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Anomalous transient-time dispersion in amorphous solids —A comment*
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The random-walk non-MarkoFian equations of Scher and Montroll are subjected to two approximations: first,
the continuum limit is taken and second, the diffusive term, as defined in the text, is neglected (this means
that the carriers are drifted by the electric field). It is shown that this approach does preserve the dispersive
character of the transport process and leads to, essentially, the same results as deduced by Scher and
Montroll.

I. INTRODUCTION

In an important recent paper, Scher and Montroll'
(SM) discussed the problem of transport of a
space-charge packet in amorphous dieleetrics un-
der the action of an externally (high) applied field.
Experimental current-time curves exhibit a long
tail, indicative of dispersion of the carriers, and
SM have proposed to explain this by electronic
hopping through randomly distributed sites. This
feature of the medium was incorporated in the general
theory of the random walk by the use of a convenient
hopping distribution function, with the result that
the transport process is no longer Markoffian.
SM undertook the (formidable) task of solving this
new problem, approximating the theoretically de-
rived hopping distribution function by a mathe-
matically more treatable function.

However, the computational work involved in
this kind of calculation foresees the practical im-
possibility of treating other important experi-
mental situations —for instance, the high-signal
(space-charge limited) case. Therefore, it would
be desirable to have a more simple theory, em-
bracing the main features of the hopping process.
The first step in this direction —already mentioned
by Kenkre, Montroll, and Schlesinger' —is to take
the continuum limit of the pertinent random-walk
equations, for which more developed mathematical
methods may be applied to find the solutions. The
second one, more radical, is to disregard the diffusive
component in these equations. 'The diffusive compon-
ent we call that component of the transport equation
allowing motion of the carriers in both directions.
This amounts to saying that the hopping carrier is
drifted by the electric field. The physical reason
for this approximation is that in many experi-
ments in "crystalline" materials (that is not dis-
playing the long-tail current) the spreading of the
packet seems to be unimportant. It should be
stressed, however, that the proposed simplifi-

cation does not eliminate the dispersive character
of the hopping process and for this reason it helps
us to understand more clearly its nature.

In this article the proposed steps will be under-
taken and a calculation carried out to show that
they also lead essentially to the same results as
obtained by SM. However, small differences still
remain but we think that future discussion about
these points shall explain them (see Sec. V).

II. THEORY

We start with the generalized master equation as
given by Kenkre, Montroll, and Sehlesmger as-
suming a cubic lattice of parameter a, (mean dis-
tance between hops) whose lattice points (cells)
are characterized by the vector 7:

-p(l'-l)P(~, t')ldt',

where P(T, t) is the probability of finding a carrier
in the cell l at the time t if at t =0 it was in the
cell 1„P(f) is the probability of hop from a given
cell to one a vector Tdistant. Q(t) is related to
the hopping function tt(t) through a sequence of
operations; calling g*(u) and P*(u) the Laplace
transform of g(t) and Q(t),

0 *(u) = u4*(u)/[1 0*(u)l . -
Defining p(T) as different from zero for

p(0, s 1, 0') =p(0, 0 + 1)= —,',
p(1, 0, 0)= 6 +bE, p(-1, 0, 0)= 6

—bE.

F being the electric field in the x direction and 5
a constant and proceeding to the continuum limit,
the following equation is readily obtained:
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with

r =W t, y=x/2a, bE, A= q, /(v)'~'a, bE .
The asymptotic (r»1) value of p(x, t) is given
by

p(x, t) =A expi " "0' ~'1/(r)'~' (8')

Suppose now that )t)(t —t') is equal to Ab(t —t') If.
carriers were created at t=0 at x„we know that
the solution of Eq. (4) is proportional to
5(x —x, —2hz, bEt). Let us take the Laplace trans-
form of Eq. (4) with q, a constant:

8
up*(u, x) —q,b(x —x,)=-2a, b E)t) *(u)

Since now the integration of this equation does not
depend on u we may take its solution as the Laplace
transform of the 5 function [corresponding
to )t)(t —t') =Lb(t —t')] substituting X for Q*(u) So.
we have the solution of Eq. (5) as

p*(u, x) =q, expt "'" *o "o' ~*"1/2a, bEQ*(u) .

(8)
Therefore, the problem is reduced to finding the
inverse Laplace transform of P*(u, x). We will
use for the hopping function {I(t), the same as
Scher and Montroll, '

q(t ) =4W. exp(W t)i'erfc(W. t)'",
leading to'

y+{u)=W [1+2(W /u))"] (7)

Now inserting Eq. (7) in Eq. (6), the inverse La-
place transform may be found, and we get

exp t: -(&-&o)'S&-&+&0]

p(x, t) =A- V —V +1
2(r y +y0)

(8)

In going from Eqs. {1)to (3) we have assumed
planar symmetry and changed from P to p defined
as the charge density. Equation (3) is a general-
ized Fokker-Plank equation and has already been
considered in connection with Brownian motion. 4 '
For a Markaffian transport process [g(t) =Le '],
Eq. {3)gives the usual Fokker-Plank equation.
The term in the integrand depending on 8'p/sx' is
what we call the diffusive term and will tentatively
be supposed small as compared with the electric
drift one. %e see that this approximation does, in
principle, preserve the dispersive nature of the
process through the memory represented by the
term P(t —t') Besid.es this, we will take the small
signal case (that is, the carriers are drifted by
the external applied field), writing

~P t, Bp= —2a, bE Q(t —t') —dt' .at 8x

III. EXTERNAL CURRENT

From Eq. (8) we may derive the external cur-
rent density j in the following way. The external
current j is

BE
2=~+&

Bt

where i is the conduction (or material) current
density and the second term is the displacement
current density. Integrating from 0 to l, the
sample thickness, we get, for constant applied
voltage,

jl = idx.

d
i(l, t)= ——

pdx .
dt

Inserting Eq. (11) in Eq. (10) we finally get

d 1
pdx+ —— xpdx.

dt 0 l dt

IV. RESULTS

We will apply Eq. (8)for y, = 0, that is for all the
carriers at y =0 at T=0. The sample thickness l,
in reduced units, is y, = l/2a, bE and will be sup-
posed to be much larger than 1.

We could follow, using Eq. (8), the initial be-
havior of p{x, t) but we expect the results of the
continuum approximation to be meaningful for
T»1. Therefore, we instead take the asymptotic
formula, Eq. (8'), and obtain

pdx=W„q, erf [yg/(r)'t'],

y&(v
(14)

After partial integration and use of the continuity
equation

jl =xi ~, + x—dxBp
Bt

d=li(l, t)+— xpdx .
Qt

In our ease the carriers are drifted by the electric
field and therefore there is no conduction current
leaving the sample at x =0. Hence we may say
that
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From Eqs. (13) and (14) we calculate the external
current density j:

j =[8' qo/2y, (wr)' ] (1 —e "' ') l (15)

which agrees with the SM result [Ref. 1, Eq. (44)].
We have following asymptotic behavior for Eq.
(15):

y =W q, /2y, (m)' '7' ' T «y'
j =H' q & /2(w)' 'r T»y

However, in a log„j vs log» r plot, the transi-
tion between these two behaviors is more or less
sharp.

when radical simplifications are made. The two
treatments are formally different. In the present
case free boundary conditions are used, while SM

assume periodic boundary conditions in addition
to the presence of absorbing planes at x=o and

x = l. Therefore, the same expressions used here
appear to be different from those of SM. This ap-
plies in particular to the expressions for the cur-
rent density, given by Eq. (16) of Ref. 1, and Eq.
(12) of this paper, and that for the first moment
[Ref. 1, Eq. (42), and Eq. (12) of this payer).
Nevertheless, the final results are in agreement.
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