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Investigation of dislocation dynamics by nuclear magnetic resonance
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Inspired by recent experiments of. Sleeswyk, Kanert et al. investigating the effect of plastic deformation on
the simultaneously measured nuclear spin-lattice relaxation time T, p

in the rotating frame, the influence of
moving dislocations on T,p

is studied theoretically. As illustrated recently by %olf, this necessitates the
calculation of quadrupolar "lattice" correlation functions associated with the relative motion of dLslocations
and nuclear spins. Assuming discrete and random dislocation jumps during (i) plastic deformation, (ii)
internal friction, and (iii) fatique experiments, these correlation functions are determined. Their general form
allows prediction of T» in both the strong-collision (Rowland-Fradin) and the quadrupolar weak-collision
region. It is demonstrated how, from low-field T&z experiments performed during either one of the three
types of deformation modes, dislocation parameters such as the mobile and immobile dislocation density, the
mean time between successive jumps of a dislocation, and the distribution of loop lengths and jump widths
may be extracted. As a declared goal, this article aims at the understanding of the properties of the Tip
minimum (i.e., of its position, depth, and width) in terms of the underlying microscopic mechanism of
dislocation motion, an information which, in the past, could not be gained from purely mechanical (e.g.,
internal friction) experiments. Consequently, a variety of new combined NMR-deformation experiments is
proposed to investigate the microscopic dynamics of dislocation motion.

I. INTRODUCTION

One of the most interesting new applications of
nuclear- magnetic-resonance (NMR) techniques in
solid-state physics and materials science investi-
gates the effect of plastic deformation on the spin-
lattice relaxation time in the rotating frame, T,p

In
a series of articles by Hut egal. 4 and Hackeloer eg

a/. ,
' T„has been studied as a function of the plastic-

deformation rate q which was varied over a fairly
wide range (10 ' s q s10'). These first experi-
ments performed on Na, Cl, NaF, and RbCl single
crystals (via the resonance of the "Na and "Rb
spina, respectively), clearly exhibit the following
four effects:

(i) The total relaxation z ate T, ', in a weak ro-
tating field may be decomposed into a static back-
ground contribution (T;,'), and the contribution
(T,',)«which is governed by the deformation rate

I/T, p
= (1/T, p), + (1/T, p)~„.

(ii) In the limited range in which 10 (g &1 sec '
(T,',)d„ is found to be proportional to i, but inde-
pendent of the actual deformation q of the cry-
stal. ' ~ For larger values of j a maximum of
(T,',)~„, which appears whenever g is about equal
to 20 sec, is observed. '

(iii) The comparison of the (T„)„„values obtained
for the "Na resonance in NaCl with those measured
from the "Rb resonance in RbCl, clearly shows that
(Tq,)~,~ is governed by fluctuating quadhugofar in-

teractions while dipolar interactions seem to play a
minor role only. This observation was also con-
firmed by the absence of plastic-deformation ef-
fects on the "F resonance in KF, a nucleus well
known for its lack of an electric quadrupole mo-
ment (I= —,').

(iv) Between + 20 and -00'C (T„)„,is practically
independent of temperature.

From these experimental results Hut et aL
concluded that the microscopic processes causing
the observed phenomena are closely related to the
long-range migration of dislocations during plas-
tic deformation.

In spite of some advantages over purely mech-
anical methods to investigate dislocation dynamics,
two types of difficulties are inherent to this new
technique.

First, exPerimentally it is difficult to obta. in a,c-
curate values of (T»')d, , during the rather short
time interval during which the crystal may be de-
formed without breaking. The same problem makes
it very difficult to investigate the exponentiality of
the relaxation decay of the spin-locked magnetiza-
tion. Also, as illustrated in the latest article by
Kanert et al. ,

' as a pra.ctical limit & may not ex-
ceed a value of about 10' sec ' for the crystals not
to break during the spin-locking Typ experiment.
Since the shortest values of (T„)~,are observed
for 10'~ i~ 10 sec ', the entire (T„)~,minimum,
which conta, ins a considerable amount of informa-
tion on the microscopic mechanisms of dislocation
motion' (see below), cannot be observed if the dis-
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location jumps are being induced by the plastic de-
formation of the sample.

Secondly, the theoretical interPretation of the
measured (T„)d„values, for example, in terms
of the mean time ~„between successive jumps of a
dislocation and the density p of mobile disloca-
tions is not unambiguous. The main reason, there-
fore, lies in the increase of the plastic deforma-
tion & during the NMR experiment which results in
increases of both p and the quadrupolar contribu-
tion Hz to the local field experienced by the nuclear
spins. Another problem arises from point defects
(vacancies, interstitials) produced by nonconser-
vative movements of dislocations during plastic
deformation. The NMR relaxation contribution of
such defects is fairly unknown and may thus com-
plicate the interpretation of these experiments.

Some of the experimental difficulties outlined
above may be overcome by deforming the crystal
periodically (for example, sinusoidally) instead of
applying a constant time-independent stress. In
practice, this would mean to investigate dislocation
dynamics during internal-friction or fatigue exper-
iments and not during plastic deformation. During
such experiments enough time is available to mea-
sure (T„)~„fairly accurately. Also, larger values
of e (&10' sec ') may thus be obtained. This should
enable the investigation of the entire minimum of
(T»)~„and not only its "slow motion" side as in

the plastic-deformation experiments by Hut
et al.

While internal-friction experiments permit in-
vestigation of the stringlike vibration of disloca-
tions, in that they provide also information on the
long-range migration of dislocations (unpinning)
fatigue-NMR experiments are more similar to
the plastic-deformation-NMR experiments of
Hut et al. The systematic investigation of both
should, therefore, allow separation of the NMR
relaxation effects associated with the dislocation
motion from those arising from the point defects
created during plastic-deformation and fatigue ex-
periments. Also, some of the difficulties encoun-
tered in the theoretical interpretation of (T»)d„
values (see above) may thus be overcome.

To analyze what type of information on the mech-
anisms of dislocation motion may be extracted
from the experiments proposed above, in this arti-
cle the NMR relaxation behavior is investigated
for an arbitrary method used to deform the crystal
(Secs. II and III). In particular, in Secs. IV-VI the
expected effects of plastic- deformation, internal-
friction, and fatigue experiments, respectively,
on T» are discussed. As illustrated there, these
types of experiments are expected to yield a con-
siderable amount of information on the micro-
scopic mechanisms of dislocation motion.

II. ROTATING-F RAME QUADRUPOLAR SPIN-LATTICE

RELAXATION ASSOCIATED WITH THE MOTION OF

LATTICE DEFECTS IN CUBIC CRYSTALS

A. General theory

In cubic crystals electric field gradients (EFG's)
at the nuclear-spin positions are usually due to
structural defects, such as vacancies, interstitial
atoms, dislocations, etc. ' Whenever, for exam-

ple, a dislocation changes its position in the crys-
tal, the surrounding atoms have to move also thus (for
I~ 1) causing fluctuations of both the quadrupolar and

the dipolar spin Hamiltonian. As verified by Hut et
al'-4 and Hackelber etal. , 'however, the djpolar ef-
fects on the nuclear-spin relaxation due to
dislocation motion are negligible, and quadru-
Polar effects dominate the observed relaxation be-
havior. Therefore, in what follows we shall con-
centrate exclusively on the effect of quadrupolar
fluctuations due to the motion of lattice defects on

the nuclear- spin relaxation.
For the investigation of rather infrequent atomic

or defect motions, the spin-lattice relaxation time

Typ in a weak rotating field H, has proved to be the
most appropriate NMR parameter affected by such
motions. In reviewing the basic expressions for
(T„)z due to fluctuations of quadrupolar interac-
tions, we limit ourselves to the simple case in
which (i) all N spins of the sample are identical
and (ii) the rotating field is applied at the exact
resonance-precession frequency (d = e, = yHO of
these spins.

From a thermodynamic point of view, the entire
Hamiltonian of a spin system imbedded in a crys-
tal may be decomposed into the Hamiltonians 3C~

and 3C~ of the spin system and the "lattice" and

their interaction Hamiltonian 3C~~:

X Xg+3CgL +Xg s (2.1)

N

Xx= yhH, Q iq, , - (2.3)

Neglecting all explicitly time-dependent (non-

secular) interactions in the rotating frame, ' the
Hamiltonian X~ of the isolated spin system im-
bedded in the crystal reads as follows':

Xr +X(0)RL+X(0)RL
S 2 D Q

(2.2)

where XD'R and3C"" represent the secular
parts of the rigid-lattice dipolar and quadrupolar
Hamiltonians, ~espectively, in the laboratory frame,
i.e. , X"'" and X"'R commute with the laboratory-
frame Zeeman Hamiltonian X~. The Zeeman
Hamiltonian X~ in the rotating frame is given by'
(at exact resonance)
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where I&„denotes the x component of the angular
momentum operator ft of spin j referred to the
rotating reference frame. Both X~' and X ' may
generally be decomposed into spin-operator terms
and lattice functions, according to'

X(0) ~ ~ g(0)~(0)
i=l yml

V
N "max

3C(o) g g g Q(o)V(o)

yf=l p tel Q~1

(2 4)

(2 5)

+ ))+)sin'8&) cos2$&t) . (2.6)

Here eq&z and g&& denote the magnitude and asym-
metry parameter of the EFG at the position of spin
j which is produced by some defect k„. 0&J and

Q&& characterize the orientation of the symmetry
axis of the EFG tensor associated with defect k„
with respect to the "magnetic" coordinate system
(with its z axis parallel to H,)."' The quadrupolar
spin-operator terms are given by

Q(o) = [eQ/4I(2I 1)][I„',- ,'(I„'I„+I„I„')]-,
= —[eQ/8I(2I —1)](3I'„,—I') . (2.7)

If "lattice"-induced fluctuations of both the dipolar
and the quadrupolar reservoir may be activated,
the spin- lattice interaction Hamiltonian in Eq.
(2.1) reads as follows~":

where (3C(oo))~, represents that part of the secular
quadrupole Hamiltonian that actually fluctuates.
This definition takes into account that not all types

I

where the dipolar spin operators A,"~' and the lat-
tice functions F,",.' are governed by the usual ex-
pressions. "' In the quadrupolar Hamiltonian (2.5)
for a cubic crystal, a sum over v~ different types
of structural defects, which eventually distort the
crystal lattice, has been performed. 1P~ denotes
the number of defects of the particular type v.
Then V+& represents the EFG at the site of spin j
which is due to a defect k„of type v, and"

of structural defects are necessarily mobile. As
an example, one may think of mobile (v= 1) and
immobile (v= 2) dislocations or point defects which
produce the EFG's in the quadrupolar Hamiltonian
(2.5).

By their very definition, XD '" and Xz"" are
part of the isolated spin system, i.e. , they com-
mute with 3C~ in Eq. (2.1). The lattice-induced
time dependence of X» is, therefore, governed by
the following expression'":

(t) e(i/ ) t t3C e-(tlo)x~t
SL SL

3C(0)(t) 3C(o)R( + [3C(0)(t)] [3C(0)RL]

(2.9)

Considering 3Csz(t) as a perturbation on the iso-
lated spin system characterized by X~, the relaxa-
tion behavior of the nuclear-spin system under the
effect of lattice-induced dipolar and quadrupolar
fluctuations may be determined. If the average
quadrupolar local field H, experienced by the
nuclear spins is not considerably larger than the
dipolar local field Hn, (H~=H~), a single spin
temperature may be assigned to the isolated spin
reservoir. ""As illustrated by Wolf, ' the Bloch-
Wangsness-Redfield or Hebel-Slichter theory may
then be applied to verify that the entire spin-lattice
relaxation rate T, ', may be decomposed into a
dipolar and a quadrupolar contribution, according
to

1/T„= (1/T, ) ~+ (1/T„)o. (2.10)

It has been demonstrated experimentally' ' that
for the motion of dislocations during plastic
deformation the dipolar relaxation contribution
in Eq. (2.10) is negligible if the temperature
is low enough to avoid self-diffusion. (The
deeper theoretical reasons therefore are dis-
cussed in some detail in Sec. IIIB.) In what fol-
lows we shall, therefore, restrict our analysis to
the quadrupolar relaxation contribution.

If we start from the original papers " and use a
more general formalism, we may derive the fol-
lowing expression for (T„)o (at exact resonance)":

oo d2 (0)(
(2.11)

where 5 was defined as follows:

&o=,—', [e'Q'(2I+ 1)/I'(2I- 1)it'] . (2.12)

The classical quadrupolar "lattice" correlation
function G(oo (t) is given by

d3)'1l
Ng

Go (t) Qg (Vo((o (ti+t)V(o (t )) t (2 13)
J=l A'~l

where N~~' denotes the number of mobile defects
which, for simplicity, were assumed to be all of
the same type (e.g. , v=1). The angular brackets
symbolize a time average over the initial time t'.

The "quadrupolar spin-correlation function" ko(t)
describes the thermal mixing, following a dis-
location jump, of the secular part of X~o.' in the
rotating frame with X~ and with the secular part
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of Koo) with respect to Xz. At t= 0, kq(t) equals
unity while for times that are much longer than
the "quadrupolar-thermal-mixing time" T q, kq(t)
must vanish, '" i.e. ,

kq(0)=1; kq(t- ~) =0. (2.14)

The "effective precession frequency" ~,« in Eq.
(2.11), defined by"

(o)(o))o ) (o)(n))2 i o)2

(2.16)

(~(o))o ) o)(n)o i ~o

(2.17)

where analogous to Eq. (2.12), 5n is given by

6~ = y I I(I+ 1) . (2.18)

~In terms of the above local-field precession
frequencies, the frequency 0 in Eq. (2.11) may be
written as follows";

(2.15)

is proportional to the effective heat capacity of the
spin system, i.e. , to the heat capacity of that part
of the spin system which is able to maintain a com-
mon spin temperature even during the quadrupolar
fluctuations. Here, 7;Q denotes the quadrupolar
pair correlation time, i.e. , the mean time be-
tween successive relative jumps of a spin-defect
pair. [Note that 1 —kq(r, q) denotes the probability
that on the average, between successive relative
jumps of a spin-defect pair, quadrupolar thermal
mixing may take place. ]

With respect to the Zeeman Hamiltonian (2.3) in
the rotating frame, XD' and XQ' contain secular
and nonsecular contributions. " The corresponding
local-field precession frequencies which appear in

Eq. (2.15) are given by""

and "weak" collisions Eq. (2.11}may be simplified
considerably.

(2.21)

If we define the dynamical quadrupolar local-field
frequency (associated with that part of 3C+~) which
fluctuates, thus causing spin-lattice relaxation)
by [see Eqs. (2.17) and (2.13)]

N Ng

(~'q, }~.= 4' —„ZZ I
&nl'(0}l'

G(o)(0)

we may formulate Eq. (2.21) also as follows:

(2.22)

(2.23)

As illustrated earlier, '"analogous to the theory of
Rowland and Fradin" the factor on the right-hand
side of Eq. (2.23) involving Gq"'(t) may be inter-
preted in terms of the average rate of charge of
the mobile part of the quadrupolar energy due to
the jumps of mobile defects. Instead of the dy-
namical local-field precession frequency (2.22),
equally well we could have inserted the total quad-
rupolar local-field precession frequency (2.17)
into Eq. (2.21). The factor involving Gq+)(t) then
would have to be interpreted in terms of the rate
change of the total quadrupolar energy due to
mobile- defect jumps.

B. Quadrupolar strong collisioits

For v, Q» T Q
the "lattice" correlation function

G~q)(t) in Eq. (2.11) remains in essence unchanged
while kq(t) decays to zero during quadrupolar ther-
mal mixing. In practice, kq(t) therefore vanishes at
all times [see Eq. (2.14)] and we obtain

1 1 5q dG(o)(t)

+ 2o) ~~'[I —kq(r, q)]'(o) q'"„'+ o)D'n)) . (2.19)

In writing this expression it was observed that
XQ

and XD ' commute, a phenomenon which leads
to the disappearance of terms proportional to
o)~~„)o) ~o (Ref. 11).

With the following values of the factors h"' (at
exact resonance), "

C. Quadrupolar weak collisions

For r,q«T q, Gq '(t) decays much more rapidly
than kq(t). Hence, in Eq. (2.11)kq(t) may be re-
placed by its initial value given by Eq. (2.14).
After two subsequent partial integrations Eq. (2.11)
then yields1, ~)+ +q[&Di+ (~q, ) ]

8 6q o)2 ~ o)2 + (o) (n ))2 ~q (2tl) i
1P Q 1 g)r Qr

s& &=-,' ~ e«&=o. I ('& =-,'4 t 4 (2.20) (2.24)

and the above definitions of spin and "lattice" cor-
relation functions, in the limiting case of "strong"

where Jqo)(o)} represents the spectral density as-
sociated with Gqo'(t):
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J&'&(&u) =2 Re Go&a&(t)e&"'dt . (2.25)

With kq(t) —= 1 the precession frequency (2.19) sim-
plifies as follows:

O2 &d2+ &d2 + (&0&n&)2+ 2&d&o&(&d&n&+ &d&n&)j. Dr Qr Dr qy

For &dr, o«1, J&oo&(&d) is usually independent of +
(see, also, Sec. IIIA). The quantity

(2.26)

0 &d2 ~ (&d &rt&)2
Dr Qr

(2.27)

in Eq. (2.24) then represents the ratio of the quad
rupolar relaxation rate in a vanishing rf field
(H, = &d, /y =0) with respect to its value in a, large
field (d, »(dD„, +@„. Interestingly, if contrary to
our earlier assumption the diPolar fluctuations in
the crystal were of a zveak and not of a strong-
collision type, the secular part of X~"' no longer
would participate in the common spin temperature.
era'„' would then vanish and n @ would be closer to
unity.

D. Extrapolation from strong to weak collisions

As we have seen above, the main difference be-
tween the strong-collision expression (2.21) andthe
weak-collision relationship (2.24) lies in the ab-
sence of thermal mixing between successive de-
fect jumps in the weak- collision region. Accord-
ingly, by extrapolating Eq. (2.21) towards weak
collisions, the same result as that obtained from
Eq. (2.24) for Or, o» 1 is expected. To incorporate
the absence of thermal mixing into Eq. (2.21), the
following two considerations have to be applied: (i)
The total heat capacity of the spin system has to be
reduced by the secular quadrupolar contribution,
i.e. , &d2o„has to be replaced by (&do&",&)' which, ac-
cording to Eq. (2.17), is equal to 4 (o2o„. (ii) Fluc-
tuations of the secular part of 3C~' with respect
to X~ may no longer be communicated to X'D and
Xe, . As a consequence, G&0&(t) has to be replaced
by & Go&0&(t)." With these modifications Eq. (2.21}
becomes

Consequently, in zero field (&d, = 0) the difference
between the weak- and the strong-collision rate
is the smaller the larger or~ is with respect to
co~„. As co, increases from zero so does the dif-
ference between (T,',)o' and (T;,')o'. In the high-
field limit this difference is accounted for by the
factor of &. [Note that Eq. (2.80) implies that
eventually activated dipolar fluctuations are of a
strong- collision type. "]

In summary, if the strong-collision Rowland-
Fradin type of expression for (T»')o is known, the
corresponding weak- collision expression is easily
obtained by incorporating the above modifications.
Since, generally, the weak-collision relaxation
rate for Q~, +»1 is smaller than the' strong-
collision result, the zero-field (T»)o maximum
must be wider than the corresponding weak-col-
lision maximum which one would obtain if thermal
mixing would not take place. This "strong-col-
lision broadening of the usual weak-collision
(T,,)o maximum is illustrated schematically in
Fig. i.

STRONG

O

rco-22 -I
7C ~2caJ) Log kg

it is easily verified that Eq. (2.28} is identical
with the result of Eq. (2.24) for Or, o» 1. Com-
paring Eqs. (2.28) and (2.21), we readily see that
the strong- and the weak-collision relaxation rates
are co'nnected as follows (at exact resonance):

&fG &0& (f)
dt t=o

(2.29)

(2.28)

If we use the. fact that independent of the particular
form of G&oo&(f), for Or, o» 1 the spectral density
and the first-time derivative of Go& &(t) are related
by"

FIG. 1. Doubly logarthmic plot of the zero-field (co~ ——0)
and the high-field (cu, »cuz) rate (T&~)@ as a function
of the defect jump rate v~ (schematical). The solid lines
show the expected weak-collision ( T ~~) + maximum. For
cu, = 0 the breakdown of thermal mixing in the maximum
region has to be taken into account. The dashed line in-
dicates that a hypothetical zero-field maximum which
lies entirely in the weak-collision region would be nar-
rower than the actual maximum the two sides of which
lie in the strong- and weak-collision region, respec-
tively [see also Eq. (2.30)).
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E. Relaxation in the transition region between strong and

weak coHisions

In contrast to the (T„)ominimum in a large rf
field (which entirely lies in the weak-collision re-
gion), the low-field minimum of (T»)o appears in
the transition region between weak and strong col-
lisions. To determine this low-field minimum ex-
plicitly, the actual time and field dependence of
ko(f) in Eq. (2.11) has to be known.

The calculation of k o(f) would involve a thorough
understanding of the internal spin dynamics of the
isolated spin system during quadrupolar thermal
mixing. Since this is a very difficult task, 'at this
point we are satisfied by guessing that the thermal-
mixing .process is characterized by the following
simple exponential form of ko(t):

(f) = e-&/ riiio (2.31)

Obviously, as easily verfied Eq. (2.31) satisfies
the limiting conditions (2.14).

The next prob1.em is to determine the frequency
dependence of the thermal-mixing rate T '+ Ther-
mal-mixing processes are very similar to cross-
relaxation processes in systems containing two
spin species. Both require the presence of a non-
secular intermediary reservoir which allows two
noninteracting spin reserviors (with commuting
Hamiltonians) to interact indirectly. Sfmilar to the
exponential frequency dependence of the cross-
relaxation rate observed" and interpreted"
earlier, we therefore assume that

( oi+ Qi) P( 2 2 )1/2 (2 32)

Equation (2.32) takes into account that in zero field
((u, =0) T '~ is to be identical with (T2a") '

((g2 + (g2 )1/2
Dr Qr

inserting Eqs. (2.32) and (2.31) into the general
relationships (2.11), (2.15), and (2.19), for a given
form of Goo'(f) the quadrupolar relaxation rate may
be calculated in the entire region of interest. This
includes the entire (T„)o minimum in a weak rf
field (see Fig. 1) the properties (shape, width,
etc. ) of which, according to the above considera-
tions, are a rather sensitive product of the as-
sumptions (2.31) and (2.32).

to determine the related nuclear-relaxation be-
havior, the corresponding quadrupo1. ar "lattice"-
correlation function Go+'(f) has to be calculated
for some assumed microscopic model of dislo-
cation motion. Before deciding in favor of a parti-
cular type of deformation experiment, however,
i.e. , before choosing a specific mechanism of mo-
tion for the dislocations, in this section the gen-
eral properties of quadrupolar and dipolar correla-
tion functions associated with dislocation motion
are investigated.

A. General form of quadrupolar "lattice" correlation functions

The usual procedure applied to determine cor-
relationfunctions of the type of Eq. (2.13) begins
with the conversion of the time average into an en-
semble average. This step is only permitted, how-
ever, if the microscopic fluctuations causing the
decay of Gz'~'(f) represent a random stationary
statistical process. In a discrete crystal lattice-
dislocations perform discrete jumps. If the ex-
ternal stress o(t) varies in time, the mean time
v„between such successive jumps of a given dis-
location is a function of time. In general, the
stress- induced dislocation motions, therefore,
may not be considered as a staHonary statistical
process.

The time interval during which dislocation motion
is investigated in a T» experiment is the locking
time t, . The time average in Eq. (2.13), therefore,
has to be extended over the time interval t„
( I/(0)(fi+ f)I/(0)+(fi))

1 df' V'"(t'+ i) V"'(f') . (3.I)t 1 0
kg kg

Owing to the nonstationarity. of the underlying
fluctuations, this time average may not simply
be converted into an ensemble average.

A way to simplify the problem is to introduce a
mean time 7~ between successive dislocation jumps
averaged over the locking time. If, then, the time
variation of o(t) is such that r~ is actually independent
of t„our goal is achieved in that the stress-in-
duced dislocation motions may be considered to
represent a quasistationary random process.

As an example, one may think of a periodic time
variation of o (f)

III. "LATTICE" CORRELATION FUNCTIONS
ASSOCIATED WITH DISLOCATION MOTION

o (f) = oo 8 ln (d ~~~ f, (3.2)

By applying an external stress o(f) to a crystal,
dislocations may be forced to move from one
stabile position to another. The result is an an-
elastic or plastic contribution to the deformation
e(t) of the sample. As illustrated above, in order

where &d„and 00 denote the deformation fre-
quency and amplitude. If t, is shorter than one
deformation period, T„„=2m/&ud„, the value of
7~ depends on the value of t, . In contrast, in the
li~it in which t, » T„„v, is independent of t„
and dislocation motion may be treated as a quasi-
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stationary process. In the special case in which
o(t) is time independent (such as in a plastic-
deformation experiment), the above problem does
not arise, and 7, is independent of t, in all in-
stances.

Assuming that a t,-independent quantity &~ may
be defined in a meaningful way, the time average
in Eq. (2.13) may be converted into the following
ensemble average":

N Ng

&o)(t) = —Q.g V(o)(~r, )

P,(r, t ) V~+~'(~r, ~
—r)dr

(3.3)

With Fig. 2 the meaning of the vectors in Eq.
(3.3) is easily understood: ~r, denotes the initial
vector from an element of dislocation k to some
spin j while r symbolizes the displacement vector
of the same dislocation k in the slip direction.

P„(r, f) represents the probability that during
time I; dislocation k has been displaced by the vec-
tor r relative to its position at 1=0. By assuming
the probabilities P,(r, t) to be independent of ~r»

(i.e. , P„=P) it wa-s implied that the relative mo-
tions of atoms and dislocations are uncorrelated.
For atoms close to the path of the dislocation this
is not quite true. However, since most atoms in
the crystal do not perform any dislocation- induced
jumps, the above approximation is well justified.

A realistic model of dislocation motibn has to

take into account that the displacement r results
from a number of discrete jumps. Separating the
time scale from the geometry associated with
these jumps, similar to the self-diffusion case"
we may write

P(r, t) = g nrem(t, 7,(L))Pz(6rz)5(r br~—).
S=o

(3 4)

Here wz(t, 7,(L)) denotes the probability that some
dislocation k of loop length I performs S discrete
jumps in time t if the mean time between success-
ive jumps (averaged over the locking time t,) is
T~(L) 'Note. that 7; assumes the same value for all
dislocations with the same length. Pz(Br') repre-
sents the geometrical probability that as the re-
sult of S discrete jumps a dislocation has been
displaced by the vector 5r~ (see also Fig. 2). For
reasons to become apparent below, mrs was as-
sumed to be independent of L.

The case for S= 0 (i.e. , no dislocation jumps
during time t) requires some special attention.
As discussed elsewhere, ""

w, (t, 7~(L))= 1 —Q w~(f, 7'~(L)), (3.5)
S=1

and the probabilities P,(5r,) vanish unless 6r,
vanishes and P,(0) = 1.

Inserting Eq. (3.4) into (3.3) and converting the
summation over individual dislocations k into an in-
tegration which involves the distribution P(L) of
loop lengths, we obtain

Ep

rr"(I)= —g f dLd(L)V"'(rt) g (t, (L))Peril )Vr' (r, Ilr).
P1 L=O S=o

(3.6)

where V(o'(~r&) denotes the field gradient at the site
~r& of spiq, j which originates from a unit element
of a "representative" dislocation. The transition
from V~(o&'(~r~J) in Eq. (3.3) to V(o)(~r&) implies that,
per unit length, all dislocations are of the same
type (e.g. , edge or screw dislocations). With this
assumption the EFG per unit dislocation length
experienced by some spin j no longer depends on
the dislocation k producing it, and the vector r»
may formally be replaced by ~r&.

+iso, as indicated in Eq. (3.6), the summation
over all sPins may then be simplified. As illu-
strated by Hut et al. ,

4 this summation may be re-
stricted to those N, spins which actually ex-

am
perience a fluctuatjon of their EFG due to moving
dislocations. If n, is the number of suchnucleiper
unit dislocation length, N, = p Vn, , where p and
V denote the density of mobile dislocations and the
crystal volume, respectively.

If, as usually assumed for ionic crystals and me-

DISLOC. k

(t=o)

SLIP
KSLOC. k DIRECTION

(t &o)

FIG. 2. Relative position of some spin j and a disloca-
tion 0 at t=0 and at some later time I;. In the time inter-
val t the dislocation is assumed to have performed S
jumps in the slpp direction, thus being displaced by the
vector r =mrs. Consequently, the vector from an element
of dislocation P to spin j has changed from r && to r z& —r.

tais, on its way from one equilibrium position to
another a dislocation travels approximately at the
speed of sound, c„ the actual time t~ a dislocation

$PIN j
r

0
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t
(( ~ (&))=

&
—

(~) &w ——
&) ) (3.7)

If during a single jump a dislocation covers the
distance ]5r, j, the validity of Eq. (3.7) is limited
by the following condition:

t~= I5r.(L) I/c. « "(L). -
(3.8)

In typical plastic-deformation experiments
~
5r,

~

= 10 ' cm independent of L. With c,=10' cm/sec
we obtain t,.= 10 ' sec, which is much less than
typical values of r~(L) which, in the minimum re-
gion of (T„)o, are of the order of magnitude of
10 ' sec ~7;(L) ~10 ' sec. In an internal-friction
experiment 5r, ] is of the order of one lattice
constant (=10 ' cm). Consequently, t, = 10 "sec
and the validity of the Poisson distribution (3.7)
is unquestioned.

The results of this section may be summarized
by combing Eqs. (3.6) and (3.7) to yield

Go& &(t) = Q dL P(L) sl

spends in the jumping process (the "actual jump
time") is much shorter than its "mean waiting
time" r~(L) at an equilibrium position [t~ «r(L)]
Also, in a statistical sense consecutive jumps of a
dislocation are uncorrelated with each other, i.e. ,
while resting, during the time T,(L), a dislocation
"forgets" all of its past history. As discussed by
Argon, "the probabilities &&)z(t, Y~(L)}are there-
fore governed by the Poisson distribution

jz(x) =Re[2x/(1 —ix)~"]

2X n S+1
(1+ ') "Z 2

n=0

(3.13)

Here x= (dT~(L), and K is the greatest integer
~—,'(S+ 1).

For S= 0, Jo&0&(&d) represents the usual Lorentzian
[obtained by assuming, on phenomenological
grounds,

Go&
'(t) to be simply exponential], since

j,(x) = 2x/(1+x') . (3.14)

For S&0 the functions jz(x) have been analyzed
elsewhere. "'" For later reference, it is pointed
out that for x «1

j~(x)=2x (3.15)

for all values of S.
In concluding this section we recall that the

microscopic mechanism of dislocation motion, ex-
cept for the assumption of discrete dislocation
jumps [see Eqs. (3.4) and (3.7)], has not been
specified so far. Possible mechanisms encoun-
tered in different kinds of deformation experiments
will be analyzed below. The remaining problem
will be to express v~(L) and, therefore, (T,,') o in
terms of the plastic or anelastic sample deforma-
tion rate e(t) =f(o(t)}.

Jo '(v) = — g dL p(L)B"'(S)jz((u't~(L)),
1 p V
CO N SO So

(3.12)

where' '"

(3.9)
'

where the lattice sums B"'(S) have been defined
as follows:

np

B' (S)= g V,'. '(r,.)Pz(5rz)V& '
(r~& —5rs). (3.10)

(
dG o&o&(t) p V

dt ~=o N
p(L)
r, (L)

x[B&'&(0)—B"'(1)].
(3.11)

As illustrated for a similar case by Wolf, ' ' '
with Eq. (3.9) the spectral densities (2.25) may be
written as follows

The Fourier transfor m and fir st time derivative of
G&oo&(t) which dominate (T„')o in the weak- and
strong-collision region, respectively (see Secs. IIB
and IIC), are easily found. Differentiating, at t=0
we thus have

B. Dipolar "lattice" correlation functions

Whenever a dislocation changes its position in
the crystal, the surrounding atoms have to move
also. Therefore, in principle, dipolar and quad-
rupolar correlation functions are closely connected.
For the following two reasons the dipolar lattice
correlation function G~&o&(t) and, hence, the dipolar
contribution to the total spin-lattice relaxation
rate (2.10) may be neglected as compared with

Go'(t) and (T»)o, if the nuclear-spin relaxation
is entirely due to dislocation motion.

(i) The mean time r between successive disloca-
tion-induced jumps of an arbitrary atom is much
larger than T~(L) The reason th. erefore is obvious:
although a given dislocation may jump rather often
during a given time interval, in a single dislocation
jump only a fairly small number of atoms move
slightly. By definition, however, ~ is an averaged
quantity for all atoms. Since the great majority of
the atoms do not move at all during the deforma-
tion experiment, the value of v averaged over all
atoms of the sample is extremely long, and G~+&(t)



D. WOLF AND 0. KANERT 16

decays considerably less fast than Go(0'(t).

(ii) Owing to the fact that the few atoms which
ever "see" a dislocation pass by move by less than
a lattice constant and then only in the very short
time interval during which they are "visited" by a
dislocation, the dipolar lattice sums Bv(R)(S) de-
fined in analogy to Eq. (3.10) may practically by
replaced by their rigid-lattice values Bo(o'(0).
However, Go(0)(t) then no longer decays in time"
Ii.e. , Go()(f) —= Go('(0)] and (T,2) v vanishes identi-
cally.

IV. RELAXATION BEHAVIOR FOR CONSTANT

PLASTIC-DEFORMATION RATE

As discussed, for example, by Argon, "the
mechanical behavior of crystalline material under
the influence of a constant plastic-deformation
rate i is governed by the Orowan equation"

4= Pbp v = dtdbp d, lr, . (4.1)

The physical model underlying Eq. (4.1) assumes
a thermally activated, jerky motion of the mobile
dislocations of density p between the obstacles
in the material. P denotes a geometrical factor

(p = —,'), while f2 symbolizes the magnitude of the
Burgers vector. The mean dislocation velocity v

may be expressed in terms of the mean distance
d, between obstacles and the mean waiting time T~.

In good approximation v~ is independent of the dis-
location loop length L." Also, since i is constant,
7~ is time independent, and T~-= ~~, i.e. , the time
average over the locking time discussed in Sec.
IIIA is irrelevant.

A. Relaxation rate in the strong-collision region

Because of the normalization condition

f, P(L) dL =1, the integration over L in Eq. (3.11)
is now readily carried out and Eq. (4.1) may be
applied to express p /Td in terms of i. The re-
maining problem is to specify the probabilities
P, (6r,) in the expression (3.10) for B(o)(1). As-
suming an isotropic Gaussian distribution for the
step width 5r„according to

6r d'
R(52) = (xr)"*(ere}-"*exd (- '~ ', (5 2)

6r~

where (6r'2) denotes the second moment of P, (6r,),
Eq. (3.11) finally yields

( fRRR d'e 2'(R)
dt t p Tg g p e p

2f 220 6r d'
(25)-'r'(er, )-'r f RdRdeV(R) d(er ) V(R- 52 ) ex2-

~o eo 2
(4.3)

In writing Eq. (4.3), the summation over spine in
Eq. (3.10) has been converted into an integration
over R and 9, thus taking into account that V(R}
= V&(o)(R) depends on R and 8 only. The cutoff
radius R, in Eq. (4.3) corresponds to the number
of spins n, appearing in Eq. (3.10). Analytic ex-
pressions for V(R) =—V(R, 8) have been discussed by
Kanert and Mehring' for R & 36 (continuum range)
and by Hut et al. ~ for the core of the dislocation
(R —3b).

As noted earlier, ' in pure crystals the mean
jump width d, of a dislocation is determined by the
mean distance between the immobile (forest) dis-
locations which act as obstacles for the mobile dis-
locations. Typically, d, = 10 ' cm. Since in the
continuum approximation (R &3b) V(R) is propor-
tional to R ', because of the large dislocation jump
distances V(~ R —6r, ~) = 0 and Eq. (4.3) reduces to

dt V R)g RdRdg.

length, usually written as ('V'). As shown by Hut
et al. the value of (V') may either be determined
theoretically or derived from the analysis of the
measuredrigid-lattice free-induction decay of the
NMR signal.

Inserting (4.4) into (2.21), the quadrupolar re-
laxation contribution becomes

1 1 6o(V) ~PT„ 4 m, + ~„+ „ (4.5)

As pointed out earlier, ' similar to the Qrowan
equation (4.1) the strong-collision relaxation rate
(4.5) depends on the ratio p„/rd Combining E. qs.
(4.1) and (4. 5) we therefore obtain

(4.6)
1 1 6o(V) 1

Hence, for a given plastic-deformation rate i
the nuclear spin-relaxation rate is proportional to
the inverse mean-jump distance d, '. This rela-
tionship may be used to determine dp. '

(4 4)

The integral appearing here represents the mean-
squared EFG due to a dislocation element of unit

B. Relaxation rate in the weak-collision region

As discussed above, in good approximation
V(r —6rz) in Eq. (3.10) vanishes except for S= 0
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when 5r~ =-6r, is equal to zero. Consequently only
rigid-lattice (S=O) terms contribute considerably
to the spectral density J'z'(~) given by Eq. (3.12}.
Then, if we insert Eqs. (3.12) and (3.10) into (2.24)
and applying Eq. (3.14), the weak-collision re-
laxation rate may be written as follows

1+ 4Q'72~ (4.7)

where o.o and Q are given by Eqs. (2.2V) and (2.26)
respectively. Substituting and applying the Orowan
equation (4.1), for QT~» 1 from Eq. (4.7) we ob-
tain

As discussed in Sec. IIE, Eq. (4.8) indeed repre-
sents the weak-collision limit of Eq. (4.6) in which
(i) ~'~ has been replaced by (&uz"„')' and {ii) the
multiplicative factor —, has been introduced.

In the other extreme, for Q7, «1 Eq. (4.7) be-
comes

o
' ~i+ ~or + [~q~r']

x Qbd, p' —. (4.9)

As is well known, the properties of the maximum
of (T;,')@ provide the most direct access to the un-
derstanding of the microscopic dynamic properties
of the underlying mechanism of motion. Thus, the
position of this maximum, governed by the rela-
tionship

(4.10)

leads to the mean dislocation jump rate, whereas

(

the maximum value of (T;,') o,

may be extrapolated to the limit of large rf fields
ln which

( —,
' 6o(V'),", . (4.13)

In contrast to the weak ~, dependence of (T,)o
for v, r~«1 in a small rf field [see Eq. (4.9)], in
the high-field limit (T,, )o is expected to be entirely
independent of &, if &,~„«1. Owing to the assump-
tion of the Poisson distribution (3.7), for &op~ »1
Eq. (4.13) predicts the usual ~,' dependence of the
relaxation rate.

V. RELAXATION BEHAVIOR DURING INTERNAL-
FRICTION EXPERIMENTS

A. Basic background on internal friction

The deformation amplitude in an internal-friction
experiment is usually chosen such that during the
entire deformation cycle all dislocations may be
considered to be pinned by obstacles, such as im-
purity atoms or other dislocations. In a continuum
approximation the stringlike vibration of disloca-
tions under the influence of an external periodic
stress o„,(t) is governed by the Lucke-Granato-
Koehler equation"'4 (see also Fig. 3)

m„,x+ai —G, =b&r(t). (5.1)
eg

The effective dislocation mass m,«per unit length
is given by m, « ——vb'p (p: density of the material}.
B is a damping constant, while C =2Gb'/v(1 —v)

(G: shear modulus; v: Poisson's ratio). The
variable x denotes the displacement of an element
of dislocation line due tothe resolved shear stress
o(t), which represents the x component of o„,{t)
and is therefore usually written as o(t) = mo, „,(t).
m denotes the so-called Schmidt factor. " The y
direction. is defined by the unstrained "straight"
dislocation line (see Fig. 3).

In. a more microscopic model of Seeger et al. ,'~'
the discreteness of the crystal lattice is accounted
for by assuming the thermal creation of double

(4.11)

directly yields the density of mobi/e dislocations. 5

The total dislocation density p~ may be extracted
from the quadrupolar local-field precession fre-
quency. ' ' As dicussed by Kanert and Mehring, '

(4.12)

where Ao is aproportionality constant. Hence +2„ is
governed by the actual sample deformation z. In con-
trast to ~2„, the di polar local- field precession fre-
quency u~ is constant and independent of any dis-
location properties.

In concluding this section, Eqs. (4.V) and (2.26)

a(t)=~a. (t)
ext

FIG. 3. Shape x{y,t) of a dislocation of length I in the
vibrating-string model (schematical). To obtain the re-
solved shear stress cr(, t), the external stress a~t(t) has
to be multiplied by the Schmidt factor m.
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kinks. In this picture the discrete, stepwise
motion of a pinned dislocation is determined by
the periodic Peierls potential,

U(x) = (db/2 w) v~{1 —cos[(2v/d)x]), (5.2)

while the dynamics of double kinks are governed by
the diffusive motion in opposite directions of the
two geometrical kinks which form it. In Eq. (5.2)
d denotes the distance between neighboring Peierls
barriers (in essence equal to the lattice constant).
0~ represents the Peierls stress which is typically
of the order of 10'G.

As illustrated by Engelke, "except for a small
shift of the resonance frequency of a vibrating dis-
location the rather complicated "kink model" in
essence, leads to the same differential equation
(5.1) as the simple "string model. " Also, analo-
gous to the discussion of Koehler" in both models
the Poisson distribution

P(L) = (L/La) e (5.3)

is assumed to govern the probability distribution
of dislocation loop lengths. Here L, denotes the
mean dislocation length obtained bp averaging over
all values of L in the entire crystal. Qbviously,
P(L) satisfies the normalization condition

f, P(L) dL=1.
In the NMR-internal-friction experiments pro-

posed here, the deformation frequency &„,is much
lower than the resonance frequency of a vibrating
dislocation. (The latter varies typically between
10' and 10' sec '.) For what follows we shall as-
sume this condition to be met.

Before applying the above models to predict the
corresponding nuclear spin relaxation behavior,
we observe that since dislocations may lie in dif-
ferent slip planes, the resolved shear stress o(f)
acting on a dislocation depends on the Schmidt fac-
tor for a particular slip plane. In the general case
the orientations of all possible slip directions with
respect to the direction of the external stress and
the corresponding densities of mobi e and im-
mobile dislocations in the different slip planes,
therefore, have to be taken into account. For sim-
plicity, the following considerations are restricted
to the simple case in which m may assume a single
value only. In two practical cases this assumption
is well justified: (i) For cubic crystals containing
only a small number of dislocations (i.e. , for un-
deformed crystals) a direction of o„,(t) may be
chosen such that for all possible slip planes m as-
sumes the same value or m =0. As an example one
may think of a (100) deformation in NaC1. (ii) For
a high dislocation density in just one of the possible
slip planes (produced by a single-slip deformation),
the above simplifications are justified.

As discussed in Sec.IIIA, if.the sample deformation

rate 4 is not time dependent the underlying motion of
dislocations does not represent a stationary statis-
tical process. To overcome this difficulty we re-
strict ourselves to experiments in which the de-
formation period Ta„=2m/era„ is much smaller
than the locking time t, . The dislocation motions
as "seen" in a T„experiment may then be treated
as a quasistationary statistical process.

B. "Lattice" correlation function for the kink model

2mU U

oA'&aai &4'fae~
(5.5)

where U represents a proportionality constant and

fa„=(oa, i/2
To evaluate the lattice sums B"'(S) in Eqs. (3.9)

and (3.10), the shape of a given dislocation has to
be specified for any given value of S. The model
applied below is illustrated schematically in Fig.
4. To obtain an order-of-magnitude estimate on the
effect of internal friction on (T,) o, the following
two simplifications have been incorporated into our
model.

(i) The time required for the diffusive motion of
a thermally created double kink is much shorter
than ra(L)." At a Larmor frequency close to the
dislocation jump frequency this diffusion process
is therefore "invisible" in a T» experiment. Con-
sequently, the microscopic mechanism and re-
lated time scale which transforms the dislocation,
for example, from its position for S= 0 to its
equilibrium position and shape for S=1 (see Fig. 4)

If discrete random dislocation jumps fro~ one
Peierls valley to an adjacent one are assumed,
Go+'(t) is determined by Eqs. (3.9) and (3.10).

To determine the mean time between successive
jumps of a dislocation of length L, Va(L) = Ta„/
(n(L)), averaged over the locking time (or, for

Tref averaged over one deformation cyc le,
respectively), the mean number of jumps (n(L))
of a given dislocation in one deformation cycle has
to be calculated. Since the shape of a deformed
dislocation is fairly well described in terms of the
string model, "the quasistatic solution of Eq. (5.1)
may be used to show that

1 —v
x(y)dy =

12db
L's„

where x denotes the mean deformation amplitude of.
a given dislocation of length L, and the resolved
shear stress o(t) = &r, sin&oa„t was assumed to be a
harmonic function of time. With Eq. (5.4) we may
write

)
Ta,~ 12dbG Ta, g T~f

(n(L)) 1- v cg' ag'
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proximation in which V(R) =AR ' the function H(k)
becomes

dA d8

s 0 R(1+0 d'/R2- 2(kd/R) cos 8)"2

(5.9)

where R, is the inner "cutoff radius" close to the
core of the dislocation.

C. Kink model and strong collisions

$=0 Sa( $~2

(c)

FIG. 4. Three equilibr'ium positions of a dislocation
during internal friction in terms of a simple kink model:
(a) before the first jump, i.e., in the undeformed crystal
(8 = 0); (b) after one dislocation jump (S=1); and (c) after
two dislocation jumps (S= 2). In this simple model the
entire shape after S jumps is completely characterized by
the distance d between neighboring Peierls valleys and
the quantity EI.(S)=L,/2/+ S).

S
a&'~(S) =, g H(k)

+ 0 a=o
(5.7)

does not enter into G++'(t).
(ii) For simplicity, the highly symmetric shape

of a dislocation indicated in Fig. $ is chosen. Ac-
cording to this model, for a given number of dis-
location jumps the dislocation is subdivided into
2(1+S) segments of equal length AL(S) =I./2(1+S).

Owing to the discreteness of the dislocation mo-
tion, the probability Ps(Ore) that due to S jumps
any portion of the dislocation is displaced by the
vector ~rs ls given

P,(5r, ) = 5;, ,3, (5.6)

where d denotes the unit jump vector while 5@~
represents Kronecker's delta in three dimensions.
Hence, Pz(5r~) vanishes unless rs =Sd for which
P~(5r~) = 1.

Analogous to Sec. IVA the summation in Eq.
(3.10) involving nuclear spins may be converted
into a volume integral [see, e.g. , Eq. (4.3)].
Introducing again the EFG per unit dislocation
length, V(P), which depends on 8 and r only (see
Sec. IVA), and using Eq. (5.6), for the lattice sums
(3.10) we obtain

Supposing all dislocations experience the same
resolved shear stress o(t) [see (ii) in Sec. A above],
it is clear that p —= pr. Then, with Eqs. (5.4), (5.5),
and (5.7), Eq. (3.11) yields

dG (o) t = p, ' '," {H(0)--.' [H(O)+H(1)]]
t=0 0

~ 0
dLL e (5.10)

Since d «R, H(1) may be expanded by writing H(1)
=H(0) -5H Henc. e, after integration over L, , Eq,
(5.10) becomes

=12 I. 5H
dt U

(5.11)

Equation (5.11) may be inserted into Eq. (2.21) to
directly yield the strong-collision relaxation rate.
Before inserting Eq. (5.11) into the relaxation rate
(2.23), however, G~z" (0) has to be determined.
Combining Eqs. (3.9) and (5.7) we may write

Go''(0) = prH(0) ——,e ~~~o=2prH(0).
i 0 Lo LO

(5.12)

Inserting into Eq. (2.23) we finally obtain

5H g~ I 0
"H(O) G dk f"'' (5.13)

where it was taken into account that, since all
dislocations are mobile, (a&~)~,-=~o„.

Starting from Eq. (5.9), in the approximation that
d «R, H(0) and 5H may be determined in terms of
the isotropic-continuum approximation. After
straightforward calculation one finds (for Ro»R, )

with

H(k) =
R0 2r

R dR de V(R) V(R —kd) .
R=O e=0

(5.8)

H(0) = 2'' In(R, /R, ); 5H = ,' v A'(d'/R', ) . (5—.14)

Inserting into Eq. (5.13) we thus obtain

COg 1 —v

Note that in. contx ast to the plastic-deformation
case (see Sec. IV) B'"(S) now depends on the dis-
location length I..

As an example, in the isotropic-continuum ap-
00x—2 —' —0 f

Bc G db ™ (5.15)
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D. Kink model and weak collisions

With Eqs. (5.3) and (5.7) the spectral density
(3.12) now becomes

g(0&(~) pr
Q Lp s,=p

oo

1
$

xg g H(k)j s ((u'P, (L)) .
p 1+ S n p

(5.17)
In practice the summation over the number S of

dislocation jumps may be limited to the average
number of jumps of a dislocation during a quarter
of a deformation cycle.

To evaluate J ~z" (&u) in its entire maximum region
the lattice sums H(k) have to be computed. Since
this is a rather lengthy numerical task, in the
rest of this section we will briefly discuss some
properties of Jo"'(&o) which may be derived analyt. —

ically. Thus, by inserting Eqs. (5.17) and (3.13)
into Eq. (2.24), the general properties of (T,)o
may be derived. As in Sec. IV B, in the usual two
extreme regions analytical expressions for (T») c
are readily obtained.

First, for Q7 ~(L) «I Eqs. (3.15), (5.17), and
(2.24) may be combined to yield

Tx p q ~|+~ax+ (~q~)

48F db G 1

Op f~„
(5.18)

where the factor F was defined via the relationship
S oo S

Q H(k) =H(0) Q

= FH(0), (5.19)

and (~~') was introduced by [see Eqs. (2.17) and
(5.8)]

To estimate the magnitude of this relaxation
rate, let us consider an internal-friction —NMR
experiment in "NaC1. For small values of co, the
heat-capacity ratio ~o„/(v', + &a'D„+ ~o„) is approxi-
mately equal to —,

' (Ref. 4). Then, with the values
R~ 3d Rp Lp 10 cm, b = 4 && 10 cm, d= 3
x 10 ' cm, G = 2 x 10' N/cm', o, = 100 N /cm' (i.e.,
o,/G=0. 5 x 10 '), and 1 —v= 0.7, Eq. (5.15) yields

~ ~

COQ

T
— .„„2'", ~ ~ f~i= 4fa.~.

1P Q 1 Dr Qr

The "background" (deformation- independent) re-
laxation rate in ' NaC1 is of the order of 0.1 sec '.
Consequently, a deformation frequency f~, of only
a few cycles per second should result in a mea-
surable change of the relaxation rate.

(~,'",')'=
—,', &,H(0) p, . (5.20)

2Q = (~ -'(L)), (5.21)

is satisfied. The mean dislocation jump rate
averaged over the entire distribution of loop
lengths may be determined from the relationship
[see Eqs. (5.3) and (5.5)]

(7,'(L)) 1
p(L) dL

Tg

1 vL20
2 dbG (5.22)

For 'NaC1, in zero field 0 is of the order of 10~

sec ' [see Eq. (2.26)]. With the values of the rele-
vant parameters listed in Sec. C above inserted
into Eqs. (5.21) and (5.22), the maximum of (T,',)o
is expected for a deformation frequency f~„of .

about 150 sec '.

E. Relaxation behavior for the vibrating-string model

As outlined in Sec. VA, the motion of a disloca-
tion in a continuous medium exposed to a periodic
stress cr(t) is governed by Eq. (5.1). For sinusoi-
dal stress c(t)=o, sin~~„t the solution of Eq. (5.1)
which satisfies the boundary conditions indicated
in. Fig. 3 reads as follows

Second, for Q7 ~(L)»1, rather than following the
above outline, the strong- collision expression
(5.13) or (5.15), respectively, may be modified by

(i) replacing ~c„by (rqz"„')' and (ii) multiplying the
right-hand side of Eq. (5.13) or (5.15) by 4. By
comparing, e.g. , Eqs. (5.18) and (5.13), the op-
posite variations of (T,',)o as a function of L',o,f~„
on the two sides of the (T„')o maximum are ob-
served. The quadratic dependence of (T,,')c on the
mean dislocation length L, enables NMR mea-
surements of L, as a function, for example, of
radiation effects ("pinning studies" ).

For Q7', (L)» 1, (T»)o is a fairly insensitive func-
tion of the microscopic mechanism of dislocation
motion. In contrast, the value of (T,,') c for Q&,(L)
«1, via the value of F, depends strongly on the
convergence of the summation over S in Eq. (5.19),
i.e. , on the model assumed for the shape of the
dislocation during its motion (see Fig. 4). It is
hence obvious that both the width and the position
of the (T,,')o maximum contain information on the
microscopic mechanism of dislocation motion
during internal friction. To determine position,
width, and depth of the (T „')o maximum analyti-
cally, the factors H(k) have to be computed in
terms of a model such as, e.g. , the one under-
lying Fig. 4.

As a rough estimate the Position of the maximum
of (T „')o appears whenever the condition
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x(y, t) = '(Ly —y') sin(dd„t.
ff(1 —fd)o,

(5.23)

P,(r, t) = &(r —r, (y, t)), (5.24)

where rz(y, t) denotes the displacement vector of
this dislocation, which depends on the position y,
of course [see Fig. 3 and Eq. (5.23)]. Since all
dislocations k with equal length L experience iden-

In contrast to the"discrete dislocation jumps as-
sumed in the kink model, Eq. (5.23) describes the
continuous stringlike vibration of dislocations. As
illustrated now, this leads to significantly differ-
ent forms of the quadrupolar "lattice" correlation
function Gc(e'(t) for the two models.

To calculate G(oe)(t) for the string model, we have
to go back to Eq. (3.3) which is valid if the locking
time t, is much larger than a deformation period
TQ f Due to the absence of any randomness in the
dislocation motion (which is now completely pre-
determined) Eq. (3.4) is no longer valid. Instead,
the probability P„(r, t) that during time t some
dislocation k of length L has been displaced by the
vector r is now given by

tical displacements, rz(y, t) is a function of L but
no longer of the particular dislocation k.

As illustrated in Secs. IVA and VB, the summa-
tions in Eq. (3.3) over all spine and dislocations
may be converted into (i) a volume integration
(R, 8); and (ii) an integration of all EFG's
V(R- r~(y, t)) per unit dislocation length over all
dislocations, respectively (L, y). Hence, with Eq.
(5.24), from Eq. (3.3) we obtain

Gpt't(t) p„f f=RdRdpV(R) f p(L)dL
~O e=o L=O

L
dy V(R- r~(y, t)),

y=O

(5.25)

where, as above, it was a.ssumed that p
—= pr [see

(ii) in Sec. VA].
To gain some qualitative insight into the ex-

pected relaxation behavior, again we apply the
continuum approximation in which V(R) =AR ',
then

L
dy

()0 RO 2r
Gq('(t) =A p P(L) dL

d, 1+x'(y, t)/R' —[2x(y, t)/R]cos8
'

Here it was noted that ~r~(y, t) ( is identical with x(y, t) given by Eq. (5.23). Since the majority of all spins
is located far away from a vibrating dislocation, for the approximate determination of the bulk relaxation
behavior the denominator on the right-hand side of Eq. (5.26) may be expanded for x(y, t) «R (see also
Sec. VC), and we obtain (R, »R,)

G (0)(t) A2p
-0

P(L)dL
y=O

dy 2w ln———ff x2(y, t)
R, 2 8, (5.27)

Inserting Eqs. (5.23) and (5.3), the remaining two
integrations may be carried out to yield

G c(o) (t) = 4ftprA2L [In(Rd/R, ) —D sin2(dd, ft],
where

Led ff(1 —f)(f,
~R, 4Gb

(5.28)

(5.29)

sjn2((tf t) = e (e2(~deft+ e 2iwdef t) + (5.30)

Re dte'" ' = ff 5(fd), (5.31)

the spectral density (2.25) becomes

The form (5.28) of G J''(t) derived for the string
model corresponds to Eqs. (3.9) and (5.7) which
were obtained for the kink model. To gain some
qualitative understanding of the relaxation behavior
which follows from Eq. (5.28), let us determine its
Fourier transform (2.25). Using the complex-ex-
ponential representation of sind„t together with
the definition of Dirac's delta function,

I

d (od'((d) = 8ff'p A rL,{2[in(R, /R, ) ——2'D]6((d)

+ e D[5((d+ 2(d ~f) + 6((d —2(d„f)]}.
(5.32)

Equation (5.32) may finally be inserted into Eq.
(2.24) to obtain the weak-collision relaxation rate
(T,', ) z. Interestingly, (T „')z.does not show a max-
imum, which is in sharp contrast to all cases in
which the fluctuations of the spin-lattice interac-
tion (2.9) represent a random statistical process.
Instead, for 0= 0 and

~
0

j
= (dd„, (T,',) z is pre-

dicted to become infinite while it vanishes for all
other values of Q. [Because of the local-field con-
tributions in Eq. (2.26) 0 never vanishes. Hence,
the first term in the bracket of Eq. (5.32) is irre-
levant. ]

The physical origin of the absence of a (T,',)z
maximum lies in the fact that within the frame-
work of the vibrating-string model all dislocations
move coherently. Consequently, J z~'((d) peaks
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sharply at the corresponding frequency of the co-
herent vibrations and vanishes otherwise. If a
randomness in the time scale on which different
dislocation jumps take place were added, the spec-
trum of 8~+0'(&u) would become broader and it would
show a maximum. The peaking of Eq. (5.32) for
~e( =2nd„andnot for (&u~ =rod„ indicates that the
characteristic time between two successive fluc-
tuations of the quadrupolar spin-dislocation inter-
action is half a deformation period and not a full
period. This appears physically reasonable since
in the turning points (i.e., after every time inter-
val —,'T~„}the dislocation comes to a full rest

1/(~,) = (2/n) (I/r„), (6.2)

where 7.„ is the mean waiting time of a dislocation
in a plastic-deformation experiment (i = constant).
Replacing Eq. (4.1) by Eq. (6.1), all results of
Sec. IV remain valid for the interpretation of
NMR- fatigue exyeriments. In. practice, such ex-
periments are expected to yield information on the
time dependence of quantities such as the density

p of mobile dislocations, the step width d, (i.e. ,
the mean distance between obstacles), and the in-
ternal dislocation dynamics ((v~)).

VI. RELAXATION FOR INTERMEDIATE DEFORMATION
AMPLITUDES

A. Large deformationamplitudes: fatigue

During a fatigue experiment the microscopic
behavior of dislocations is very similar to their
dynamical properties in an. elastic- deformation
experiment (see Sec. IV). However, while in the
latter the crystal is deformed (usually for a short,
time interval only) at a constant strain rate e, in
a fatigue experiment i is a periodic function of
time and the external stress usually acts for a
much longer time. This leads to a time variation
of the fraction p /pr and the mean step width d,.

As in Sec. 7, we assume that the deformation
period is much shorter than the locking time. Via
the Orowan equation (4.1) it is then possible to de-
fine a quasistationary mean time (r~) between suc-
cessive jumps of a dislocation by performing a
time average over the absolute value of e(t) ~

((~(&)()=T
'

[~(t)idf

= (2/v) «(o) = e& p„(d./(~, )) .

Comparing with Eq. (4.1), we find that

(6.1)

If the amplitude oo of the periodic stress acting
on a dislocation becomes larger than some critical
value, the dislocation may break loose from its
pinning points. If a sufficiently large number of
dislocations may be depinned, the mechanical be-
havior of the crystal may be dominated entirely
by these "mobile" dislocations (in the sense of
Sec. IV), and the effect of the pinned dislocations
is negligible. Before we discuss the NMR relaxa-
tion behavior for the general case (partial unpin-
ning), let us first consider the extreme in which
the mechanical properties are entirely dominated
by the unpinning of dislocations.

8. Intermediate deformation amplitudes: partial unpinning

For simplicity, let us assume that all pinning
points are identical, i.e. , that all of them may be
characterized by the same value of the "critical
depinning force" f„wihchhas to be overcome for
a dislocation to break loose and thus to be "mo-
bile" in the sense of See. IV. Since the external
force acting on a dislocation ls proportional to its
loop length I, , a given value of f„corresponds to
a certain critical length L„. According, for ex-
ample, to Eq. (5.1), the two quantities are related
as

f„=5 I.„(zo . (6.3)

Hence, for a given resolved shear stress o(t)
00 s ndeft all dislocations for which L &Lcr may

be displaced by large distances. Their relaxation
behavior has been discussed in See. VIA above. In
contrast, all dislocations with L ~L„remain
pj,nned and show a relaxation behavior which is
characteristic for internal- friction experiments
(see Sec. V).

To determine the resulting nuclear spin. -relaxa-
tion behavior, the integrations over L in Eqs.
(3.9}, (3.11), and (3.12) have to be subdivided into
the two intervals, 0 ~L ~L„and L„&L& ~. Also,
because of the different mechanisms of dislocation
motion in the two regions, B'0'(8) and r~(I, ) have
to be properly identified with their forms derived
in Secs. V and IV, respectively.

Owing to the existence of two different. mean
waiting times, (r„) and V„(1), in the general case
strong and weak collisions have to be distinguished
for either dislocation jumping mechanism. For
simplicity, we shall only consider two of the four
extreme eases.

If both V„(L) and (r~) satisfy their respective
strong-collision condition [(r~), 1'~(L)» T +, see
also Sec. IIB], the results of Secs. IVA and VC
may be combined to yield [see Eqs, (4.6), (6.1),
(5.10), and (2.21)]
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(
1 1 6o (V')(I i(t) I) 1 —~ L', &r,

7' 4 &o'+&a' +&@~ ' Phd, 24 db G

e I / Io cr 4 r y2 c 24 c (6.4)

(6.5)P(L) dL = P(L, ) dI. + P(L)dL = w„,+ n~„= 1,
0 0 Lcr

for example v„„is given by [see also Eq. (5.3)]

Here, m„, and m~„denote the percentage of all dislocations that are pinned and depinned, respectively.
Starting from the normalization condition (see Sec. VA)

OO Jcr 00

e-L/Lp j + cr e Icr/Lo
"dL I.

d&Q ~„Lo Lo ~o
(6.6)

while m„, may be calculated from the normalization condition (6.5). It should be kept in mind that these
relations have been derived with the assumption that all pinning points are characterized by the same
value of the critical depinning force f„.

The weak-collision expression for (7'„)o may be derived similarly. Thus, combining Eqs. (4.7), (5.17),
and (2.24) we obtain

( -4 II~P„, (,„,), 4'~( p+W„,4, dLL'e Z ~ ~ i!(k j (20'i (L )) .

(6.7)

According to Eq. (6.7), (7,',) o in essence repre-
sents a weighted superposition of the two relaxa-
tion contributions discussed in Secs. IVB and VD.
Hence, in the general case (7,',)o may show two
maxima (see Fig. 5). The one appearing for 2Q
=(r~ ) is due to longer-range migration of dePinned
dislocations while the other, which appears when-
ever 20= {7~'(L)), arises from the stringlike vi-
bration of the Pinned dislocations. Since (v~) and
(T~(L)) may differ considerably, a shift of the
(T,~go maximum towards longer r values (i.e. ,
larger deformation frequencies) is expected as the
amplitude o, of the resolved shear stress is in-
creased in such a way to produce a transition from
an internal-friction to a fatigue experiment. This
transition is illustrated schematically in Fig. 5.
The heights of the two maxima shown are directly
related to the densities of pinned and depinned dis-
locations, respectively.

VII. CONCLUDING REMARKS ON THE ROLE OF
SPIN DIFFUSION

The basic relaxation theory discussed in Sec. II
and, hence, the main conclusions of this article
are only valid if a common spin temperature may
be assigned to the entire spin system imbedded in
a crystal. As we have seen, the thermal mixing
between Zeeman and the secular dipole or quadru-
pole spin reservoir allows separation of "strong"
and "weak" collisions, but the validity of the sin-
gle- spin- temperature assumption is practically
not affected by such thermal-mixing processes.

LogPp )~

INTERNAL FRICTION

SMALL fyo
~0 ~

~ ~
&

0

FATIGUE

~T Pin

&t~
I (L)& 2Q &a~I &=22 Log fd, f

FIG. 5. Doubly logarthmic plot of the quadrupolar re-
laxation rate versus deformation frequency in a mixed in-
ternal friction-fatigue-NMR experiment (schematical).
The ( 7 (p)q maximum associated with the depinned dislo-
cations appears whenever (7&~) = 2Q (see Sec. IVA),
while the maximum for the pinned dislocations is reached
for (T~ (L)) = 20 [see Eq; (5.21)]. For large stress am-
plitude O.o, in both internal-friction and fatigue exper i-
ments a dislocation performs more jumps -per deforma-
tion cycle than for small stress amplitude. This is the
reason for the shift of the maxima towards lower fre-
quencies as Oo is increased. Simultaneously, more dis-
locations may break loose from their pinning points,
which results in an increase of the (T ~~)q value at the
fatigue maximum and a corresponding decrease in the in-
ternal-friction maximum. 7I'd p and 7t'p~~ have been defined
in Eqs. (6.5) and (6.6).
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.The establishment of a common spin tempera-
ture of the entire crystal following, for example,
a nuclear or dislocation jump requires the com-
munication of spins located in different parts of the
sample. This communication may be established
by spin diffusion (i.e. , the transport of magnetiza-
tion without transport of mass) or by the bodily
motion of spins or dislocations themselves. "

In an internal-friction experiment only very few
spins are directly disturbed by the stringlike vi-
bration of the dislocation. (Their number is pro-
portional to the area in the crystal covered by the
vibrating dislocation. ) Since most spins never
"see" a dislocation pass by, spin diffusion from
the disturbed area to the bulk spins is vital in dis-
tributing the relaxing spin temperature uniformly
all over the crystal. If spin diffusion is not rapid
enough to ensure the existence of a uniform spin
temperature in the entire crystal at all times, the
relaxation rate of the bulk spins is reduced as dis-
cussed by Moran and Lang. ' In the limit in which
no spin diffusion takes place at all, the vibrating
dislocation keeps disturbing the very same spins
at all times without the bulk spins ever experi-
encing a disturbance of their precession frequency.
Experimentally, such a situation is encountered-if
the sample deformation frequency ~d„ is made
very large. "

If the dislocations may migrate over large dis-

tances (as, e.g. , in a plastic-deformation experi-
ment), the communication between spatially sepa-
rated spins is enhanced considerably. Consequent-
ly, possible spin-diffusion limitations of (T „)o
are not as serious as in internal-friction experi-
ments in which the spin system is disturbed in a
much more localized manner.

A quantitative treatment of the effect of spin
diffusion in the presence of quadrupolar interac-
tions on the properties of (T,,) o is a very difficult
task." By choosing a small enough sample de-
formation frequency &„„,however, no spin-dif-
fusion limitation effects on (T,',) o are expected.
Because of the lack of related theoretical work,
the range in which cod„ is "small enough" remains
to be investigated experimentally by performing
the proposed NMR- internal- friction experiments.
Again, due to the longer-range migration of dis-
locations, in NMR-fatigue experiments the spin-
diffusion limitations of the above theory are much
less serious than in internal- friction experiments.
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