EPR spectra of magnetically coupled pairs of Gd^{3+} ions in crystals of CsMgCl₃, CsMgBr₃, and CsCdBr₃

Larry M. Henling and Gary L. McPherson

Department of Chemistry, Tulane University, New Orleans, Louisiana 70118 (Received 18 July 1977)

The EPR spectra of crystals of CsMgCl₃, CsMgBr₃, and CsCdBr₃ doped with Gd^{3+} are dominated by resonances arising from weakly coupled pairs. The host materials all adopt the linear-chain CsNiCl₃ structure. The exchange interactions between the Gd^{3+} ions within the pairs are antiferromagnetic but extremely weak. At room temperature, the exchange parameter J for the pair in CsMgCl₃, CsMgBr₃, and CsCdBr₃ is equal to +0.00107, +0.00080, and +0.00068 cm⁻¹, respectively. The pairs consist of two Gd³⁺ ions associated with a Mg²⁺ or Cd²⁺ ion vacancy. The unusual stability of this type of pair apparently arises from the strict charge-compensation requirement of the linear-chain CsMX₃ lattice.

I. INTRODUCTION

In an earlier report it was shown that trivalent gadolinium ions have an unusual tendency to cluster in pairs when doped into crystals of CsCdBr₃.¹ Since that time it has become quite apparent that this sort of behavior is characteristic of trivalent ions which have been introduced as impurities into CsCdBr, and other structurally similar halide salts.¹⁻³ The host materials have the general formula $CsMX_3$ and adopt the hexagonal $CsNiCl_3$ structure. This structure can be described as an array of infinite parallel chains composed of MX_6^4 octahedra sharing opposite faces. The chains are negatively charged and have the overall stoichiometry $(MX_3)_n$. The Cs⁺ ions occupy positions between the chains and serve to balance the negative charge. The tendency of trivalent impurities to aggregate in pairs appears to result from the rather strict chargecompensation requirement of the linear-chain $CsMX_3$ lattice. The pairs consist of two trivalent

ions which occupy divalent metal-ion sites within a single $(MX_3^{-})_n$ chain. These two sites lay on either side of a divalent metal-ion site that is vacant, forming a linear M^{3+} -vacancy- M^{3+} system (see Fig. 1). The combination of a vacancy and two trivalent ions provides a means by which the trivalent impurities are incorporated into the MX_3^{-} chains without disrupting the overall charge balance. This paper presents the results of an analysis of the EPR spectra of the Gd³⁺-Gd³⁺ pairs in crystals of CsMgCl₃ and CsMgBr₃ as well as a more complete discussion of the Gd³⁺-Gd³⁺ pairs in CsCdBr₃. The spectroscopic and magnetic properties of the coupled pairs in the three host lattices are compared with other Gd³⁺-Gd³⁺ systems.

II. EXPERIMENTAL

A. Preparation of materials

The host materials CsMgCl, and CsCdBr, were prepared according to previously described procedures.4,5 The CsMgBr₃ was formed by fusing cesium bromide and anhydrous magnesium bromide together in evacuated Vycor ampuls. The anhydrous MgBr₂ was prepared by the direct reaction of the elements at 650°C. The Gd³⁺-doped samples were made by adding a small amount (less than 0.1 wt. %) of GdI₃ to the host materials. These mixtures were then fused in Vycor ampuls under a partial pressure of the appropriate halogen vapor (either Cl₂ or Br₂). The purpose of the halogen vapor was to chemically replace the iodide ions in the mixtures which come from the GdI₃. Single crystals were grown from the melt by the Bridgman method. The apparatus and procedure have been previously described.⁶

B. EPR spectra

The $CsMX_3$ crystals have a strong tendency to cleave parallel to the crystallographic *c* axis. This

16

4756

greatly facilitates mounting and orienting samples for EPR study. Most crystals were mounted so that the magnetic field could be aligned parallel to the c axis. Spectra were studied at 9.5 GHz on a Varian E-3 spectrometer and at 35 GHz on a Varian E-12 spectrometer. Both instruments use 100-KHz field modulation. Magnetic fields were determined with a Spectromagnetic Industries gaussmeter.

III. RESULTS AND DISCUSSION

All three of the host materials used in this study have been characterized to some extent by x-ray diffraction. Complete structural analyses of CsMgCl₃ and CsMgBr₃ have been carried out, ^{4,7} while the unit-cell constants and probable space group of CsCdBr₃ have been determined.⁵ The data clearly indicate that CsMgCl₃, CsMgBr₃, and CsCdBr₃ belong to a fairly extensive series of AMX₃ halides which adopt the linear-chain CsNiCl₃ structure. The structural studies of CsMgCl₃ and CsMgBr₃ show the magnesium ions to be surrounded by somewhat distorted octahedra of halide ions. The distortion corresponds to an elongation along the threefold axis of the $(MgX_3)_n$ chain. This elongation seems to be a common feature of the structures of the linear-chain AMX₃ halides.⁵ Apparently the electrostatic repulsion between the divalent metal ions causes the $(MX_3)_n$ chains to stretch out noticeably from idealized octahedral geometry. Although the exact structural details of CsCdBr₃ have not been determined, it is almost certain that the structure closely resembles that of CsMgCl₃ and CsMgBr₃. One important structural parameter which can be calculated directly from the lattice constants is the separation between metal ions within the $(MX_3)_n$ chains. The nearest-neighbor $M^{2*}-M^{2*}$ distance is equal to onehalf of the lattice constant c. Thus, the Mg^{2+} -

 Mg^{2*} separation in $CsMgCl_3$ is 3.09 and 3.25 Å in $CsMgBr_3$, while the $Cd^{2*}-Cd^{2*}$ distance in $CsCdBr_3$ is 3.35 Å. From a spectroscopic point of view, $CsMgCl_3$, $CsMgBr_3$, and $CsCdBr_3$ are ideal host materials because of the high symmetry and uni-axial character of the $CsMX_3$ lattice.

As was reported earlier, the EPR spectrum of CsCdBr₃ crystals doped with gadolinium is dominated by the resonances arising from a weakly coupled pair of Gd³⁺ ions.¹ The same phenomenon is observed when crystals of CsMgCl₃ and CsMgBr₃ are doped with gadolinium. • The Gd³⁺-Gd³⁺ pairs which contain 14 unpaired electrons produce extremely complex EPR spectra. Figures 2 and 3 show the EPR spectra of Gd³⁺ in crystals of CsMgCl, and CsCdBr, recorded with the magnetic field parallel to the crystallographic c axis. The similarity of the two spectra is quite apparent in spite of the complex appearance. The spectrum of Gd^{3+} in crystals of CsMgBr₃ is basically the same. All three spectra can be successfully analyzed in terms of the theoretical treatment outlined by Hutchings, Birgeneau, and Wolf.⁸ The spectrum of a Gd^{3+} - Gd^{3+} is described by a spin Hamiltonian of the form

$$\mathcal{H} = \mathcal{H}^{p} + \mathcal{H}_{1}^{s} + \mathcal{H}_{2}^{s}$$

The magnetic interactions between the two ions are contained in \mathcal{H}^{s} , while the Zeeman and crystal field terms for the two ions are included in \mathcal{H}_{1}^{s} and \mathcal{H}_{2}^{s} . For a pair of Gd³⁺ ions which are fairly far apart only exchange and dipole-dipole interactions should be significant. Thus, \mathcal{H}^{s} can be written

$$\mathcal{GC}^{p} = J(\mathbf{\vec{S}}_{1} \cdot \mathbf{\vec{S}}_{2}) + \alpha(\mathbf{\vec{S}}_{1} \cdot \mathbf{\vec{S}}_{2} - 3S_{1z}S_{2z})$$

where the constants J and α represent the parameters for isotropic exchange and dipole-dipole coupling, respectively. If the two ions are equivalent, the single-ion Hamiltonians \mathfrak{K}_1^{s} and \mathfrak{K}_2^{s} are the same. It is possible to determine the impor-

> FIG. 2. EPR spectrum of a crystal of CsMgCl₃ doped with Gd³⁺. The spectrum was recorded at room temperature with the field parallel to the crystallographic *c* axis. The frequency was 35.03 GHz. The resonances marked by \times correspond to an isolated Gd³⁺ spectrum. The magnetic fields are given in gauss.

FIG. 3. EPR spectrum of a crystal of CsCdBr₃ doped with Gd³⁺. The spectrum was recorded at room temperature with the field parallel to the crystallographic *c* axis. The frequency was 35.01 GHz. The resonances marked by \times correspond to an isolated Gd³⁺ spectrum. The magnetic fields are given in gauss.

tant properties of the pair by analyzing the spectrum observed when the magnetic field is applied parallel to the principal axis of the $Gd^{3*}-Gd^{3*}$ system.⁸ Thus, it is necessary to include only the diagonal terms in the single-ion Hamiltonian. The charge-compensation-produced $Gd^{3*}-Gd^{3*}$ pairs in the $CsMX_3$ crystals have an overall symmetry of D_{3h} ; however, the symmetry at the Gd^{3*} ion site is C_{3v} (see Fig. 1). The threefold axis corresponds to the crystallographic c axis. The spin Hamiltonian for a Gd^{3*} ion in a C_{3v} site contains the following diagonal terms:

$\Im^{C^{S}} = g \,\mu_{B} H_{z} \hat{S}_{z} + \frac{1}{3} b_{2}^{0} O_{2}^{0} + \frac{1}{60} b_{4}^{0} O_{4}^{0} + \frac{1}{1260} b_{6}^{0} O_{6}^{0} \,.$

The crystal field operators O_n^n are defined according to standard notation.⁹ In our analysis the spin matrices were set up according to the procedure outlined by Hutchings, Birgeneau, and Wolf using the single-ion basis functions $|S_1, S_2, m_1, m_2\rangle$. The solutions to the total Hamiltonian were determined numerically by computer diagonalization of the spin matrices. The Hamiltonian parameters were varied until a satisfactory description of the observed pair spectrum was obtained. The parameters found by this procedure are reported in Table I.

The pair spectra exhibit an approximate symmetry about the center field (see Figs. 2 and 3). Each peak in the low-field portion of the spectrum has a corresponding peak in the high-field portion. Tables II-IV show a comparison of the observed and calculated shifts from the center field for the resonances from the $Gd^{3*}-Gd^{3*}$ pairs in $CsMgCl_3$, $CsMgBr_3$, and $CsCdBr_3$. The overall fit in all three cases is quite good. Because of the large number of lines in the pair spectra it is possible to determine the magnetic interaction parameters J and α with a good deal of precision. A reasonably accurate estimate of the distance between the two Gd^{3*} ions in the pair can be obtained from the dipolar parameter α . If the two Gd^{3*} ions are treated as point dipoles, α can be calculated from the simple expression

$$\alpha = g^2 \mu_B^2 / R^3,$$

where *R* represents the separation between the two dipoles. Thus, the $Gd^{3*}-Gd^{3*}$ separation can be computed directly from the experimentally determined α values. Table V shows the calculated $Gd^{3*}-Gd^{3*}$ distances for the pairs in the three host lattices at room and liquid-nitrogen temperatures. The $Gd^{3*}-Gd^{3*}$ separations are noticeably smaller than the distances between next-nearest-neighbor Mg^{2*} or Cd^{2*} ion sites in the host crystals. This observation is easily explained in terms of the structure of the $Gd^{3*}-Gd^{3*}$ pair. Since the M^{2*} va-

TABLE I. $Gd^{3*}-Gd^{3*}$ pair spin-Hamiltonian parameters. The number in parentheses is the estimated maximum error in the reported parameter.

Lattice	Temperature	g	$J \text{ (cm}^{-1})$	$\alpha ~(\mathrm{cm}^{-1})$	$b_2^0 \ ({\rm cm}^{-1})$	$b_4^0 \ ({\rm cm}^{-1})$	$b_6^0 \ ({\rm cm}^{-1})$
$CsCdBr_3$	${f Room}$ 77°K	1.991(1) 1.991(1)	+0.00068(8) +0.00059(8)	+0.00781(8) +0.00823(8)	+0.04233(10) +0.04394(10)	+ 0.002 69 (5) + 0.002 85 (5)	+0.00017(5) +0.00019(5)
$CsMgBr_3$	Room 77°K	1.991(1) 1.991(1)	+0.00080(8) +0.00067(8)	+0.00841(8) +0.00871(8)	+ 0.05495(10) + 0.05607(10)	+ 0.002 64 (5)	+0.00017(5)
CsMgCl_3	Room 77°K	1.991 (1) 1.991 (1) 1.991 (1)	+ 0.001 07 (10) + 0.001 16 (10)	+0.01050(10) +0.01088(10)	+0.04508(10) +0.04508(10) +0.04662(10)	+ 0.002 82 (5) + 0.000 96 (5) + 0.001 04 (5)	+0.00009(5) +0.00009(5) +0.00009(5)

TABLE II. Experimental and calculated line shifts (in gauss) for the $Gd^{3*}-Gd^{3*}$ pairs in $CsMgCl_3$ at room temperature. ΔH_{expt} values were obtained by halving the difference between each resonance in the low-field half of the spectrum and the corresponding resonance in the high-field half; the spectrum was recorded at a frequency of 35.03 GHz.

ΔH_{expt}	$\Delta H_{\texttt{calc}}$	Difference	ΔH_{expt}	$\Delta H_{\texttt{calc}}$	Difference
7	5	+ 2	1851	1853	-2
250	248	+ 2	1899	1897	+ 2
959	(258)	-	1948	1936	+ 12
208	\ 268∫	-0	2023	2025	_2
385	381	+ 4	2150	2153	_3
426	426	0	2215	2219	_4
570	574	_4	2266	2267	_1
639	636	+ 3	2282	2289	-7
683	680	+ 3	2306	2312	-6
706	709	_3	2541	2543	_2
743	748	-5	2595	∫2574)	. 1
783	786	_3	2000	2594	+ 1
850	853	_3	2754	2759	-5
1160	1158	+ 2	2804	2810	-6
1210	1212	_2	2954	2996	-42
1273	1261	+12	3206	3204	+ 2
1287	1277	+ 10	3243	3242	+ 1
1402	1404	_2		(3359)	
1520	1519	+ 1	3375	$\langle 3371 \rangle$	+4
1596	∫1531)	1.9		(3383)	
1000	(1537)	+ 2	3617	3614	+ 3
1576	∫1575 ∖	Q	3665	3662	+ 3
1010	1583∫	-0	3846	3844	+ 2

cancy located between the two Gd^{3*} ions (see Fig. 1) represents an excess of negative charge, it seems almost certain that the positively charged trivalent ions will be attracted toward this vacancy. This produces a $Gd^{3*}-Gd^{3*}$ separation which is smaller than that predicted from the structure of the unperturbed host lattice. There is a small but measurable decrease in the calculated $Gd^{3*}-Gd^{3*}$ distances when the doped crystals are cooled from room to liquid-nitrogen temperature. This decrease most likely results from the simple thermal contraction of the host lattice.

The Gd³⁺-Gd³⁺ pairs in the Cs MX_3 crystals do not seem to be particularly unusual when compared with other gadolinium pair systems. In all three host lattices the exchange interactions between the two Gd³⁺ ions are antiferromagnetic but extremely weak. The exchange parameters are more than an order of magnitude smaller in absolute value than any of those observed for nearest-neighbor and next-nearest-neighbor pairs in Gd³⁺-doped crystals of LaCl₃ and EuCl₃.^{8, 10} The weakness of the exchange interactions in the Cs MX_3 crystals presumably reflects the fact that Gd³⁺ ions are fairly far apart and are not connected by direct superexchange pathways. As might be expected, the

TABLE III. Experimental and calculated line shifts (in gauss) for the $Gd^{3*}-Gd^{3*}$ pairs in $CsMgBr_3$ at room temperature. ΔH_{expt} values were obtained by halving the difference between each resonance in the low-field half of the spectrum and the corresponding resonance in the high-field half; the spectrum was recorded at a frequency of 34.93 GHz.

ΔH_{expt}	ΔH_{calc}	Difference	ΔH_{expt}	ΔH_{calc}	Difference
159	161	_2	1905	1906	_1
911	∫202 (. =	1991	1981	+10
211	<u> </u> 208∫	+ 0	2147	2143	+ 4
949	∫ 342)	9	2297	2299	_2
343	∖ 350∫	-0	2366	2365	+ 1
375	373	+ 2	2440	∫2443 \	. 1
519	518	+ 1	2449	₹2452	+ 1
	(580)		9649	∫2642 \	0
590	{ 589 }	0	2043	<u></u> 2643∫	0
	(601)		2796	∫2797)	2
826	826	0	2190	2798	-2
941	942	_1	3174	3176	-2
1021	1022	_1	3536	3528	+ 8
1094	∫1084 (_10	3698	3695	+ 3
1004	1105∫	_10	4074	4067	+7
1292	1294	-2	4155	∫4159 \	11
1358	1360	_2	4100	(4172)	-11
1456	∫1455)	0	4212	4213	_1
1400	\1457∫	0	1990	∫4326 \	. 9
1628	1628	0	4009	(4335∮	+ 0
1775	1773	+ 2	4522	4526	_4
1803	1804	_1	4707	4713	-6

TABLE IV. Experimental and calculated line shifts (in gauss) for the $Gd^{3*}-Gd^{3*}$ pairs in $CsCdBr_3$ at room temperature. ΔH_{expt} values were obtained by halving the difference between each resonance in the low-field half of the spectrum and the corresponding resonance in the high-field half; the spectrum was recorded at a frequency of 35.01 GHz.

ΔH_{expt}	ΔH_{calc}	Difference	ΔH_{expt}	ΔH_{calc}	Difference
25	33	-8	1834	1829	+ 5
105	106	_1	1950	∫1853)	1
215	212	+ 3	1009	1868 ∫	-1
222	222	0	2050	2051	-1
363	360	+ 3	2205	2202	+ 3
416	413	+ 3	2218	2220	_2
476	477	_1	2441	2441	0
598	595	+ 3	2781	2782	_1
621	624	_3	2898	2898	0
882	875	+ 8	3046	3056	-10
930	926	+4	3227	3227	0
933	939	-6	2250	∫3360∖	F
993	995	_2	3330	∖ 3363∮	-9
1009	(1084)	. 9	3405	3405	0
1093	{1099∫	+ 2	9401	∫ 3488 ∖	-
1149	∫1136 \	. 4	3491	₹ 3504∫	
1142	∖1139∫	+4			
1255	1255	0	9005	∫3686)	9
1460	1458	+ 2	3085	∖ 3690∫	-3
1541	1536	+ 5	3866	3867	-1
1635	1631	+4	4904	4897	+7
1738	1740	-2			

TABLE V. Calculated Gd^{3*} - Gd^{3*} separations and corresponding divalent ion separations in the unperturbed host lattice.

Lattice	Ion pair	Temperature	R (Å)
CsCdBr ₃	$Cd^{2+}-Cd^{2+}$	Room	6.70
Ū	Gd ³⁺ -Gd ³⁺	Room	6.03
	$\mathrm{Gd}^{3+}-\mathrm{Gd}^{3+}$	77°K	5.93
$CsMgBr_3$	Mg ²⁺ -Mg ²⁺	Room	6.50
	$Gd^{3+}-Gd^{3+}$	Room	5.89
	$\mathrm{Gd}^{3+}-\mathrm{Gd}^{3+}$	77°K	5.82
$CsMgCl_3$	Mg ²⁺ -Mg ²⁺	Room	6.19
•	Gd ³⁺ -Gd ³⁺	Room	5.47
	$Gd^{3+}-Gd^{3+}$	77°K	5.40

exchange parameters appear to have an inverse dependence on the $Gd^{3+}-Gd^{3+}$ separation. The exchange interaction is largest in $CsMgCl_3$ and smallest in $CsCdBr_3$.

It is clear from the intensities of the pair resonances that the vast majority (perhaps more than 90%) of the Gd^{3*} ions enter the Cs*MX*₃ crystals as pairs. The extent to which the localized

- ¹G.L. McPherson and L. M. Henling, Phys. Rev. B <u>16</u>, 1889 (1977).
- ²G. L. McPherson and W. Heung, Solid State Commun. 19, 53 (1976).
- ³G. L. McPherson, W. Heung, and J. J. Barraza, J. Am. Chem. Soc. (to be published).
- ⁴G. L. McPherson, T. J. Kistenmacher, and G. D. Stucky, J. Chem. Phys. 52, 815 (1970).
- ⁵G. L. McPherson and K. O. Devaney, Inorg. Chem. <u>16</u>, 1565 (1977).
- ⁶G. L. McPherson, L. J. Sindel, H. F. Quarls, C. B.

charge compensation requirement of the CsMX, lattice dominates the distribution of trivalent impurities is extraordinary. This effect is perhaps the most interesting aspect of these studies. The fact that the Gd³⁺ ions readily replace Mg²⁺ ions which are much smaller (0.66 vs 0.94 Å) indicates that the $CsMX_3$ crystals are rather accommodating host lattices. It would appear that within fairly broad limits the incorporation of impurities into these salts is determined solely by the electrostatics of the situation. This conclusion is supported by the observation that trivalent chromium, which is considerably different from gadolinium in size and chemical properties, also forms pairs when doped into the $CsMX_3$ crystals.^{2,3} It seems likely that the $CsMX_3$ salts will prove to be extremely useful host materials for preparing and studying a variety of spectroscopically interesting pair systems.

ACKNOWLEDGMENT

The authors gratefully acknowledge Professor B.B. Garrett of Florida State University for the use of the E-12 spectrometer and helpful advice in recording spectra.

- Frederick, and C. J. Doumit, Inorg. Chem. <u>14</u>, 1831 (1975).
- ⁷G. L. McPherson, A. M. McPherson, and J. L. Atwood (unpublished).
- ⁸M. T. Hutchings, R. J. Birgeneau, and W. P. Wolf, Phys. Rev. <u>168</u>, 1026 (1968).
- ⁸A. Abragam and B. Bleaney, *Electron Paramagnetic Resonance of Transition Metal Ions* (Clarendon, Oxford, 1970), p. 863.
- ¹⁰R. J. Birgeneau, M. T. Hutchings, and W. P. Wolf, Phys. Rev. 179, 275 (1969).