions where the
Tkachenko motion of the vortex lattice modifies the
classical results.

It would be attractive to apply this model to more
complicated geometries. For example, a spherical
configuration would provide a better model of a rotat-
ing neutron star. Since the cylindrical model was
derived by assuming small bending of rectilinear vor-
tices, however, caution is necessary for geometries
like a sphere that require vortex bending to match the
boundary conditions. Such a system might be treated
with a modification of the present formalism, but the
procedure is likely to be complicated; this subject
remains for further investigation.
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